首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Verification of candidate biomarker proteins in blood is typically done using multiple reaction monitoring (MRM) of peptides by LC-MS/MS on triple quadrupole MS systems. MRM assay development for each protein requires significant time and cost, much of which is likely to be of little value if the candidate biomarker is below the detection limit in blood or a false positive in the original discovery data. Here we present a new technology, accurate inclusion mass screening (AIMS), designed to provide a bridge from unbiased discovery to MS-based targeted assay development. Masses on the software inclusion list are monitored in each scan on the Orbitrap MS system, and MS/MS spectra for sequence confirmation are acquired only when a peptide from the list is detected with both the correct accurate mass and charge state. The AIMS experiment confirms that a given peptide (and thus the protein from which it is derived) is present in the plasma. Throughput of the method is sufficient to qualify up to a hundred proteins/week. The sensitivity of AIMS is similar to MRM on a triple quadrupole MS system using optimized sample preparation methods (low tens of ng/ml in plasma), and MS/MS data from the AIMS experiments on the Orbitrap can be directly used to configure MRM assays. The method was shown to be at least 4-fold more efficient at detecting peptides of interest than undirected LC-MS/MS experiments using the same instrumentation, and relative quantitation information can be obtained by AIMS in case versus control experiments. Detection by AIMS ensures that a quantitative MRM-based assay can be configured for that protein. The method has the potential to qualify large number of biomarker candidates based on their detection in plasma prior to committing to the time- and resource-intensive steps of establishing a quantitative assay.  相似文献   

2.
There is considerable interest in using mass spectrometry for biomarker discovery in human blood plasma. We investigated aspects of experimental design for large studies that require analysis of multiple sample sets using iTRAQ reagents for sample multiplexing and quantitation. Immunodepleted plasma samples from healthy volunteers were compared to immunodepleted plasma from patients with osteoarthritis in eight separate iTRAQ experiments. Our analyses utilizing ProteinPilot software for peptide identification and quantitation showed that the methodology afforded excellent reproducibility from run to run for determining protein level ratios (coefficient of variation 11.7%), in spite of considerable quantitative variances observed between different peptides for a given protein. Peptides with high variances were associated with lower intensity iTRAQ reporter ions, while immunodepletion prior to sample analysis had a negligible affect on quantitative variance. We examined the influence of different reference samples, such as pooled samples or individual samples on calculating quantitative ratios. Our findings are discussed in the context of optimizing iTRAQ experimental design for robust plasma-based biomarker discovery.  相似文献   

3.
Quantitative proteomics holds considerable promise for elucidation of basic biology and for clinical biomarker discovery. However, it has been difficult to fulfill this promise due to over-reliance on identification-based quantitative methods and problems associated with chromatographic separation reproducibility. Here we describe new algorithms termed "Landmark Matching" and "Peak Matching" that greatly reduce these problems. Landmark Matching performs time base-independent propagation of peptide identities onto accurate mass LC-MS features in a way that leverages historical data derived from disparate data acquisition strategies. Peak Matching builds upon Landmark Matching by recognizing identical molecular species across multiple LC-MS experiments in an identity-independent fashion by clustering. We have bundled these algorithms together with other algorithms, data acquisition strategies, and experimental designs to create a Platform for Experimental Proteomic Pattern Recognition (PEPPeR). These developments enable use of established statistical tools previously limited to microarray analysis for treatment of proteomics data. We demonstrate that the proposed platform can be calibrated across 2.5 orders of magnitude and can perform robust quantification of ratios in both simple and complex mixtures with good precision and error characteristics across multiple sample preparations. We also demonstrate de novo marker discovery based on statistical significance of unidentified accurate mass components that changed between two mixtures. These markers were subsequently identified by accurate mass-driven MS/MS acquisition and demonstrated to be contaminant proteins associated with known proteins whose concentrations were designed to change between the two mixtures. These results have provided a real world validation of the platform for marker discovery.  相似文献   

4.
SELDI-TOF MS has been demonstrated as a powerful tool for biomarker discovery. However, a major disadvantage of SELDI-TOF MS is the lack of direct identification of the discriminatory peaks discovered. We describe a novel experimental identification strategy where peptides/proteins captured to a weak cation exchange ProteinArray surface (CM10) are eluted, and thereafter identified by utilizing a sensitive LC-MS/MS (i.e. LTQ Orbitrap). A mixture of four known proteins was used to test the novel experimental approach described, and all four proteins were successfully identified. Additionally, a biomarker candidate previously discovered in plasma of Atlantic cod (Gadus morhua) by SELDI-TOF MS was identified. Thus, this study indicated that a combination of on-chip elution and a highly sensitive LC-MS/MS system can be an alternative approach to identify biomarker candidates discovered by use of SELDI-TOF MS.  相似文献   

5.

