首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Chloroplasts prepared from lysed protoplasts of barley mesophyll contain 2–8% of the total acid proteinase activity. This residual activity is not associated with intact chloroplasts isolated by means of density gradient centrifugation. Vacuoles isolated from lysed protoplasts contain 80–85% of the total acid proteinase activity, indicating that the enzyme(s) which is presumably responsible for the degradation of chloroplastic proteins is located largely in the central vacuoles of mesophyll cells.  相似文献   

2.
Mesophyll protoplasts isolated from primary leaves of wheat seedlings were used to follow the localization of proteases and the breakdown of chloroplasts during dark-induced senescence. Protoplasts were readily obtained from leaf tissue, even after 80% of the chlorophyll and protein had been lost. Intact chloroplasts and vacuoles could be isolated from the protoplasts at all stages of senescence. All the proteolytic activity associated with the degradation of ribulose bisphosphate carboxylase in the protoplasts could be accounted for by that localized within the vacuole. Moreover, this localization was retained late into senescence. Protoplasts isolated during leaf senescence first showed a decline in photosynthesis, then a decline in ribulose bisphosphate carboxylase activity, followed by a decline in chloroplast number. There was a close correlation between the decline in chloroplast number and the loss of chlorophyll and soluble protein per protoplast, suggesting a sequential degradation of chloroplasts during senescence. Ultrastructural studies indicated a movement of chloroplasts in toward the center of the protoplasts during senescence. Thus, within senescing protoplasts, chloroplasts appeared either to move into invaginations of the vacuole or to be taken up into the vacuole.  相似文献   

3.
Subcellular localization of glucose-6-phosphate dehydrogenase (EC 1.1.1.49.) isoenzymes was determined in mesophyll protoplasts prepared from Nicotiana tabacum L. cv. Samsun. Intact chloroplasts and soluble cytosolic proteins were obtained by means of differential centrifugation. The 1000 g pellet contained 97 % of chloroplasts and 16.8 ± 2.1 % of the total activity of glucose-6-phosphate dehydrogenase. The rest of the enzyme was localized in the cytosol which also contained 91 % of the total activity of phosphoenolpyruvate carboxylase.  相似文献   

4.
d'Amato  T. A.  Ganson  R. J.  Gaines  C. G.  Jensen  R. A. 《Planta》1984,162(2):104-108
The subcellular locations of two readily discriminated chorismate-mutase (EC 5.4.99.5) isoenzymes from Nicotiana silvestris Speg. et Comes were determined in protoplasts prepared from both leaf tissue and isogenic suspension-cultured cells. Differential centrifugation was used to obtain fractions containing plastids, a mixture of mitochondria and microbodies, and soluble cytosolic proteins. Isoenzyme CM-1 is sensitive to feedback inhibition by l-tyrosine and comprises the major fraction of total chorismate mutase in suspension-cultured cells. Isoenzyme CM-2 is not inhibited by l-tyrosine and its expression is maximal in organismal (leaf) tissue. Isoenzyme CM-1 is located in the plastid compartment since (i) proplastids contained more CM-1 activity than chloroplasts, (ii) both chloroplast and proplastid fractions possessed the tyrosine-sensitive isoenzyme, and (iii) latency determinations on washed chloroplast preparations confirmed the internal location of a tyrosine-sensitive isoenzyme. Isoenzyme CM-2 is located in the cytosol since (i) the supernatant fractions were heavily enriched for the tyrosineinsensitive activity, and (ii) a relatively greater amount of tyrosine-insensitive enzyme was present in the supernatant fraction derived from organismal tissue.  相似文献   

