首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Excitation-contraction (EC) coupling in striated muscles is mediated by the cardiac or skeletal muscle isoform of voltage-dependent L-type Ca(2+) channel (Ca(v)1.2 and Ca(v)1.1, respectively) that senses a depolarization of the cell membrane, and in response, activates its corresponding isoform of intracellular Ca(2+) release channel/ryanodine receptor (RyR) to release stored Ca(2+), thereby initiating muscle contraction. Specifically, in cardiac muscle following cell membrane depolarization, Ca(v)1.2 activates cardiac RyR (RyR2) through an influx of extracellular Ca(2+). In contrast, in skeletal muscle, Ca(v)1.1 activates skeletal muscle RyR (RyR1) through a direct physical coupling that negates the need for extracellular Ca(2+). Since airway smooth muscle (ASM) expresses Ca(v)1.2 and all three RyR isoforms, we examined whether a cardiac muscle type of EC coupling also mediates contraction in this tissue. We found that the sustained contractions of rat ASM preparations induced by depolarization with KCl were indeed partially reversed ( approximately 40%) by 200 mum ryanodine, thus indicating a functional coupling of L-type channels and RyRs in ASM. However, KCl still caused transient ASM contractions and stored Ca(2+) release in cultured ASM cells without extracellular Ca(2+). Further analyses of rat ASM indicated that this tissue expresses as many as four L-type channel isoforms, including Ca(v)1.1. Moreover, Ca(v)1.1 and RyR1 in rat ASM cells have a similar distribution near the cell membrane in rat ASM cells and thus may be directly coupled as in skeletal muscle. Collectively, our data implicate that EC-coupling mechanisms in striated muscles may also broadly transduce diverse smooth muscle functions.  相似文献   

5.
This minireview discusses the use of single barnacle muscle fibers as a model system for studying hormonal actions. The response of barnacle muscle fibers to serotonin, proctolin, octopamine, aldosterone and insulin is described. Recent data relating to the actions of these hormones on other invertebrate and vertebrate preparations is touched upon. The use of the barnacle muscle fiber as a preparation to investigate hormone-stimulated protein phosphorylation is emphasized.  相似文献   

6.
The equations describing the time-course of potential spread into a terminated segment of muscle fiber are given for the condition that a step of voltage is applied at x - 2l. Measurements of V(2l) - V(l) were made at 16.7-19.5 degrees C, using a three-microelectrode voltage clamp, to compare with the theory. Best least squares fits of calculated curves to data obtained in Ringer's solution (5 mM K) gave GL = 10 mumho/cm and Cm' = 1.6 muF/cm2. Similar measurements in 100 mM K solution, with the inward rectifier shut off by a positive prepulse, gave GL = 20 mumho/cm and Cm' = 2.0 muF/cm2. The time-course of V(2l) - V(l), measured when the inward rectifier was fully activated by a negative prepulse, was in good agreement with the curve calculated assuming no change in GL and Cm' and that the only effect of the negative prepulse was to increase the conductance of surface and tubular membranes.  相似文献   

7.
According to the current views the direct and indispensable source of Ca2+ activating contraction is sarcoplasmic reticulum (SR). Ca2+ is released from the SR when its release channels (ryanodine receptors) are activated by Ca2+ influx through the L-type Ca2+ channels (dihydropyridine receptors). In contrast, ryanodine receptors of skeletal muscles are activated by conformational changes in dihydropyridine receptors induced by sarcolemmal voltage. Ca2+ influx is not necessary for their activation. In this review the papers not quite conforming with the current views are referred to and discussed. Their results suggest that SR is not an indispensable source of contractile Ca2+ at least in some mammalian species, and that cardiac ryanodine receptors may be activated by conformational changes in dihydropyridine receptors without Ca2+ influx (like in skeletal muscle). This may be a mechanism parallel to or accessory to the Ca2+ induced release of Ca2+ (CIRC).  相似文献   

8.
Short muscle fibers (1.5 mm) were dissected from hindlimb muscles of frogs and voltage clamped with two microelectrodes to study phenomena related to depolarization-contraction coupling. Isometric myograms obtained in response to depolarizing pulses of durations between 10 and 500 ms and amplitudes up to 140 mV had the following properties. For suprathreshold pulses of fixed duration (in the range of 20-100 ms), the peak tension achieved, the time to peak tension, and contraction duration increased as the internal potential was made progressively more positive. Peak tension eventually saturates with increasing internal potentials. For pulse durations of greater than or equal to 50 ms, the rate of tension development becomes constant for increasing internal potentials when peak tensions become greater than one-third of the maximum tension possible. Both threshold and maximum steepness of the relation between internal potential and peak tension depend on pulse duration. The relation between the tension-time integral and the stimulus amplitude-duration product was examined. The utility of this relation for excitation-contraction studies is based on the observation that once a depolarizing pulse configuration has elicited maximum tension, further increases in either stimulus duration or amplitude only prolong the contractile response, while the major portion of the relaxation phase after the end of a pulse is exponential, with a time constant that is not significantly affected by either the amplitude or the duration of the pulse. Hence, the area under the tension-response curve provides a measure of the availability to troponin of the calcium released from the sarcoplasmic reticulum in response to membrane depolarization. The results from this work complement those obtained in experiments in which intramembrane charge movements related to contractile activation were studied and those in which intracellular Ca++ transients were measured.  相似文献   