Background

Development of robust, sensitive, and reproducible diagnostic tests for understanding the epidemiology of neglected tropical diseases is an integral aspect of the success of worldwide control and elimination programs. In the treatment of onchocerciasis, clinical diagnostics that can function in an elimination scenario are non-existent and desperately needed. Due to its sensitivity and quantitative reproducibility, liquid chromatography-mass spectrometry (LC-MS) based metabolomics is a powerful approach to this problem.

Methodology/Principal Findings

Analysis of an African sample set comprised of 73 serum and plasma samples revealed a set of 14 biomarkers that showed excellent discrimination between Onchocerca volvulus–positive and negative individuals by multivariate statistical analysis. Application of this biomarker set to an additional sample set from onchocerciasis endemic areas where long-term ivermectin treatment has been successful revealed that the biomarker set may also distinguish individuals with worms of compromised viability from those with active infection. Machine learning extended the utility of the biomarker set from a complex multivariate analysis to a binary format applicable for adaptation to a field-based diagnostic, validating the use of complex data mining tools applied to infectious disease biomarker discovery and diagnostic development.

Conclusions/Significance

An LC-MS metabolomics-based diagnostic has the potential to monitor the progression of onchocerciasis in both endemic and non-endemic geographic areas, as well as provide an essential tool to multinational programs in the ongoing fight against this neglected tropical disease. Ultimately this technology can be expanded for the diagnosis of other filarial and/or neglected tropical diseases.  相似文献   

6.
Liquid chromatography-mass spectrometry (LC-MS)-based proteomics is becoming an increasingly important tool in characterizing the abundance of proteins in biological samples of various types and across conditions. Effects of disease or drug treatments on protein abundance are of particular interest for the characterization of biological processes and the identification of biomarkers. Although state-of-the-art instrumentation is available to make high-quality measurements and commercially available software is available to process the data, the complexity of the technology and data presents challenges for bioinformaticians and statisticians. Here, we describe a pipeline for the analysis of quantitative LC-MS data. Key components of this pipeline include experimental design (sample pooling, blocking, and randomization) as well as deconvolution and alignment of mass chromatograms to generate a matrix of molecular abundance profiles. An important challenge in LC-MS-based quantitation is to be able to accurately identify and assign abundance measurements to members of protein families. To address this issue, we implement a novel statistical method for inferring the relative abundance of related members of protein families from tryptic peptide intensities. This pipeline has been used to analyze quantitative LC-MS data from multiple biomarker discovery projects. We illustrate our pipeline here with examples from two of these studies, and show that the pipeline constitutes a complete workable framework for LC-MS-based differential quantitation. Supplementary material is available at http://iec01.mie.utoronto.ca/~thodoros/Bukhman/.  相似文献   

7.
A critical step in protein biomarker discovery is the ability to contrast proteomes, a process referred generally as quantitative proteomics. While stable-isotope labeling (e.g., ICAT, 18O- or 15N-labeling, or AQUA) remains the core technology used in mass spectrometry-based proteomic quantification, increasing efforts have been directed to the label-free approach that relies on direct comparison of peptide peak areas between LC-MS runs. This latter approach is attractive to investigators for its simplicity as well as cost effectiveness. In the present study, the reproducibility and linearity of using a label-free approach to highly complex proteomes were evaluated. Various amounts of proteins from different proteomes were subjected to repeated LC-MS analyses using an ion trap or Fourier transform mass spectrometer. Highly reproducible data were obtained between replicated runs, as evidenced by nearly ideal Pearson's correlation coefficients (for ion's peak areas or retention time) and average peak area ratios. In general, more than 50% and nearly 90% of the peptide ion ratios deviated less than 10% and 20%, respectively, from the average in duplicate runs. In addition, the multiplicity ratios of the amounts of proteins used correlated nicely with the observed averaged ratios of peak areas calculated from detected peptides. Furthermore, the removal of abundant proteins from the samples led to an improvement in reproducibility and linearity. A computer program has been written to automate the processing of data sets from experiments with groups of multiple samples for statistical analysis. Algorithms for outlier-resistant mean estimation and for adjusting statistical significance threshold in multiplicity of testing were incorporated to minimize the rate of false positives. The program was applied to quantify changes in proteomes of parental and p53-deficient HCT-116 human cells and found to yield reproducible results. Overall, this study demonstrates an alternative approach that allows global quantification of differentially expressed proteins in complex proteomes. The utility of this method to biomarker discovery is likely to synergize with future improvements in the detecting sensitivity of mass spectrometers.  相似文献   

