首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SUMMARY. 1. The abundance of pianktivorous juvenile yellow perch, Perca flavescens , was manipulated in three 750 m3 enclosures in a eutrophic lake.
2. There was a significant negative relationship between fish and zoopiankton biomasses. At high fish densities the zooplankton community was dominated by small filter-feeding cladocera. primarily bosmi- nids. At low fish densities the zooplankton community was dominated by large filter-feeding cladocera, primarily daphnids.
3. There was no significant relationship between zooplankton and phytoplankton biomasses when considered over the whole experiment but there was a trend towards lower phytoplankton biomass in the enclosure dominated by daphnids during mid-summer.
4. We conclude that although planktivorous fish have a strong negative impact on zooplankton community biomass and size structure, the relationship at the next lower trophic level, zooplankton and phytoplankton, is much weaker. Therefore, the biomanipulation of planktivorous fish populations as a management technique to control phytoplankton abundance is largely ineffective.  相似文献   

2.
We tested for disproportional changes in annual and seasonal species richness and biomass among five trophic levels (phytoplankton, herbivorous, omnivorous, and carnivorous zooplankton, and fish) as well as altered trophic structure and ecosystem function following the 5-year experimental acidification of Little Rock Lake (Wisconsin, USA) from pH 6.1 to 4.7. Abiotic and biotic controls of trophic level response during acidification were also identified. Asymmetric reductions of species richness among trophic levels, separated by life stage and feeding type, were evident and changes in trophic structure were most pronounced by the end of the acidification period. Relative declines in richness of fish and zooplankton were greater than phytoplankton, which were generally unaffected, leading to a reduction of upper trophic level diversity. Each of the lower four trophic levels responded to a distinct combination of abiotic and biotic variables during acidification. pH was identified as a direct driver of change for only carnivorous zooplankton, while all other trophic levels were affected more by indirect interactions caused by acidification. Fluctuations in ecosystem function (zooplankton biomass and primary production) were also evident, with losses at all trophic levels only detected during the last year of acidification. The acidified basin displayed a tendency for greater variation in biomass for upper trophic levels relative to reference conditions implying greater unpredictability in ecosystem function. Together, these results suggest that trophic asymmetry may be an important and recurring feature of ecosystem response to anthropogenic stress.  相似文献   

3.
We performed a meta‐analysis of 31 lake mesocosm experiments to investigate differences in the responses of pelagic food chains and food webs to nutrient enrichment and fish presence. Trophic levels were divided into size‐based functional groups (phytoplankton into highly edible and poorly edible algae, and zooplankton into small herbivores, large herbivores and omnivorous zooplankton) in the food webs. Our meta‐analysis shows that 1) nutrient enrichment has a positive effect on phytoplankton and zooplankton, while fish presence has a positive effect on phytoplankton and a negative effect on zooplankton in the food chains; 2) nutrient enrichment has a positive effect on highly edible algae and small herbivores, but no effect on poorly edible algae, large herbivores and omnivorous zooplankton in the food webs. Planktivorous fish have a positive effect on highly edible algae and small herbivores, a negative effect on large herbivores and omnivorous zooplankton, and no effect on poorly edible algae. Our meta‐analysis confirms that nutrient enrichment and planktivorous fish affect functional groups differentially within trophic levels, revealing important changes in the functioning of food webs. The analysis of fish effects shows the well‐described trophic cascade in the food chain and reveals two trophic cascades in the food web: one transmitted by large herbivores that benefit highly edible phytoplankton, and one transmitted by omnivorous zooplankton that benefit small herbivores. Comparison between the responses of food webs and simple food chains also shows consistent biomass compensation between functional groups within trophic levels.  相似文献   