5.
Hexokinase (HXK, EC 2.7.1.1) plays an important role in the metabolism and glucose signalling. To examine the characteristics of HXK gene family in rice, the subcellular localizations of ten hexokinases (OsHXK1 — OsHXK10) were determined using OsHXK::GFP fusion proteins in tobacco mesophyll protoplasts. As was previously demonstrated, OsHXK4 was detected in the chloroplast stroma, OsHXK5 and OsHXK6 in the mitochondria, and OsHXK7 and OsHXK10 in the cytoplasm. In the present study, OsHXKs were clearly divided into three types (A, B, C) based on their N-terminal sequences. The new type-C HXKs in plants, OsHXK1, OsHXK7 and OsHXK8, which lack the plastidic transit peptide and the membrane anchor domain, were detected not only in the cytoplasm but also in the nucleus. The type-B HXKs, OsHXK2, OsHXK3, OsHXK9 and OsHXK10, which contained a membrane anchor domain, were distinctly localized in the mitochondria. These results suggest that OsHXKs localized in different cell compartments may be involved in the glucose signalling-related gene expression during growth and development of rice.  相似文献   

6.
Changes in the content and subcellular localization of ribonuclease isoenzymes were determined in mesophyll protoplasts prepared fromNicotiana tabacum L. cv. Samsun from healthy and potato virus Y (PVY) infected plants. Intact chloroplasts, mitochondria and soluble cytosolic proteins were obtained after protoplast disintegration by means of differential centrifugation. The 1 000g pellet from healthy protoplasts contained 7.3 %, the 15 000g pellet 13.5 % and 15 000g supernatant 82.1 % of the total activity of ribonucleases. The 1 000g pellet from infected protoplasts contained 10.4%, the 15 000g pellet 10.0% and 15 000g supernatant 89.6 % of the total activity of ribonucleases. The activity of these enzymes in infected protoplasts was enhanced in crude homogenate to 137.0 % (P<0.001), in 1 000g pellet to 194.8 % (P<0.001), in 15 000g pellet to 101.3 % (NS), and in 15 000g supernatant to 149.4 % (P<0.001) of that in healthy noninoculated protoplasts.  相似文献   

7.
8.
Flavanone synthase, chalcone-flavanone isomerase and UDP-glucose; anthocyanidin-3-O-glucosyltransferase activities of protoplasts and subcellular fractions of protoplasts of Hippeastrum and Tulipa were investigated. Subcellular fractions studied were intact vacuoles, cytosol and particulate components of protoplasts less the vacuole. The cytosol fraction had the highest activity of the three enzymes studied. Results similar to those found for Hippeastrum were obtained with fractions from leaves and petals of Tulipa. The increase in flavanone synthase activity in the cytosol fraction from petals of Hippeastrum during development paralleled the increase in anthocyanin content of the petals.  相似文献   

9.
Vacuoles were isolated by osmotic rupture of mesophyll protoplasts from the primary leaves of 4-d- and 7-d-old plants of rye (Secale cereale L.). Their content of two flavones, luteolin 7-O-[-d-glucuronosyl-(12)-d-glucuronide] (R2) and luteolin 7-O-[-d-glucuronosy 1 (12) -d-glucuronide]-4-O--d-glucuronide (R1), as well as that of three specific flavone-glucuronosyltransferases involved in their biosynthesis and of a specific -glucuronidase was determined in comparison to the parent protoplasts. The two flavonoids were found to be entirely located in the vacuolar fraction, together with 70% of the activity of UDP-glucuronate: luteolin 7-O-diglucuronide-4-O-glucuronosyl-transferase (LDT; EC 2.4.1.), the third enzyme of the sequence of three transferases in the anabolic pathway. The activities of the first and second anabolic enzymes, UDP-glucuronate: luteolin 7-O-glucuronosyltransferase (LGT; EC 2.4.1.) and UDP-glucuronate: luteolin 7-O-glucuronide-glucuronosyltransferase (LMT; EC 2.4.1.) could not be found in the vacuolar fraction in appreciable amounts. The specific -glucuronidase (EC 3.2.1.), catalyzing the deglucuronidation of luteolin triglucuronide to luteolin diglucuronide, was present with 90% of its activity in the digestion medium after isolation of mesophyll protoplasts, indicating an apoplastic localization of this enzyme. The data presented indicate a directed anabolic and subsequent catabolic pathway for the luteolin glucuronides in the mesophyll cells of rye primary leaves. This includes two cytosolic and a last vacuolar step of glucuronidation of luteolin, and the vacuolar storage of the luteolin triglucuronide. We propose the transport of the latter into the cell wall, after which the triglucuronide is deglucuronidated, this being the first step for further turnover.Dedicated to Professor Ludwig Bergmann, Botanisches Institut der Universität zu Köln, on the occasion of his 65th birthday  相似文献   