8.
9.
Shotgun proteomics has become the standard proteomics technique for the large-scale measurement of protein abundances in biological samples. Despite quantitative proteomics has been usually performed using label-based approaches, label-free quantitation offers advantages related to the avoidance of labeling steps, no limitation in the number of samples to be compared, and the gain in protein detection sensitivity. However, since samples are analyzed separately, experimental design becomes critical. The exploration of spectral counting quantitation based on LC-MS presented here gathers experimental evidence of the influence of batch effects on comparative proteomics. The batch effects shown with spiking experiments clearly interfere with the biological signal. In order to minimize the interferences from batch effects, a statistical correction is proposed and implemented. Our results show that batch effects can be attenuated statistically when proper experimental design is used. Furthermore, the batch effect correction implemented leads to a substantial increase in the sensitivity of statistical tests. Finally, the applicability of our batch effects correction is shown on two different biomarker discovery projects involving cancer secretomes. We think that our findings will allow designing and executing better comparative proteomics projects and will help to avoid reaching false conclusions in the field of proteomics biomarker discovery.  相似文献   

10.
Urine is an easily accessible bodily fluid particularly suited for the routine clinical analysis of disease biomarkers. Actually, the urinary proteome is more diverse than anticipated a decade ago. Hence, significant analytical and practical issues of urine proteomics such as sample collection and preparation have emerged, in particular for large-scale studies. We have undertaken a systematic study to define standardized and integrated analytical protocols for a biomarker development pipeline, employing two LC-MS analytical platforms, namely accurate mass and time tags and selected reaction monitoring, for the discovery and verification phase, respectively. Urine samples collected from hospital patients were processed using four different protocols, which were evaluated and compared on both analytical platforms. Addition of internal standards at various stages of sample processing allowed the estimation of protein extraction yields and the absolute quantification of selected urinary proteins. Reproducibility of the entire process and dynamic range of quantification were also evaluated. Organic solvent precipitation followed by in-solution digestion provided the best performances and was thus selected as the standard method common to the discovery and verification phases. Finally, we applied this protocol for platforms' cross-validation and obtained excellent consistency between urinary protein concentration estimates by both analytical methods performed in parallel in two laboratories.  相似文献   

11.
Differential recovery of peptides due to nonspecific adsorption can seriously compromise reproducibility and quality of proteomic data for peptide analyses by liquid chromatography-mass spectrometry (LC-MS). This study demonstrates large variations in reproducibility and quantitation of LC-MS data for peptides derived from tryptic digests of BSA upon storage in different sample tubes. Notably, we show that highly improved consistency and lower errors in quantitation of BSA tryptic peptides in replicate measurements is achieved with low-retention tubes compared to regular eppendorf tubes. Furthermore, qualitative differences in peptides detected by LC-MS were observed in the two types of storage tubes. These results illustrate the necessity for careful evaluation of storage vessels and conditions to minimize variability in sample quality for LC-MS experiments.  相似文献   

12.
13.
Systems analysis of body fluids by mass spectrometry (MS) is an upcoming field of biomarker research. This approach is extremely attractive because it does not require biomarker candidates and the sample preparation is simple. However, during the development of the technique strong critical comments were made on the poor reproducibility, the special characteristics of blood as a source of peptides and on the frequent non-adequate statistical analysis of the data. Here we discuss the efforts made in the last few years to develop suitable protocols, which could lead to biomarker discovery from body fluids by mass spectrometry. Our review focuses on the systems analysis of non-digested blood serum or plasma samples by MALDI-TOF and SELDI-TOF.  相似文献   