4.
We studied trophic interactions in experimental rockpools with three different food web structures: phytoplankton and small-bodied zooplankton; phytoplankton, small-bodied zooplankton and Daphnia ; and phytoplankton, small-bodied zooplankton, Daphnia and Notonecta . Nutrients, primary productivity, chlorophyll a and zooplankton species composition and biomass were measured over eight weeks.
2. Daphnia had a negative impact on other zooplankton and reduced the phytoplankton biomass and primary productivity. In the absence of Daphnia , small-bodied zooplankton species were abundant, in particular cyclopoid copepods. Concentrations of dissolved nutrients were lower and the standing crop of primary producers was higher when Daphnia was absent.
3. The presence of the invertebrate predator Notonecta produced a top-down effect which was similar to that reported for planktivorous fish, i.e. a selective reduction of daphnids followed by an increase of small-bodied zooplankton species and phytoplankton biomass.
4. The study showed that consumer regulation of Daphnia by Notonecta and of algae by Daphnia are important, but also demonstrated that trophic level biomasses were controlled by a combination of predation and resource limitation.  相似文献   

5.
6.
We developed a mechanistic model of nutrient, phytoplankton, zooplankton and fish interactions to test the effects of phytoplankton food quality for herbivorous zooplankton on planktonic food web processes. When phytoplankton food quality is high strong trophic cascades suppress phytoplankton biomass, the zooplankton can withstand intense zooplanktivory, and energy is efficiently transferred through the food web sustaining higher trophic level production. Low food quality results in trophic decoupling at the plant-animal interface, with phytoplankton biomass determined primarily by nutrient availability, zooplankton easily eliminated by fish predation, and poor energy transfer through the food web. At a given nutrient availability, food quality and zooplanktivory interact to determine zooplankton biomass which in turn determines algal biomass. High food quality resulted in intense zooplankton grazing which favored fast-growing phytoplankton taxa, whereas fish predation favored slow-growing phytoplankton. These results suggest algal food quality for herbivorous zooplankton can strongly influence the nature of aquatic food web dynamics, and can have profound effects on water quality and fisheries production. Handling editor: D. Hamilton  相似文献   

7.
1. Using data from 71, mainly shallow (an average mean depth of 3 m), Danish lakes with contrasting total phosphorus concentrations (summer mean 0.02–1.0 mg P L?l), we describe how species richness, biodiversity and trophic structure change along a total phosphorus (TP) gradient divided into five TP classes (class 1–5: <0.05, 0.05–0.1, 0.1–0.2, 0.2–0.4,> 0.4 mg P L?1).
2. With increasing TP, a significant decline was observed in the species richness of zooplankton and submerged macrophytes, while for fish, phytoplankton and floating‐leaved macrophytes, species richness was unimodally related to TP, all peaking at 0.1–0.4 mg P L?1. The Shannon–Wiener and the Hurlbert probability of inter‐specific encounter (PIE) diversity indices showed significant unimodal relationships to TP for zooplankton, phytoplankton and fish. Mean depth also contributed positively to the relationship for rotifers, phytoplankton and fish.
3. At low nutrient concentrations, piscivorous fish (particularly perch, Perca fluviatilis) were abundant and the biomass ratio of piscivores to plankti‐benthivorous cyprinids was high and the density of cyprinids low. Concurrently, the zooplankton was dominated by large‐bodied forms and the biomass ratio of zooplankton to phytoplankton and the calculated grazing pressure on phytoplankton were high. Phytoplankton biomass was low and submerged macrophyte abundance high.
4. With increasing TP, a major shift occurred in trophic structure. Catches of cyprinids in multiple mesh size gill nets increased 10‐fold from class 1 to class 5 and the weight ratio of piscivores to planktivores decreased from 0.6 in class 1 to 0.10–0.15 in classes 3–5. In addition, the mean body weight of dominant cyprinids (roach, Rutilus rutilus, and bream, Abramis brama) decreased two–threefold. Simultaneously, small cladocerans gradually became more important, and among copepods, a shift occurred from calanoid to cyclopoids. Mean body weight of cladocerans decreased from 5.1 μg in class 1 to 1.5 μg in class 5, and the biomass ratio of zooplankton to phytoplankton from 0.46 in class 1 to 0.08–0.15 in classes 3–5. Conversely, phytoplankton biomass and chlorophyll a increased 15‐fold from class 1 to 5 and submerged macrophytes disappeared from most lakes.
5. The suggestion that fish have a significant structuring role in eutrophic lakes is supported by data from three lakes in which major changes in the abundance of planktivorous fish occurred following fish kill or fish manipulation. In these lakes, studied for 8 years, a reduction in planktivores resulted in a major increase in cladoceran mean size and in the biomass ratio of zooplankton to phytoplankton, while chlorophyll a declined substantially. In comparison, no significant changes were observed in 33 ‘control’ lakes studied during the same period.  相似文献   

