首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
6.
7.
The role of the ligand in glucocorticoid receptor-mediated transactivation and transrepression of gene expression was investigated. Half-maximal transactivation of a mouse mammary tumor virus-chloramphenicol acetyltransferase reporter gene in transfected cells expressing the human glucocorticoid receptor mutant GRL753F, from which the rate of ligand dissociation is four to five times higher than the rate of dissociation from normal receptors, required a 200- to 300-fold-higher concentration of dexamethasone than was required in cells expressing the normal receptor. Immunocytochemical analysis demonstrated that this difference was not the result of a failure of the mutant receptor to accumulate in the nucleus after steroid treatment. In contrast, in cells cotransfected with a reporter gene containing the AP-1-inducible collagenase gene promoter, the concentration of dexamethasone required for 50% transrepression was the same for mutant and normal receptors. Efficient receptor-mediated transrepression was also observed with the double mutant GRL753F/C421Y, in which the first cysteine residue of the proximal zinc finger has been replaced by tyrosine, indicating that neither retention of the ligand nor direct binding of the receptor to DNA is required. RU38486 behaved as a full agonist with respect to transrepression. In addition, receptor-dependent transrepression, but not transactivation, was observed in transfected cells after heat shock in the absence of the ligand. Taken together, these results suggest that unlike transactivation, transrepression of AP-1 activity by the nuclear glucocorticoid receptor is ligand independent.  相似文献   

8.
9.
10.
11.
12.
13.
Recent investigations have elucidated the cytokine-induced NF-kappaB activation pathway. IkappaB kinase (IKK) phosphorylates inhibitors of NF-kappaB (IkappaBs). The phosphorylation targets them for rapid degradation through a ubiquitin-proteasome pathway, allowing the nuclear translocation of NF-kappaB. We have examined the possibility that IKK can phosphorylate the p65 NF-kappaB subunit as well as IkappaB in the cytokine-induced NF-kappaB activation. In the cytoplasm of HeLa cells, the p65 subunit was rapidly phosphorylated in response to TNF-alpha in a time dependent manner similar to IkappaB phosphorylation. In vitro phosphorylation with GST-fused p65 showed that a p65 phosphorylating activity was present in the cytoplasmic fraction and the target residue was Ser-536 in the carboxyl-terminal transactivation domain. The endogenous IKK complex, overexpressed IKKs, and recombinant IKKbeta efficiently phosphorylated the same Ser residue of p65 in vitro. The major phosphorylation site in vivo was also Ser-536. Furthermore, activation of IKKs by NF-kappaB-inducing kinase induced phosphorylation of p65 in vivo. Our finding, together with previous observations, suggests dual roles for IKK complex in the regulation of NF-kappaB.IkappaB complex.  相似文献   

14.
15.
A myriad of stimuli including proinflammatory cytokines, viruses, and chemical and mechanical insults activate a kinase complex composed of IkappaB kinase beta (IKK-beta), IKK-alpha, and IKK-gamma/N, leading to changes in NF-kappaB-dependent gene expression. However, it is not clear how the NF-kappaB response is tailored to specific cellular insults. Signaling molecule that interacts with mouse pelle-like kinase (SIMPL) is a signaling component required for tumor necrosis factor alpha (TNF-alpha)-dependent but not interleukin-1-dependent NF-kappaB activation. Herein we demonstrate that nuclear localization of SIMPL is required for type I TNF receptor-induced NF-kappaB activity. SIMPL interacts with nuclear p65 in a TNF-alpha-dependent manner to promote endogenous NF-kappaB-dependent gene expression. The interaction between SIMPL and p65 enhances p65 transactivation activity. These data support a model in which TNF-alpha activation of NF-kappaB dependent-gene expression requires nuclear relocalization of p65 as well as nuclear relocalization of SIMPL, generating a TNF-alpha-specific induction of gene expression.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号