14.
The combined method of LC-MS/MS is increasingly being used to explore differences in the proteomic composition of complex biological systems. The reliability and utility of such comparative protein expression profiling studies is critically dependent on an accurate and rigorous assessment of quantitative changes in the relative abundance of the myriad of proteins typically present in a biological sample such as blood or tissue. In this review, we provide an overview of key statistical and computational issues relevant to bottom-up shotgun global proteomic analysis, with an emphasis on methods that can be applied to improve the dependability of biological inferences drawn from large proteomic datasets. Focusing on a start-to-finish approach, we address the following topics: 1) low-level data processing steps, such as formation of a data matrix, filtering, and baseline subtraction to minimize noise, 2) mid-level processing steps, such as data normalization, alignment in time, peak detection, peak quantification, peak matching, and error models, to facilitate profile comparisons; and, 3) high-level processing steps such as sample classification and biomarker discovery, and related topics such as significance testing, multiple testing, and choice of feature space. We report on approaches that have recently been developed for these steps, discussing their merits and limitations, and propose areas deserving of further research.  相似文献   

15.

Introduction

A proof-of-concept demonstration of the use of label-free quantitative glycoproteomics for biomarker discovery workflow is presented in this paper, using a mouse model for skin cancer as an example.

Materials and Methods

Blood plasma was collected from ten control mice and ten mice having a mutation in the p19ARF gene, conferring them high propensity to develop skin cancer after carcinogen exposure. We enriched for N-glycosylated plasma proteins, ultimately generating deglycosylated forms of the tryptic peptides for liquid chromatography mass spectrometry (LC-MS) analyses. LC-MS runs for each sample were then performed with a view to identifying proteins that were differentially abundant between the two mouse populations. We then used a recently developed computational framework, Corra, to perform peak picking and alignment, and to compute the statistical significance of any observed changes in individual peptide abundances. Once determined, the most discriminating peptide features were then fragmented and identified by tandem mass spectrometry with the use of inclusion lists.

Results and Discussions

We assessed the identified proteins to see if there were sets of proteins indicative of specific biological processes that correlate with the presence of disease, and specifically cancer, according to their functional annotations. As expected for such sick animals, many of the proteins identified were related to host immune response. However, a significant number of proteins are also directly associated with processes linked to cancer development, including proteins related to the cell cycle, localization, transport, and cell death. Additional analysis of the same samples in profiling mode, and in triplicate, confirmed that replicate MS analysis of the same plasma sample generated less variation than that observed between plasma samples from different individuals, demonstrating that the reproducibility of the LC-MS platform was sufficient for this application.

Conclusion

These results thus show that an LC-MS-based workflow can be a useful tool for the generation of candidate proteins of interest as part of a disease biomarker discovery effort.  相似文献   

16.
Novel approaches for the qualitative and quantitative proteomics analysis by nanoscale LC-MS applied to the study of protein expression response in depleted and undepleted serum of Gaucher patients undergoing enzyme replacement therapy are presented. Particular emphasis is given to the method reproducibility of these LC-MS experiments without the use of isotopic labels. The level of chitotriosidase, an established Gaucher biomarker, was assessed by means of an absolute concentration determination technique for alternate scanning LC-MS generated data. Disease associated proteins, including fibrinogens, complement cascade proteins, and members of the high density lipoprotein serum content, were recognized by various clustering methods and sorting and intensity profile grouping of identified peptides. Condition-unique LC-MS protein signatures could be generated utilizing the measured serum protein concentrations and are presented for all investigated conditions. The clustering results of the study were also used as input for gene ontology searches to determine the correlation between the molecular functions of the identified peptides and proteins.  相似文献   

