首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
ISG20 is an ribonuclease specific for single-stranded RNA and considered to play a role in innate immunity against virus infections. We herein show that both poly IC, an authentic double-stranded RNA, and IFN-gamma induced ISG20 expression in cultured HUVEC. Poly IC-induced ISG20 expression was inhibited by LY294002, an inhibitor of PI3K, or by RNA interference against IFN regulatory factor three. ISG20 expression was not induced by IFN-beta, loxoribine or CpG oligonucleotide. These results suggest that ISG20 induction by poly IC may not be dependent on the IRF-3-mediated type I IFN induction pathway in HUVEC. ISG20 may be involved in innate immunity against viral infection in vascular endothelial cells.  相似文献   

4.
The complement system is a classic central player in innate immunity. Most pathogens activate both complement and the toll-like receptor (TLR) pathway. Therefore, to provide a more comprehensive understanding of innate immunity, it is important to understand the crosstalk between these two systems. Mouse macrophages produce IL-12 and IL-10 in response to TLR ligands such as LPS, CpG, Poly I:C and Malp2. The TLR-induced IL-12 production was decreased, while that of IL-10 was increased by concurrent stimulation with a complement fragment C5a. Pharmacological studies have suggested that C5a regulates TLR4-induced IL-12 production in a phosphoinositide 3-kinase (PI3K)-dependent mechanism. In the present study, however, we found that the C5a-mediated changes can be observed in macrophages from mice lacking PI3K p85α or PI3K p110γ. The result indicates that the C5a action is PI3K-independent; neither class IA nor class IB PI3K subtype is involved in this regulation. The actions of C5a were sensitive to pertussis toxin and PD98059, suggesting a role of G protein-mediated activation of the Erk1/2 pathway.  相似文献   

5.
During epithelial-to-mesenchymal transitions (EMTs), cells must change their interactions with one another and with their extracellular matrix in a synchronized manner. To characterize signaling pathways cells use to coordinate these changes, we used NMuMG mammary epithelial cells. We showed that these cells become fibroblastic and scattered, with increased N-cadherin expression when cultured on collagen I. Rac1 and c-Jun NH2-terminal kinase (JNK) were activated when cells were plated on collagen I, and dominant inhibitory Rac1 (RacN17) or inhibition of JNK signaling prevented collagen I-induced morphological changes and N-cadherin up-regulation. Furthermore, inhibiting phosphoinositide-3 kinase (PI3K) activity prevented Rac1 and JNK activation as well as collagen I-induced N-cadherin up-regulation. These data implicate PI3K-Rac1-JNK signaling in collagen I-induced changes in NMuMG cells. To establish a role for N-cadherin in collagen I-induced cell scattering, we generated N-cadherin overexpressing and knockdown NMuMG cells and showed that knocking down N-cadherin expression prevented collagen I-induced morphological changes. Motility assays showed that cells overexpressing N-cadherin were significantly more motile than mock-transfected cells and that N-cadherin-mediated motility was collagen I dependent. In addition, we showed that cord formation and branching in three-dimensional culture (EMT-dependent events) required N-cadherin expression and PI3K-Rac1-JNK signaling.  相似文献   

6.
ABSTRACT: BACKGROUND: Double-stranded RNA (dsRNA) and its mimic, polyinosinic acid: polycytidylic acid [Poly (I:C)], are recognized by toll-like receptor 3 (TLR3) and induce interferon (IFN)-beta in many cell types. Poly (I:C) is the most potent IFN inducer. In in vivo mouse studies, intraperitoneal injection of Poly (I:C) elicited IFN-alpha/beta production and natural killer (NK) cells activation. The TLR3 pathway is suggested to contribute to innate immune responses against many viruses, including influenza virus, respiratory syncytial virus, herpes simplex virus 2, and murine cytomegalovirus. In Chikungunya virus (CHIKV) infection, the viruses are cleared within 7-10 days postinfection before adaptive immune responses emerge. The innate immune response is important for CHIKV clearance. RESULTS: The effects of Poly (I:C) on the replication of CHIKV in human bronchial epithelial cells, BEAS-2B, were studied. Poly (I:C) suppressed cytopathic effects (CPE) induced by CHIKV infection in BEAS-2B cells in the presence of Poly (I:C) and inhibited the replication of CHIKV in the cells. The virus titers of Poly (I:C)-treated cells were much lower compared with those of untreated cells. CHIKV infection and Poly (I:C) treatment of BEAS-2B cells induced the production of IFN-beta and increased the expression of anti-viral genes, including IFN-alpha, IFN-beta, MxA, and OAS. Both Poly (I:C) and CHIKV infection upregulate the expression of TLR3 in BEAS-2B cells. CONCLUSIONS: CHIKV is sensitive to innate immune response induced by Poly (I:C). The inhibition of CHIKV replication by Poly (I:C) may be through the induction of TLR3, which triggers the production of IFNs and other anti-viral genes. The innate immune response is important to clear CHIKV in infected cells.  相似文献   