10.
A new method using centrifugal elutriation for subcellular fractionation of plant cells has been developed. This method takes advantage of the fact that particles sedimenting in a gravitational field can be eluted by flow against the field. A wheat protoplast homogenate was fed into an elutriation rotor spinning at high speed and the flow rate into the rotor was gradually increased. The smaller and less dense materials such as mitochondria, microbodies, endoplasmic reticulum, and cytoplasm were elutriated earlier than the larger and denser nuclei and chloroplasts. The intact chloroplasts, free of mitochondria, microbodies, endoplasmic reticulum, and cytoplasm, could be obtained within 40 min following the rupture of protoplasts. The chlorophyll-free mitochondria could be obtained within 80 min.  相似文献   

11.
High yield isolation of mesophyll protoplasts from wheat, barley and rye   总被引:1,自引:0,他引:1  
Efficient procedures are described for high-yield isolation of mesophyll protoplasts from spring wheat ( Triticum aestivum L. cv. Glenlea), winter wheat ( Triticum aestivum L. cv. Frederick), barley ( Hordeum vulgare L. cv. Bruce) and rye ( Secale cereale L. cv. Puma). Factors such as plant age, composition of the incubation medium during isolation, purification procedures and culture medium affect protoplast yield, viability and metabolic competence, as measured by light-dependent CO2 fixation. Optimal osmolarity of the isolation medium was equivalent to 1.8 times that measured in the leaves of all plant material used. The presence of 2 m M ascorbic acid in the preincubation and isolation medium increased the yield by 50% and conserved viability and metabolic competence. The protoplasts were stable for up to 48 h without loss of either viability or of original activity of CO2 fixation, which was in the order of 100 μmol CO2 (mg chl)−1h−1.
In our MC-56 liquid medium these protoplasts regenerated cell walls within 72 h and a few divided.  相似文献   

12.
Previous studies on the presence of spermidine synthase (EC 2.5.1.16) in the protoplasts of Chinese cabbage (Brassica pekinensis var Pak Choy) leaves had detected a small but significant fraction of the enzyme in a crude chloroplast fraction (Cohen, Balint, Sindhu 1981 Plant Physiol 68: 1150-1155). To establish whether this enzyme is truly a chloroplast component, we have isolated purified intact chloroplasts from protoplasts by density gradient centrifugation in silica sols (Ludox AM). Such chloroplasts contained all of the diaminopimelate decarboxylase (EC 4.1.1.20) of the protoplasts, but were essentially devoid of spermidine synthase. Control experiments showed that the latter had not been inactivated under conditions of isolation, purification, and assay of the intact chloroplasts. Isolation and assay of protoplast vacuoles in a further examination of the supernatant fluid containing the enzyme revealed a significant fraction of the enzyme in the vacuole fraction. However this fraction was found to contain similar proportions of a soluble enzyme, glucose 6-phosphate dehydrogenase. It has been concluded that vacuolar fractions are difficultly separable from soluble cytoplasmic material, which is probably the only compartment containing spermidine synthase.  相似文献   

13.
Protoplasts isolated from 6-d-old primary leaves of barley (Hordeum vulgare L.) contain an enzyme which transfers the glucosyl moiety of uridine-diphosphateglucose to isovitexin, resulting in the formation of saponarin, the major flavonoid of barley. Purified chloroplasts isolated from protoplasts contained less than 2% of the total glucosyltransferase activity. These chloroplasts were 97% intact, based on ribulose-bisphosphate-carboxylase activity. Similarly low levels of glucosyltransferase activity were found in mitochondria and microbody or microsomal preparations from protoplasts. The soluble fraction (cytosol) contained at least 93% of the isovitexin 7-O-glucosyltransferase activity.  相似文献   