17.
There is an increasing interest in the quantitative proteomic measurement of the protein contents of substantially similar biological samples, e.g. for the analysis of cellular response to perturbations over time or for the discovery of protein biomarkers from clinical samples. Technical limitations of current proteomic platforms such as limited reproducibility and low throughput make this a challenging task. A new LC-MS-based platform is able to generate complex peptide patterns from the analysis of proteolyzed protein samples at high throughput and represents a promising approach for quantitative proteomics. A crucial component of the LC-MS approach is the accurate evaluation of the abundance of detected peptides over many samples and the identification of peptide features that can stratify samples with respect to their genetic, physiological, or environmental origins. We present here a new software suite, SpecArray, that generates a peptide versus sample array from a set of LC-MS data. A peptide array stores the relative abundance of thousands of peptide features in many samples and is in a format identical to that of a gene expression microarray. A peptide array can be subjected to an unsupervised clustering analysis to stratify samples or to a discriminant analysis to identify discriminatory peptide features. We applied the SpecArray to analyze two sets of LC-MS data: one was from four repeat LC-MS analyses of the same glycopeptide sample, and another was from LC-MS analysis of serum samples of five male and five female mice. We demonstrate through these two study cases that the SpecArray software suite can serve as an effective software platform in the LC-MS approach for quantitative proteomics.  相似文献   

18.

Introduction

We present the first study to critically appraise the quality of reporting of the data analysis step in metabolomics studies since the publication of minimum reporting guidelines in 2007.

Objectives

The aim of this study was to assess the standard of reporting of the data analysis step in metabolomics biomarker discovery studies and to investigate whether the level of detail supplied allows basic understanding of the steps employed and/or reuse of the protocol. For the purposes of this review we define the data analysis step to include the data pretreatment step and the actual data analysis step, which covers algorithm selection, univariate analysis and multivariate analysis.

Method

We reviewed the literature to identify metabolomic studies of biomarker discovery that were published between January 2008 and December 2014. Studies were examined for completeness in reporting the various steps of the data pretreatment phase and data analysis phase and also for clarity of the workflow of these sections.

Results

We analysed 27 papers, published anytime in 2008 until the end of 2014 in the area or biomarker discovery in serum metabolomics. The results of this review showed that the data analysis step in metabolomics biomarker discovery studies is plagued by unclear and incomplete reporting. Major omissions and lack of logical flow render the data analysis’ workflows in these studies impossible to follow and therefore replicate or even imitate.

Conclusions

While we await the holy grail of computational reproducibility in data analysis to become standard, we propose that, at a minimum, the data analysis section of metabolomics studies should be readable and interpretable without omissions such that a data analysis workflow diagram could be extrapolated from the study and therefore the data analysis protocol could be reused by the reader. That inconsistent and patchy reporting obfuscates reproducibility is a given. However even basic understanding and reuses of protocols are hampered by the low level of detail supplied in the data analysis sections of the studies that we reviewed.
  相似文献   

19.
Sandin M  Krogh M  Hansson K  Levander F 《Proteomics》2011,11(6):1114-1124
As high-resolution instruments are becoming standard in proteomics laboratories, label-free quantification using precursor measurements is becoming a viable option, and is consequently rapidly gaining popularity. Several software solutions have been presented for label-free analysis, but to our knowledge no conclusive studies regarding the sensitivity and reliability of each step of the analysis procedure has been described. Here, we use real complex samples to assess the reliability of label-free quantification using four different software solutions. A generic approach to quality test quantitative label-free LC-MS is introduced. Measures for evaluation are defined for feature detection, alignment and quantification. All steps of the analysis could be considered adequately performed by the utilized software solutions, although differences and possibilities for improvement could be identified. The described method provides an effective testing procedure, which can help the user to quickly pinpoint where in the workflow changes are needed.  相似文献   

20.
Mass spectrometry-based proteomics greatly benefited from recent improvements in instrument performance and the development of bioinformatics solutions facilitating the high-throughput quantification of proteins in complex biological samples. In addition to quantification approaches using stable isotope labeling, label-free quantification has emerged as the method of choice for many laboratories. Over the last years, data-independent acquisition approaches have gained increasing popularity. The integration of ion mobility separation into commercial instruments enabled researchers to achieve deep proteome coverage from limiting sample amounts. Additionally, ion mobility provides a new dimension of separation for the quantitative assessment of complex proteomes, facilitating precise label-free quantification even of highly complex samples. The present work provides a thorough overview of the combination of ion mobility and data-independent acquisition-based label-free quantification LC-MS and its applications in biomedical research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号