8.
The impact of climate change on the marine food web is highly uncertain. Nonetheless, there is growing consensus that global marine primary production will decline in response to future climate change, largely due to increased stratification reducing the supply of nutrients to the upper ocean. Evidence to date suggests a potential amplification of this response throughout the trophic food web, with more dramatic responses at higher trophic levels. Here we show that trophic amplification of marine biomass declines is a consistent feature of the Coupled Model Intercomparison Project Phase 5 (CMIP5) Earth System Models, across different scenarios of future climate change. Under the business‐as‐usual Representative Concentration Pathway 8.5 (RCP8.5) global mean phytoplankton biomass is projected to decline by 6.1% ± 2.5% over the twenty‐first century, while zooplankton biomass declines by 13.6% ± 3.0%. All models project greater relative declines in zooplankton than phytoplankton, with annual zooplankton biomass anomalies 2.24 ± 1.03 times those of phytoplankton. The low latitude oceans drive the projected trophic amplification of biomass declines, with models exhibiting variable trophic interactions in the mid‐to‐high latitudes and similar relative changes in phytoplankton and zooplankton biomass. Under the assumption that zooplankton biomass is prey limited, an analytical explanation of the trophic amplification that occurs in the low latitudes can be derived from generic plankton differential equations. Using an ocean biogeochemical model, we show that the inclusion of variable C:N:P phytoplankton stoichiometry can substantially increase the trophic amplification of biomass declines in low latitude regions. This additional trophic amplification is driven by enhanced nutrient limitation decreasing phytoplankton N and P content relative to C, hence reducing zooplankton growth efficiency. Given that most current Earth System Models assume that phytoplankton C:N:P stoichiometry is constant, such models are likely to underestimate the extent of negative trophic amplification under projected climate change.  相似文献   

9.
Classical models of phytoplankton–zooplankton interaction show that with nutrient enrichment such systems may abruptly shift from limit cycles to stable phytoplankton domination due to zooplankton predation by planktivorous fish. Such models assume that planktivorous fish eat only zooplankton, but there are various species of filter-feeding fish that may also feed on phytoplankton. Here, we extend these classical models to systematically explore the effects of omnivory by planktivorous fish. Our analysis indicates that if fish forage on phytoplankton in addition to zooplankton, the alternative attractors predicted by the classical models disappear for all realistic parameter settings, even if omnivorous fish have a strong preference for zooplankton. Our model also shows that the level of fish biomass above which zooplankton collapse should be higher when fish are omnivorous than when fish are zooplanktivorous. We also used the model to explore the potential effects of the now increasingly common practice of stocking lakes with filter-feeding fish to control cyanobacteria. Because omnivorous filter-feeding fish forage on phytoplankton as well as on the main grazers of phytoplankton, the net effect of such fish on the phytoplankton biomass is not obvious. Our model suggests that there may be a unimodal relationship between the biomass of omnivorous filter-feeding fish and the biomass of phytoplankton. This implies that to manage for reductions in phytoplankton biomass, heavy stocking or strong reduction of such fish is best.  相似文献   

10.
Biomass and species diversity (richness and evenness) of littoral organisms were explored in 27 sites in three basins of the large Lake Saimaa system in eastern Finland. The basins differed in degree of nutrient loading and trophic status. Six organismal groups, i.e., phytoplankton, periphyton, macrophytes, crustacean zooplankton, benthic macroinvertebrates and fish were studied. Factors affecting the biomass and diversity of these groups were explored by multiple stepwise regression analysis. The biomass of different groups was explained by the same variables, mainly nutrients, while diversity was associated with different environmental factors among the studied groups. The biomass of periphyton, phytoplankton, zooplankton, and fish correlated significantly with each other. There was also an apparent association between the biomass of macrophytes and that of benthic invertebrates. However, no significant correlations were found among the diversity of the studied groups. In accordance with previous studies, our results did not support the existence of species-rich hotspots or the possibility of using any surrogate taxon to reveal overall biodiversity. Thus, for conservation planning, biological surveys should include extensive collection of taxonomic groups and organisms at all trophic levels.  相似文献   