7.
8.
Histamine induces chemotaxis of mast cells through the histamine H4 receptor. This involves the activation of small GTPases, Rac1 and Rac2, downstream of phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K). Activation of the H4 receptor also results in phospholipase C (PLC)-mediated calcium mobilization; however, it is unclear whether the PLC‑calcium pathway interacts with the PI3K-Rac pathway. Here, we demonstrated that calcium mobilization regulates the PI3K-dependent activation of Rac GTPases through calmodulin. A PLC inhibitor (U73122) and an intracellular calcium chelator (BAPTA-AM) suppressed the histamine-induced activation of Rac, whereas the calcium ionophore ionomycin increased the active Rac GTPases, suggesting that intracellular calcium regulates the activation of Rac. The calmodulin antagonist (W-7) inhibited the histamine-induced activation of Rac and migration of mast cells, indicating that calmodulin mediates the effect of calcium. Inhibition of calcium/calmodulin signaling suppressed histamine-induced phosphorylation of Akt. The Akt inhibitor MK-2206 attenuated histamine-induced migration of mast cells. However, it did not suppress the activation of Rac GTPases. These results suggest that Rac GTPases and Akt play independent roles in the histamine-induced chemotaxis of mast cells. Our findings enable further elucidation of the molecular mechanism of histamine-induced chemotaxis of mast cells and help identify therapeutic targets for allergic and inflammatory conditions involving mast cell accumulation.  相似文献   

9.
10.
Kong L  Ge BX 《Cell research》2008,18(7):745-755
Phagocytosis and subsequent degradation of pathogens by macrophages play a pivotal role in host innate immune responses to microbial infection. Recent studies have shown that Toll-like receptors (TLRs) play an important role in promoting the clearance of bacteria by up-regulating the phagocytic activity of macrophages. However, information regarding the signaling mechanism of TLR-mediated phagocytosis is still limited. Here, we provide evidence that the stimulation of TLR4 with LPS leads to activation of multiple signaling pathways including MAP kinases, phosphatidylinositide 3-kinase (PI3K), and small GTPases in the murine macrophage-like cell line RAW264.7. Specific inhibition of Cdc42/Rac or p38 MAP kinase, but not PI3K, reduced TLR4-induced phagocytosis of bacteria. Moreover, we have found that either inhibition of actin polymerization by cytochalasin D or the knockdown of actin by RNAi markedly reduced the activation of Cdc42 and Rac by LPS. TLR4-induced activation of Cdc42 and Rac appears to be independent of MyD88. Taken together, our results described a novel actin-Cdc42/Rac pathway through which TLRs can specifically provoke phagocytosis.  相似文献   

11.
The protein Lgl1 is a key regulator of cell polarity. We previously showed that Lgl1 is inactivated by hyperphosphorylation in glioblastoma as a consequence of PTEN tumour suppressor loss and aberrant activation of the PI 3-kinase pathway; this contributes to glioblastoma pathogenesis both by promoting invasion and repressing glioblastoma cell differentiation. Lgl1 is phosphorylated by atypical protein kinase C that has been activated by binding to a complex of the scaffolding protein Par6 and active, GTP-bound Rac. The specific Rac guanine nucleotide exchange factors that generate active Rac to promote Lgl1 hyperphosphorylation in glioblastoma are unknown. We used CRISPR/Cas9 to knockout PREX1, a PI 3-kinase pathway-responsive Rac guanine nucleotide exchange factor, in patient-derived glioblastoma cells. Knockout cells had reduced Lgl1 phosphorylation, which was reversed by re-expressing PREX1. They also had reduced motility and an altered phenotype suggestive of partial neuronal differentiation; consistent with this, RNA-seq analyses identified sets of PREX1-regulated genes associated with cell motility and neuronal differentiation. PREX1 knockout in glioblastoma cells from a second patient did not affect Lgl1 phosphorylation. This was due to overexpression of a short isoform of the Rac guanine nucleotide exchange factor TIAM1; knockdown of TIAM1 in these PREX1 knockout cells reduced Lgl1 phosphorylation. These data show that PREX1 links aberrant PI 3-kinase signaling to Lgl1 phosphorylation in glioblastoma, but that TIAM1 is also to fill this role in a subset of patients. This redundancy between PREX1 and TIAM1 is only partial, as motility was impaired in PREX1 knockout cells from both patients.  相似文献   