14.
The localization of acetyl-CoA synthetase in the spinach leaf cell was examined. When the different compartments of lysed spinach protoplasts were assayed for marker enzymes and acetyl-CoA synthetase, it was determined that the synthetase was totally localized in the chloroplast compartment. Analysis of spinach leaf for free acetate revealed that this acid was present at a 1 mm level in the leaf cell. It is suggested that free acetate probably derived from a number of sources in the cell diffuses into the chloroplast stroma compartment where it is converted to acetyl-CoA and thence employed for biosynthetic reactions. Thus, free acetate is metabolically inert in the leaf cell until it is transported to the only compartment that contains acetyl-CoA synthetase, namely the chloroplast.  相似文献   

15.
The subcellular compartmentation of β -glucosidase was studied in rye, maize and wheat seedlings by immunocytochemical methods. For detection, we used a 10 nm gold-labeled secondary antibody, and results were observed using transmission electron microscopy. In all three species, β -glucosidase was found in plastids, cytoplasm and cell walls. In rye, gold particles were seen on cell walls and cytoplasm in epidermal cells of the root tip and shoot, in bundle sheath cells of the shoot and in all cells, except the vascular bundle cells of the coleoptile. Gold labeling was also observed in plastids of the bundle sheath cells of rye shoot tips and in cortical cells of root tips. In wheat, gold labeling was observed on cell walls and cytoplasm of epidermal cells in the shoot base and coleoptile, and on cell walls and plastids in epidermal cells of the root tip. In maize, gold labeling was mainly found in plastids or proplastids in vascular bundle cells and bundle sheath cells of the shoot, in bundle sheath cells of the coleoptile and in epidermal cells of the root. Some gold particles were also found in cell walls and cytoplasm of stomatal guard cells of the shoot base and vascular bundle cells of the shoot tip and in the cell walls of bundle sheath cells of the shoot tip and root tip epidermal cells. Results are discussed in relation to the role of β -glucosidase in hydroxamic acid release and overall defense mechanism of monocotyledons.  相似文献   

16.
Proteases from mesophyll protoplasts of Melilotus alba were identified by standard proteolytic assays and separated using different chromatographic techniques. Their characterization also included their subcellular location. Besides the evidence for the multiplicity of the proteolytic enzymes, two protease sets were distinguished endopeptidases, which are exclusively vacuolar, and aminopeptidases, which are widely distributed throughout the cell. Cytosol-located enzymes were tested as substrates of the two sets of proteases, by studying comparatively the time-course changes of enzyme activities during incubation in total protoplast extracts, or in cytosol fractions devoid of vacuolar proteases. The degradation of phosphoenolpyruvate-carboxylase protein, a typical cytosolic enzyme, in the presence of purified amino-and endopeptidases, was also estimated by immunoprecipitation studies. Only the vacuolar endopeptidases are effective in the degradation of cytosolic enzymes. Hydrolytic enzyme activities mostly of vacuolar origin were very stable during incubation in total protoplast extracts. These proteins therefore appear to be particularly resistant to proteolytic attack. The results indicate that, in plants, the effective proteolytic system acting on cytosolic enzymes seems to be vacuole-located, and that the selectivity in protein degradation may be imposed by the susceptibility of the protein being degraded and by its transfer into the vacuoles.Abbreviations Leu-pNA leucine-p-nitroanilide - lys-p-NA lysine-p-nitroanilide - pCMB p-chloromercuribenzoic acid - PEPCase phosphoenolpyruvate carboxylase - PMSF phenylmethylsulfonylfluoride - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