11.
Biodiversity has been established as a potential determinant of function in many ecosystems; however, previous research has mostly focused on primary producers and effects at a single trophic level. A broader perspective that considers multiple components of food webs is necessary to understand natural systems. In particular, consumer diversity needs to be more thoroughly examined as trophic interactions and indirect effects can alter ecosystem properties. We test the potential for consumer diversity (fish richness and composition) to govern food web dynamics at two levels of environmental complexity (mesocosms and experimental ponds) and explore the consequences of removing individual species of fish on lower trophic levels. In mesocosms, both the richness and density of zooplankton were reduced when more fish species were present. No effects from the fish treatments were found on phytoplankton, but phosphorus levels increased with higher fish richness. Removing either generalist or specialist fish species increased the richness and density of zooplankton and the amount of phytoplankton, whereas all fish species had redundant effects on nutrients. In ponds, a dominant fish species (specialist shiner) determined the richness and density of zooplankton. In contrast, phytoplankton and nutrients were reduced by higher fish richness in the fall and spring. Overall, the specialist shiner had unique effects on the pond food web suggesting the key to understanding function is the presence of a dominant species and their biological interactions. Differences between mesocosms and ponds are likely due to increased heterogeneity of resources in the ponds allowing species to specialize on different prey. Our study links the biodiversity ecosystem function paradigm with food web concepts to improve predictions for conservation and management actions in response to changes in biodiversity.  相似文献   

12.
Bergström  A.-K.  Deininger  A.  Jonsson  A.  Karlsson  J.  Vrede  T. 《Hydrobiologia》2021,848(21):4991-5010

We used data from whole-lake studies to assess how changes in food quantity (phytoplankton biomass) and quality (phytoplankton community composition, seston C:P and N:P) with N fertilization affect zooplankton biomass, community composition and C:N:P stoichiometry, and their N:P recycling ratio along a gradient in lake DOC concentrations. We found that despite major differences in phytoplankton biomass with DOC (unimodal distributions, especially with N fertilization), no major differences in zooplankton biomass were detectable. Instead, phytoplankton to zooplankton biomass ratios were high, especially at intermediate DOC and after N fertilization, implying low trophic transfer efficiencies. An explanation for the observed low phytoplankton resource use, and biomass responses in zooplankton, was dominance of colony forming chlorophytes of reduced edibility at intermediate lake DOC, combined with reduced phytoplankton mineral quality (enhanced seston N:P) with N fertilization. N fertilization, however, increased zooplankton N:P recycling ratios, with largest impact at low DOC where phytoplankton benefitted from light sufficiently to cause enhanced seston N:P. Our results suggest that although N enrichment and increased phytoplankton biomass do not necessarily increase zooplankton biomass, bottom-up effects may still impact zooplankton and their N:P recycling ratio through promotion of phytoplankton species of low edibility and altered mineral quality.