12.
RACK1 attenuates RLR antiviral signaling by targeting VISA-TRAF complexes   总被引:1,自引:0,他引:1  
Virus-induced signaling adaptor (VISA), which mediates the production of type I interferon, is crucial for the retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) signaling pathway. Upon viral infection, RIG-I recognizes double-stranded viral RNA and interacts with VISA to mediate antiviral innate immunity. However, the mechanisms underlying RIG/VISA-mediated antiviral regulation remain unclear. In this study, we confirmed that receptor for activated C kinase 1 (RACK1) interacts with VISA and attenuates the RIG/VISA-mediated antiviral innate immune signaling pathway. Overexpression of RACK1 inhibited the interferon-β (IFN-β) promoter; interferon-stimulated response element (ISRE); nuclear factor kappa B (NF-κB) activation; and dimerization of interferon regulatory factor 3 (IRF3) mediated by RIG-I, VISA, and TANK-binding kinase 1 (TBK1). A reduction in RACK1 expression level upon small interfering RNA knockdown increased RIG/VISA-mediated antiviral transduction. Additionally, RACK1 disrupted formation of the VISA-tumor necrosis factor receptor-associated factor 2 (TRAF2), VISA-TRAF3, and VISA-TRAF6 complexes during RIG-I/VISA-mediated signal transduction. Additionally, RACK1 enhanced K48-linked ubiquitination of VISA, attenuated its K63-linked ubiquitination, and decreased VISA-mediated antiviral signal transduction. Together, these results indicate that RACK1 interacts with VISA to repress downstream signaling and downregulates virus-induced IFN-β production in the RIG-I/VISA signaling pathway.  相似文献   

13.
CD5 acts as a coreceptor on T lymphocytes and plays an important role in T-cell signaling and T-cell–B-cell interactions. Costimulation of T lymphocytes with anti-CD5 antibodies results in an increase of the intracellular Ca2+ levels, and subsequently in the activation of Ca2+/calmodulin-dependent (CaM) kinase type IV. In the present study, we have characterized the initial signaling pathway induced by anti-CD5 costimulation. The activation of phosphatidylinositol (PI) 3-kinase through tyrosine phosphorylation of its p85 subunit is a proximal event in the CD5-signaling pathway and leads to the activation of the lipid kinase activity of the p110 subunit. The PI 3-kinase inhibitors wortmannin and LY294002 inhibit the CD5-induced response as assessed in interleukin-2 (IL-2) secretion experiments. The expression of an inactivated Rac1 mutant (Rac1 · N17) in T lymphocytes transfected with an IL-2 promoter-driven reporter construct also abrogates the response to CD5 costimulation, while the expression of a constitutively active Rac1 mutant (Rac1-V12) completely replaces the CD5 costimulatory signal. The Rac1-specific guanine nucleotide exchange factor Vav is heavily phosphorylated on tyrosine residues upon CD5 costimulation, which is a prerequisite for its activation. A role for Vav in the CD5-induced signaling pathway is further supported by the findings that the expression of a dominant negative Vav mutant (Vav-C) completely abolishes the response to CD5 costimulation while the expression of a constitutively active Vav mutant [Vav(Δ1–65)] makes the CD5 costimulation signal superfluous. Wortmannin is unable to block the Vav(Δ1–65)- or Rac1 · V12-induced signals, indicating that both Vav and Rac1 function downstream from PI 3-kinase. Vav and Rac1 both act upstream from the CD5-induced activation of CaM kinase IV, since KN-62, an inhibitor of CaM kinases, and a dominant negative CaM kinase IV mutant block the Vav(Δ1–65)-and Rac1 · V12-mediated signals. We propose a model for the CD5-induced signaling pathway in which the PI 3-kinase lipid products, together with tyrosine phosphorylation, activate Vav, resulting in the activation of Rac1 by the Vav-mediated exchange of GDP for GTP.  相似文献   

14.
15.

Background

Tumor necrosis factor (TNF)-alpha-induced protein 8-like 2 (TIPE2 or TNFAIP8L2) is a newly described negative immune regulator and is closely associated with various tumors. However, the expression and roles of TIPE2 in PTC is unknown.

Results

In the present study, TIPE2 upregulation in PTC tissues was found to be negatively associated with tumor size, capsule infiltration, peripheral infiltration and tumor T stage, which could be used to predict tumor invasiveness. TIPE2 overexpression significantly suppressed the viability, proliferation, migration and invasion of PTC cells. Moreover, TIPE2 suppressed tumor invasiveness by inhibiting Rac1, leading to decreased expression of uPA and MMP9.