9.
Single crab (Callinectes danae) fibers were equilibrated with isotonic, high KCl solutions and were subsequently returned to the control saline. This caused marked swelling of the T tubules. Fibers treated with 100 mM KCl had a 2.5-mV residual depolarization, a 50% decrease in effective membrane resistance (Reff) and a 75% reduction in membrane time constant (tau m). These fibers exhibited large increases in membrane conductance upon depolarization and were inexcitable; membrane depolarization with current pulses elicited no contraction. The effects of the KCl treatment on membrane properties were not reproduced by treatment with high potassium gluconate solutions, which did not cause tubular swelling. Tetrabutylammonium (10 mM) or Ba ions (10-20 mM), but not tetraethylammonium (40-100 mM), Sr ions (15-70 mM), or procaine (1-8 mM) reversed the effects of the KCl treatment on Reff, tau m, membrane excitability, and excitation-contraction coupling. The time course of the Ba effects was consistent with the suggestion that the KCl treatment increases the K conductance of the tubular membranes, which in turn prevents the activation of voltage-dependent Ca channels located in the membranes of the T system. This results in inhibition of the Ca-dependent electrogenesis and consequently, the absence of contraction upon depolarization of the plasma membrane.  相似文献   

10.
11.
Using freshly isolated single smooth muscle cells prepared by collegenase treatment, membrane currents were recorded by whole-cell voltage clamp. Intracellular constituents were modified by using an intracellular perfusion technique, i.e., pipette solutions were continuously exchanged from control to test solutions during current recording. In smooth muscle cells, intracellular application of ATP, but not cyclic AMP, enchanced the amplitude of Ca2+ currents and prevented current run-down. In addition, with this stabilization of Ca2+ current recording by ATP, introduction of various chemicals into the cell using the intracellular perfusion technique is useful for investigations of regulation of ion channels in smooth muscle cells.  相似文献   

12.
Using freshly isolated single smooth muscle cells prepared by collagenase treatment, membrane currents were recorded by whole-cell voltage clamp. Intracellular constituents were modified by using an intracellular perfusion technique, i.e., pipette solutions were continuously exchanged from control to test solutions during current recording. In smooth muscle cells, intracellular application of ATP, but not cyclic AMP, enhanced the amplitude of Ca2+ currents and prevented current run-down. In addition, with this stabilization of Ca2+ current recording by ATP, introduction of various chemicals into the cell using the intracellular perfusion technique is useful for investigations of regulation of ion channels in smooth muscle cells.  相似文献   

13.
14.
The effective membrane conductance and capacity of lobster muscle fibres was measured by a three-intracellular-microelectrode voltage clamp technique. Conductance values agreed well with those determined under current clamp, by means of the 'short' cable equations. Reversible increases in conductance evoked by gamma-aminobutyric acid (GABA) were reflected by differences (delta V) in electrotonic potential amplitude recorded at the centre, and midway between the centre and fibre end respectively. GABA dose--conductance curves derived from cable theory or from delta V measurements were virtually identical. The effective capacity (ceff), determined from the area beneath the 'on' delta V capacity transient, yielded values of the membrane time constant consistently lower than those obtained by the graphical method of E. Stefani & A.B. Steinbach (J. Physiol., London. 203, 383-401 (1969)); one possible explanation for this discrepancy is discussed. In the presence of GABA, the effective capacity was reduced in a dose-related manner. The results were interpreted in terms of an equivalent circuit in which surface membrane was arranged in parallel with cleft-tubular membrane of finite conductance, charged through an access resistance. GABA was though to be decreasing ceff by selectively increasing the conductance of the cleft-tubular membranes.  相似文献   

15.
Summary The segmented trunk muscle (myotome muscle) of the lancelet (Branchiostoma lanceolatum), a pre-vertebrate chordate, was studied in order to gain information regarding the evolution of excitation-contraction (EC) coupling.Myotome membrane vesicles could be separated on isopycnic sucrose gradients into two main fractions, probably comprising solitary microsomes and diads of plasma membrane and sarcoplasmic reticulum, respectively. Both fractions bound the dihydropyridine PN 200/110 and the phenylalkylamine (–)D888 (devapamil) while specific ryanodine binding was observed in the diad preparation only. Pharmacological effects on Ca2+ currents measured under voltage-clamp conditions in single myotome fibers included a weak block by the dihydropyridine nifedipine and a shift of the voltage dependences of inactivation and restoration to more negative potentials by (–)D888. After blocking the Ca2+ current by cadmium in voltage-clamped single fibers, the contractile response persisted and a rapid intramembrane charge movement could be demonstrated. Both responses exhibited a voltage sensitivity very similar to the one of the voltage-activated Ca2+ channels.Our biochemical and electrophysiological results indicate that the EC coupling mechanism of the protochordate myotome cell is similar to that of the vertebrate skeletal muscle fiber: Intracellular Ca2+ release, presumably taking place via the ryanodine receptor complex, is under control of the cell membrane potential. The sarcolemmal Ca2+ channels might serve as voltage sensors for this process.We thank Drs. H.Ch. Lüttgau and L.M.G. Heilmeyer, Jr. for stimulating discussions during the work, Dr. N.R. Brandt for helpful suggestions, and Drs. A.H. Caswell and M. Michalak for their generous gifts of antibodies. We also thank Ms. P. Goldmann, Mr. R. Schwalm, and Mr. U. Siemen for technical support and Ms. E. Linnepe for editorial help. This work was supported by grant G1 72/1-5 of the Deutsche Forschungsgemeinschaft. R. Benterbusch was recipient of a scholarship by the Studienstiftung des Deutschen Volkes.  相似文献   