  相似文献   

13.
1. Using 5‐m2 field enclosures, we examined the effects of Elodea canadensis on zooplankton communities and on the trophic cascade caused by 4–5 year old (approximately 16 cm) roach. We also tested the hypothesis that roach in Elodea beds use variable food resources as their diet, mainly benthic and epiphytic macroinvertebrates, and feed less efficiently on zooplankton. Switching of the prey preference stabilises the zooplankton community and, in turn, also the fluctuation of algal biomass. The factorial design of the experiment included three levels of Elodea (no‐, sparse‐ and dense‐Elodea) and two levels of fish (present and absent). 2. During the 4‐week experiment, the total biomass of euplanktonic zooplankton, especially that of the dominant cladoceran Daphnia longispina, decreased with increase in Elodea density. The Daphnia biomass was also reduced by roach in all the Elodea treatments. Thus, Elodea provided neither a favourable habitat nor a good refuge for Daphnia against predation by roach. 3. The electivity of roach for cladocerans was high in all the Elodea treatments. Roach were able to prey on cladocerans in Elodea beds, even when the abundance and size of these prey animals were low. In addition to cladocerans, the diet of roach consisted of macroinvertebrates and detrital/plant material. Although the biomass of macroinvertebrates increased during the experiment in all Elodea treatments, they were relatively unimportant in roach diets regardless of the density of Elodea beds. 4. Euplanktonic zooplankton species other than Daphnia were not affected by Elodea or fish and the treatments had no effects on the total clearance rate of euplanktonic zooplankton. However, the chlorophyll a concentration increased with fish in all the Elodea treatments, suggesting that fish enhanced algal growth through regeneration of nutrients. Thus, our results did not unequivocally show that Elodea hampered the trophic cascade of fish via lowered predation on grazing zooplankton. 5. In treatments with dense Elodea beds (750 g FW m?2), chlorophyll a concentration was always low suggesting that phytoplankton production was controlled by Elodea. Apparently, the top‐down control of phytoplankton biomass by zooplankton was facilitated by the macrophytes and operated simultaneously with control of phytoplankton production by Elodea.  相似文献   

14.
Low phytoplankton biomass usually occurs in the presence of submerged macrophytes, possibly because submerged macrophytes enhance top-down control of phytoplankton by offering a refuge for efficient grazers like Daphnia against fish predation. However, other field studies also suggest that submerged macrophytes suppress phytoplankton in the absence of Daphnia. In order to investigate these mechanisms further, we conducted an outdoor mesocosm experiment to study the effect of submerged macrophytes (Elodea nuttallii) on phytoplankton and zooplankton biomass. The experiment combined four nutrient addition levels (0, 10, 100, and 1000 μg P l−1; N/P ratio: 16) with three macrophyte levels (no macrophytes, artificial macrophytes, and real macrophytes). We inoculated the tanks with species-rich inocula of phytoplankton and zooplankton but excluded fish or macro-invertebrates. Probably due to the lack of predators in the mesocosms, potential grazing rates of pelagic zooplankton (estimated from zooplankton biomass) did not differ between the macrophyte treatment combinations. Compared to the treatment combinations without macrophytes, lower phytoplankton biomass occurred in the treatment combinations with real macrophytes at all the nutrient addition levels and in those with artificial macrophytes at all the nutrient levels except the highest. Significantly, higher abundances of plant-associated filter feeders (Simocephalus vetulus and Ceriodaphnia spp.) occurred in the treatment combinations with real and artificial macrophytes. The estimated potential grazing rate of these plant-associated filter feeders indicated that these filter feeders could be responsible for the lower phytoplankton biomass in the presence of real and artificial macrophytes. Our results suggest that the plant-associated filter feeders may be significant grazers in vegetated shallow lakes.  相似文献   

15.
Vladimir Matveev 《Oikos》2003,100(1):149-161
Several predictions of the theory developed for pelagic food webs of the Northern Hemisphere were tested on water bodies of Eastern Australia. Eleven reservoirs, representing trophic and latitudinal gradients were sampled for nutrients, phytoplankton, zooplankton and pelagic fish. Two models of regression analysis, which analysed possible interactions between trophic levels were based on different sets of data. In one, each reservoir was represented by only one pair of observations – annual mean or single observation (“regional model”). In the other, seasonal means of four frequently sampled reservoirs similar in productivity were used (“temporal model”). Significant variation in total phytoplankton biovolume (TPB) was predicted by total phosphorus concentration (TP), total nitrogen concentration (TN), mean crustacean length and acoustic biomass of planktivorous fish in both models. This suggested that nutrient limitation, zooplankton grazing and positive effects of fish were probably important in controlling the biomass of primary producers at both regional and temporal scales. In the regional model, the biomass of fish was also negatively correlated with Daphnia biomass and mean crustacean length, suggesting that the trophic cascade hypothesis may be applicable to Eastern Australia for the considered range of reservoir productivities. The biovolume of cyanobacteria was not correlated to any variables tested in the regional model. In contrast, nutrient and food web variables had significant effects on cyanobacterial biovolume in the temporal model. This suggested that factors governing seasonal succession were probably more important for cyanobacteria than variation in reservoir productivity or location. Contrary to previous views, no negative relationship between total biomass of zooplankton and TPB was found in both models, suggesting that the community structure of zooplankton rather than its total biomass mediates top‐down effects. Many predictions of the food web theory remained robust in spite of substantial differences in animal taxonomy and physical environment of Australian ecosystems.  相似文献   