17.
Immunocytochemical localizations in Vicia faba L. protoplasts and cultures of regenerating Solanum nigrum L. protoplasts support former observations that in plant cells ubiquitin occurs within the cytoplasm, the nucleus, the chloroplasts and at the plasmalemma, but not within the vacuole or the cell wall. Immunoresponses were also observed within mitochondria and associated with the endoplasmic reticulum, which is in accordance with previous findings on animal cells. Moreover, the tonoplast membrane system was found to be labelled. For regenerating S. nigrum protoplasts, evidence is given that ubiquitin plays a role in selective degradation even of whole subcellular structures. Most of the discontinuous plasmodesmata formed in the newly deposited outer cell walls during the early stages of culture disappear later on, except for those near the periphery of division walls or of non-division walls, which are probably used for the formation of continuous cell connections during further culture. Outer-wall plasmodesmata which are destined to disappear show high immunoreactivity to ubiquitin antibody, but no conspicuous immunolabelling was observed with the remaining plasmodesmata. Thus, the selective disintegration of whole plasmodesmatal structures is obviously regulated by ubiquitination of plasmodesmatal proteins. A model for the mechanism of degradation of outer-wall plasmodesmata during extension growth of the cell wall is presented.Dedicated to Professor Dr. Andreas Sievers on the occasion of his retirementThis work was supported by grants to R. K. (Deutsche Forschungsgemeinschaft) and to M. S. (Bennigsen-Foerder Preis des Landes Nordrhein-Westfalen). We thank Dipl.— Biol. Kirsten Leineweber for help with the V. faba protoplast isolation and Dr. Olaf Parge, Institut für Psychologie und Sozialforschung, Kiel, Germany, for giving assistance with the statistical analysis.  相似文献   

18.
J. Nagahashi  A. P. Kane 《Protoplasma》1982,112(3):167-173
Summary The distribution of latent UDPase activity (cold storage-activated) is similar to Triton-stimulated UDPase activity in membrane fractions separated by differential centrifugation as well as fractions purified by linear sucrose density centrifugation. The Triton-stimulated UDPase activity appears to be a specific marker for Golgi membranes in corn root homogenates. Detergent-activated UDPase activity provides a more reliable, less cumbersome way to monitor Golgi membranes compared to cold storage-activation and this marker can be used on fresh preparations.This research was supported in part by NSF grant CDP-7927121 and funds received from the Bronfman Science Center, Williams College.  相似文献   

19.
Mesophyll protoplasts were isolated from leaf tissues of a diploid daylily (HemerocallisxRed Magic) by enzymatic digestion with a solution containing 0.5% Pectolyase Y-23, 0.1% Cellulase R-10, 0.1% Driselase, 0.6 M sorbitol and half-strength MS inorganic salts. When cultured on MS medium supplemented with 0.5 mg/l NAA and 0.5 mg/l BA, the protoplasts underwent sustained division to produce multicellular colonies. The optimal plating density for cell division was 0.5 × 105 protoplasts/ml. The highest plating efficiency was obtained in cultures grown in media solidified with 0.2% Gelrite. Under these conditions, formation of colonies occurred from 14% of cultured protoplasts. Calli were recovered from 9 colonies only after the cultures were treated with a conditioned medium. Intact plants were regenerated from protoplast-derived calli through organogenesis.Abbreviations BA 6-benzylaminopurine - FDA fluorescein diacetate - GA3 gibberellic acid - MS medium Murashige and Skoog (1962) medium - NAA 1-naphthaleneacetic acid  相似文献   

20.
In order to assay the viability of electrically fused mesophyll protoplasts ofAvena sativa a technique was developed to determine adenylate levels in single protoplasts and fusion products. The results demonstrate that the intracellular ATP/ADP ratios are identical before and after fusion (values between 1.4 and 1.8) and that the time of the rounding up process is directly related to the ATP level of the hybrid. This was shown by the manipulation of the intracellular ATP/ADP ratio in the light using different effectors. Hybrids with an ATP/ADP ratio of 2.3 needed 54 s to round up completely; in the presence of antimycin (inhibition of both oxidative and light-dependent cyclic electron flow: ATP/ADP=1.1) or dibromothymoquinone (plastoquinone antagonist: ATP/ADP=1.0) the time for rounding up was slightly increased (64 s and 76 s respectively), whereas after preincubation with antimycin, dichlorophenyldimethylurea (inhibition of oxidative and light-dependent electron flow) or uncouplers (ATP/ADP=0.19–0.32) this process needed 128–153s for completion. These results are discussed in relation to the viability of electrically induced fusion products and to energy-dependent events involved in the process of fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号