16.
Tension development in voltage-clamped barnacle muscle fibers occurs with depolarizing pulses so small as not to activate the potassium and calcium conductance systems. Peak tension and the tension time integral appear to be graded by both amplitude and duration of the depolarizing pulses. Subthreshold depolarizing conditioning pulses shorter than 500 ms potentiate the response to a given test pulse. This effect diminishes and reverts when the duration of the conditioning pulse is increasingly prolonged. The relationship between fiber membrane potential and tension developed in response to depolarizing pulses is described by an S-shaped curve. The tension saturates at a membrane potential of about +10 mV (inside positive). For a given pulse duration the saturation value remains constant even when the fiber interior reaches a value of +230 mV, which is well above what may be estimated to be the equilibrium potential of calcium ions (Eca = +120). In the presence of 5 mM external procaine, the shape of the tension-potential curve changes; the maximum value tension besides being diminished is not sustained by falls when the potential approaches the estimated value for Eca. These results suggest that under physiological conditions the contractile activator is probably released from an internal store, and that the calcium entering the fiber as inward current does not play a direct major role in contractile activation.  相似文献   

17.
Voltage oscillations in the barnacle giant muscle fiber.   总被引:30,自引:0,他引:30       下载免费PDF全文
Barnacle muscle fibers subjected to constant current stimulation produce a variety of types of oscillatory behavior when the internal medium contains the Ca++ chelator EGTA. Oscillations are abolished if Ca++ is removed from the external medium, or if the K+ conductance is blocked. Available voltage-clamp data indicate that the cell's active conductance systems are exceptionally simple. Given the complexity of barnacle fiber voltage behavior, this seems paradoxical. This paper presents an analysis of the possible modes of behavior available to a system of two noninactivating conductance mechanisms, and indicates a good correspondence to the types of behavior exhibited by barnacle fiber. The differential equations of a simple equivalent circuit for the fiber are dealt with by means of some of the mathematical techniques of nonlinear mechanics. General features of the system are (a) a propensity to produce damped or sustained oscillations over a rather broad parameter range, and (b) considerable latitude in the shape of the oscillatory potentials. It is concluded that for cells subject to changeable parameters (either from cell to cell or with time during cellular activity), a system dominated by two noninactivating conductances can exhibit varied oscillatory and bistable behavior.  相似文献   

18.
19.
Heparin, an inhibitor of inositol trisphosphate (InsP3)-induced Ca2+ release in smooth muscle and non-muscle cells, was injected into intact frog skeletal muscle fibres. Ca2+ release from the sarcoplasmic reticulum was elicited by the normal action potential mechanism and monitored by both fura-2 fluorescence and an intrinsic birefringence signal. Both optical signals, and hence Ca2+ release, were unaffected by high concentrations of heparin. This result argues against a major physiological role of InsP3 as a chemical messenger of excitation-contraction coupling in skeletal muscle.  相似文献   

20.
Myoplasmic impedance was measured on a barnacle (Balanus nubilus) single muscle fiber that was placed in a cylindrical cavity to limit the volume and prevent the hydration of the myoplasm. At both ends of the cavity, the myoplasm was in direct contact with an electrolyte solution. When equilibrium with the external medium was reached, the myoplasmic impedance was measured at 10 degrees C with an impedance bridge at 1000 Hz. The results indicated that the myoplasmic impedance of the muscle fiber is mainly resistive. Treating the myoplasm as a suspension of small conductive particles, we deduced the specific conductivity of the contractile filaments kf and their volume fraction rho (kf = 2.78 X 10(-3) omega-1cm-1, and rho = 0.48). The experimental technique permits an estimate of the specific myoplasmic conductivity in vivo (6.27 X 10(-3) omega-1cm-1). Finally, a decrease in the pH of the external solution from 10.1 to 4.0 lowered the myoplasmic conductivity by 16%. This may be considered as indirect evidence that the conductivity of the contractile filaments is associated with the protein counter-ions, since Hinke et al. (1973. Ann. N.Y. Acad. Sci. 204, 274-296.) reported evidence that a lowering of pH decreases the number of counter-ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号