16.
Whereas many studies have addressed the mechanisms driving partial migration, few have focused on the consequences of partial migration on trophic dynamics, and integrated studies combining the two approaches are virtually nonexistent. Here we show that temperature affects seasonal partial migration of cyprinid fish from lakes to predation refuges in streams during winter and that this migration in combination with temperature affects the characteristics and phenology of lower trophic levels in the lake ecosystem. Specifically, our six‐year study showed that the proportion of fish migrating was positively related to lake temperature during the pre‐migration growth period, i.e. during summer. Migration from the lake occurred later when autumn water temperatures were high, and timing of return migration to the lake occurred earlier at higher spring water temperatures. Moreover, the winter mean size of zooplankton in the lake increased with the proportion of fish being away from the lake, likely as a consequence of decreased predation pressure. Peak biomass of phytoplankton in spring occurred earlier at higher spring water temperatures and with less fish being away from the lake. Accordingly, peak zooplankton biomass occurred earlier at higher spring water temperature, but relatively later if less fish were away from the lake. Hence, the time between phyto‐ and zooplankton peaks depended only on the amount of fish being away from the lake, and not on temperature. The intensity of fish migration thereby had a major effect on plankton spring dynamics. These results significantly contribute to our understanding of the interplay between partial migration and trophic dynamics, and suggest that ongoing climate change may significantly affect such dynamics.  相似文献   

17.
Phenological changes have been observed globally for marine, freshwater and terrestrial species, and are an important element of the global biological ‘fingerprint’ of climate change. Differences in rates of change could desynchronize seasonal species interactions within a food web, threatening ecosystem functioning. Quantification of this risk is hampered by the rarity of long‐term data for multiple interacting species from the same ecosystem and by the diversity of possible phenological metrics, which vary in their ecological relevance to food web interactions. We compare phenological change for phytoplankton (chlorophyll a), zooplankton (Daphnia) and fish (perch, Perca fluviatilis) in two basins of Windermere over 40 years and determine whether change has differed among trophic levels, while explicitly accounting for among‐metric differences in rates of change. Though rates of change differed markedly among the nine metrics used, seasonal events shifted earlier for all metrics and trophic levels: zooplankton advanced most, and fish least, rapidly. Evidence of altered synchrony was found in both lake basins, when combining information from all phenological metrics. However, comparisons based on single metrics did not consistently detect this signal. A multimetric approach showed that across trophic levels, earlier phenological events have been associated with increasing water temperature. However, for phytoplankton and zooplankton, phenological change was also associated with changes in resource availability. Lower silicate, and higher phosphorus, concentrations were associated with earlier phytoplankton growth, and earlier phytoplankton growth was associated with earlier zooplankton growth. The developing trophic mismatch detected between the dominant fish species in Windermere and important zooplankton food resources may ultimately affect fish survival and portend significant impacts upon ecosystem functioning. We advocate that future studies on phenological synchrony combine data from multiple phenological metrics, to increase confidence in assessments of change and likely ecological consequences.  相似文献   