Conclusions

These results indicate that TIPE2 is a potential biomarker for predicting tumor aggressiveness and suppresses tumor invasiveness in a Rac1-dependent manner.
  相似文献   

16.
Gelsolin-induced epithelial cell invasion is dependent on Ras-Rac signaling   总被引:5,自引:0,他引:5  
Gelsolin is a widely distributed actin binding protein involved in controlling cell morphology, motility, signaling and apoptosis. The role of gelsolin in tumor progression, however, remains poorly understood. Here we show that expression of green fluorescent protein (GFP)-tagged gelsolin in MDCK-AZ, MDCKtsSrc or HEK293T cells promotes invasion into collagen type I. In organ culture assays, MDCK cells expressing gelsolin-GFP invaded pre-cultured chick heart fragments. Gelsolin expression inhibited E-cadherin-mediated cell aggregation but did not disrupt the E-cadherin-catenin complex. Co-expression of dominant-negative Rac1N17, but not RhoAN19 or Cdc42N17, counteracted gelsolin-induced invasion, suggesting a requirement for Rac1 activity. Increased ARF6, PLD or PIP5K 1alpha activity canceled out gelsolin-induced invasion. Furthermore, we found that invasion induced by gelsolin is dependent on Ras activity, acting through the PI3K-Rac pathway via the Ras guanine nucleotide exchange factor Sos-1. These findings establish a connection between gelsolin and the Ras oncogenic signaling pathway.  相似文献   

17.
The pathogenesis of postviral olfactory disorder (PVOD) has not been fully elucidated. We investigated morphological changes and innate immune responses in the mouse olfactory mucosa induced by intranasal administration of polyinosinic-polycytidylic acid [Poly(I:C)], a synthetic analog of viral double-stranded RNA. Mice received three administrations of saline with or without Poly(I:C), once every 24 h. The olfactory mucosa was harvested at various intervals after the first administration (8 h, 3, 9 and 24 days). In the Poly(I:C) group, the number of apoptotic cells in the olfactory neuroepithelium had increased at 8 h. At 9 days, the olfactory neuroepithelium had severely degenerated and behavioral tests demonstrated that the mice showed signs of olfactory deterioration. At 24 days, the structure of the neuroepithelium had regenerated almost completely. Regarding the innate immune responses, many neutrophils had infiltrated the olfactory neuroepithelium at 8 h and had exuded into the nasal cavity by 3 days. Macrophages had also infiltrated the olfactory neuroepithelium at 8 h although to a lesser extent, but they still remained in the neuroepithelium at 24 days. Poly(I:C)-induced neuroepithelial damage was significantly inhibited by a neutrophil elastase inhibitor and was suppressed in neutropenic model mice. These findings suggest that the secondary damage caused by the neutrophil-mediated innate immune response plays an important role in the pathogenesis of PVOD.  相似文献   

18.
Recognition of viral dsRNA by Toll-like receptor 3 (TLR3) leads to induction of interferons (IFNs) and proinflammatory cytokines, and innate antiviral response. Here we identified the RNA-binding protein Mex3B as a positive regulator of TLR3-mediated signaling by expression cloning screens. Cells from Mex3b−/− mice exhibited reduced production of IFN-β in response to the dsRNA analog poly(I:C) but not infection with RNA viruses. Mex3b−/− mice injected with poly(I:C) was more resistant to poly(I:C)-induced death. Mex3B was associated with TLR3 in the endosomes. It bound to dsRNA and increased the dsRNA-binding activity of TLR3. Mex3B also promoted the proteolytic processing of TLR3, which is critical for its activation. Mutants of Mex3B lacking its RNA-binding activity inhibited TLR3-mediated IFN-β induction. These findings suggest that Mex3B acts as a coreceptor of TLR3 in innate antiviral response.  相似文献   

19.
20.
In macrophages, chemotactic stimuli cause the activation of Rac and PAK, but little is known about the signaling pathways involved and their role in chemotactic gradient sensing. Herein, we report that in macrophages, the chemokine RANTES (regulated on activation normal T cell expressed and secreted)/CCL5 activates the small GTPase Rac and its downstream target PAK2 within seconds. This response depends on Gi activation and largely on the subsequent triggering of phosphoinositide 3-kinase gamma (PI3Kgamma) and Rac. Retroviral transduction of tagged Rac1 and -2 indicates that RANTES/CCL5-mediated activation of PI3Kgamma triggers Rac1 but not Rac2. In agreement, silencing of Rac1 by shRNA blocks PAK2 activity and inhibits RANTES/CCL5-induced macrophage polarization and directional migration. On the other hand, the tyrosine kinase receptor agonist CSF-1 activates PAK2 independently of PI3Kgamma and Rac. Our results thus demonstrate a chemokine-specific signaling pathway in which Gi and PI3Kgamma coordinate to drive Rac1 and PAK2 activation that eventually controls the chemotactic response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号