18.
Climate change-related heatwaves are major threats to biodiversity and ecosystem functioning. However, our current understanding of the mechanisms governing community resistance to and recovery from extreme temperature events is still rudimentary. The spatial insurance hypothesis postulates that diverse regional species pools can buffer ecosystem functioning against local disturbances through the immigration of better-adapted taxa. Yet, experimental evidence for such predictions from multi-trophic communities and pulse-type disturbances, like heatwaves, is largely missing. We performed an experimental mesocosm study to test whether species dispersal from natural lakes prior to a simulated heatwave could increase the resistance and recovery of plankton communities. As the buffering effect of dispersal may differ among trophic groups, we independently manipulated the dispersal of organisms from lower (phytoplankton) and higher (zooplankton) trophic levels. The experimental heatwave suppressed total community biomass by having a strong negative effect on zooplankton biomass, probably due to a heat-induced increase in metabolic costs, resulting in weaker top-down control on phytoplankton. While zooplankton dispersal did not alleviate the negative heatwave effects on zooplankton biomass, phytoplankton dispersal enhanced biomass recovery at the level of primary producers, providing partial evidence for spatial insurance. The differential responses to dispersal may be linked to the much larger regional species pool of phytoplankton than of zooplankton. Our results suggest high recovery capacity of community biomass independent of dispersal. However, community composition and trophic structure remained altered due to the heatwave, implying longer-lasting changes in ecosystem functioning.  相似文献   

19.
Biomanipulation development in Norway   总被引:2,自引:2,他引:0  
Since 1974 several studies have been carried out in Norway to investigate the interactions between planktivorous fish, zooplankton, phytoplankton and water chemistry. Since 1978 a long-term national research program has been conducted by the Norwegian Council for Scientific and Industrial Research (NTNF). In this program several whole lake manipulations of the fish stocks have been performed to test hypotheses about trophic interactions. It was predicted that manipulations of planktivorous fish populations, might also improve water quality in lakes undergoing eutrophication. Two examples are given to illustrate the achieved results. I: Whole lake fertilization experiment (1974–1978) carried out by Langeland and Reinertsen. The results revealed the importance of top-down effects in the lake ecosystem. When cladocerans dominated, the zooplankton community was able to maintain a more or less constant phytoplankton biomass and a rather low phytoplankton production even when nutrient levels were increased. During years with rotifer dominance, algal biomass and productivity increased, despite the low amounts of added nutrients. II: Experiment performed by Reinertsen, Jensen, Koksvik, Langeland and Olsen in the eutrophic Lake Haugatjern, total elimination of the fish populations by rotenone in late 1980, resulted in a 4-fold decrease in the algal biomass. The species composition changed from the dominance of large-sizedAnabaena flos-aquae andStaurastrum luetkemuelleri to smaller, fastgrowing species and gelatinous green algae. The results are discussed in relation to management of inland waters by combined techniques of biomanipulation and reduced external nutrient supply which increase food-chain efficiency.  相似文献   

20.
The relative strength of "top-down" versus "bottom-up" control of plankton community structure and biomass in two small oligotrophic lakes (with and without fish), located near the Polar circle (Russia), has been investigated for two years, 1996 and 1997. The comparative analyses of zooplankton biomass and species abundance showed strong negative effect of fish, stickeback (Pungitius pungitius L.), on the zooplankton community species, size structure and biomass of particular prey species but no effect on the biomass of the whole trophic level. An intensive predation in Verkhneye lake has lead to: 1) sixfold decline in biomass of large cladoceran Holopedium gibberum comparing to the lake lacking predator, 2) shift in the size mode in zooplankton community and the replacement of the typical large grazers by small species--Bosmina longirostris and rotifers. Their abundance and biomass even increased, demonstrating the stimulating effect of fish on the "inefficient" and unprofitable prey organisms. The analysis of contributions of different factors into the cladoceran's birth rate changes was applied to demonstrate the relative impact of predators and resources on zooplankton abundance. An occasional introduction of the stickleback to Vodoprovodnoye lake (the reference lake in 1996) in summer 1997 lead to drastic canges in this ecosystem: devastating decrease of zooplankton biomass and complete elimination of five previously dominant grazer species. The abundance of edible phytoplankton was slightly higher in the lake with fish in 1996 and considerably higher in the lake where fish has appeared in 1997 showing the prevailing "top-down" control of phytoplankton in oligotrophic ecosystem. The reasons of trophic cascade appearance in oligotrophic lakes are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号