首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Mesenchymal stem cells stimulate tumor growth in vivo through a lysophosphatidic acid (LPA)-dependent mechanism. However, the molecular mechanism by which mesenchymal stem cells stimulate tumorigenesis is largely elusive. In the present study, we demonstrate that conditioned medium from A549 human lung adenocarcinoma cells (A549 CM) induces expression of periostin, an extracellular matrix protein, in human adipose tissue-derived mesenchymal stem cells (hASCs). A549 CM-stimulated periostin expression was abrogated by pretreatment of hASCs with the LPA receptor 1 (LPA(1)) inhibitor Ki16425 or short hairpin RNA-mediated silencing of LPA(1), suggesting a key role of the LPA-LPA(1) signaling axis in A549 CM-stimulated periostin expression. Using a xenograft transplantation model of A549 cells, we demonstrated that co-injection of hASCs potentiated tumor growth of A549 cells in vivo and that co-transplanted hASCs expressed not only periostin but also α-smooth muscle actin (α-SMA), a marker of carcinoma-associated fibroblasts. Small interfering RNA- or short hairpin RNA-mediated silencing of periostin resulted in blockade of LPA-induced α-SMA expression in hASCs. In addition, silencing of periostin resulted in blockade of hASC-stimulated growth of A549 xenograft tumors and in vivo differentiation of transplanted hASCs to α-SMA-positive carcinoma-associated fibroblasts. Conditioned medium derived from LPA-treated hASCs (LPA CM) potentiated proliferation and adhesion of A549 cells and short interfering RNA-mediated silencing or immunodepletion of periostin from LPA CM abrogated proliferation and adhesion of A549 cells. These results suggest a pivotal role for hASC-secreted periostin in growth of A549 xenograft tumors within the tumor microenvironment.  相似文献   

2.
Lysophosphatidic acid (LPA) is enriched in the serum and malignant effusion of cancer patients and plays a key role in tumorigenesis and metastasis. LPA-activated mesenchymal stem cells promote tumorigenic potentials of cancer cells through a paracrine mechanism. LPA-conditioned medium (LPA CM) from human adipose tissue-derived mesenchymal stem cells (hASCs) elicited adhesion and proliferation of A549 human lung adenocarcinoma cells. To identify proteins involved in the LPA-stimulated paracrine functions of hASCs, we analyzed the LPA CM using liquid-chromatography tandem mass spectrometry-based shotgun proteomics. We identified βig-h3, an extracellular matrix protein that is implicated in tumorigenesis and metastasis, as an LPA-induced secreted protein in hASCs. LPA-induced βig-h3 expression was abrogated by pretreating hASCs with the LPA receptor(1/3) inhibitor Ki16425 or small interfering RNA-mediated silencing of endogenous LPA(1). LPA-induced βig-h3 expression was blocked by treating the cells with the Rho kinase inhibitor Y27632, implying that LPA-induced βig-h3 expression is mediated by the LPA(1)- Rho kinase pathway. Immunodepletion or siRNA-mediated silencing of βig-h3 abrogated LPA CM-stimulated adhesion and proliferation of A549 cells, whereas retroviral overexpression of βig-h3 in hASCs potentiated it. Furthermore, recombinant βig-h3 protein stimulated the proliferation and adhesion of A549 human lung adenocarcinoma cells. These results suggest that hASC-derived βig-h3 plays a key role in tumorigenesis by stimulating the adhesion and proliferation of cancer cells and it can be applicable as a biomarker and therapeutic target for lung cancer.  相似文献   

3.
Carcinoma-associated fibroblasts play a key role in tumorigenesis and metastasis by providing a tumor-supportive microenvironment. In the present study, we demonstrate that conditioned medium from A549 human lung adenocarcinoma cells induces differentiation of human adipose tissue-derived mesenchymal stem cells (hASCs) to carcinoma-associated fibroblasts expressing α-smooth muscle actin, vascular endothelial growth factor, and stromal cell-derived factor-1. A549 conditioned medium-induced differentiation of hASCs to carcinoma-associated fibroblasts was completely abrogated by treatment of hASCs with Ki16425, a lysophosphatidic acid receptor antagonist, or knockdown of lysophosphatidic acid receptor 1 (LPA1) expression in hASCs with small interfering RNA or lentiviral short hairpin RNA. Using a murine xenograft transplantation model of A549 cells, we showed that co-transplantation of hASCs with A549 cells stimulated growth of A549 xenograft tumor, angiogenesis, and differentiation of hASCs to carcinoma-associated fibroblasts in vivo. Knockdown of LPA1 expression in hASCs abrogated hASCs-stimulated growth of A549 xenograft tumor, angiogenesis, and differentiation of hASCs to carcinoma-associated fibroblasts. Moreover, A549 conditioned medium-treated hASCs stimulated tube formation of human umbilical vein endothelial cells by LPA1-dependent secretion of vascular endothelial growth factor. These results suggest that A549 cells induce in vivo differentiation of hASCs to carcinoma-associated fibroblasts, which play a key role in tumor angiogenesis within tumor microenvironment, through an LPA-LPA1-mediated paracrine mechanism.  相似文献   

4.
YM Kim  J Kim  SC Heo  SH Shin  EK Do  DS Suh  KH Kim  MS Yoon  TG Lee  JH Kim 《PloS one》2012,7(7):e40820

Background

Transforming growth factor-β1 (TGF-β1) induces the differentiation of human adipose tissue-derived mesenchymal stem cells (hASCs) into smooth muscle cells. Lipid rafts are cholesterol-rich microdomains in cell membranes that reportedly play a key role in receptor-mediated signal transduction and cellular responses. In order to clarify whether lipid rafts are involved in TGF-β1-induced differentiation of hASCs into smooth muscle cells, we analyzed the lipid raft proteome of hASCs.

Methods and Results

Pretreatment of hASCs with the lipid raft disruptor methyl-β-cyclodextrin abrogated TGF-β1-induced expression of α-smooth muscle actin, a smooth muscle cell marker, suggesting a pivotal role of lipid rafts in TGF-β1-induced differentiation of hASCs to smooth muscle cells. Sucrose density gradient centrifugation along with a shotgun proteomic strategy using liquid chromatography-tandem mass spectrometry identified 1002 individual proteins as the lipid raft proteome, and 242 of these were induced by TGF-β1 treatment. ADAM12, a disintegrin and metalloproteases family member, was identified as the most highly up-regulated protein in response to TGF-β1 treatment. TGF-β1 treatment of hASCs stimulated the production of both ADAM12 protein and mRNA. Silencing of endogenous ADAM12 expression using lentiviral small hairpin RNA or small interfering RNA abrogated the TGF-β1-induced differentiation of hASCs into smooth muscle cells.

Conclusions

These results suggest a pivotal role for lipid raft-associated ADAM12 in the TGF-β1-induced differentiation of hASCs into smooth muscle cells.  相似文献   

5.
In bronchopulmonary dysplasia (BPD), alveolar septae are thickened with collagen and α-smooth muscle actin, transforming growth factor (TGF)-β-positive myofibroblasts. Periostin, a secreted extracellular matrix protein, is involved in TGF-β-mediated fibrosis and myofibroblast differentiation. We hypothesized that periostin expression is required for hypoalveolarization and interstitial fibrosis in hyperoxia-exposed neonatal mice, an animal model for this disease. We also examined periostin expression in neonatal lung mesenchymal stromal cells and lung tissue of hyperoxia-exposed neonatal mice and human infants with BPD. Two-to-three day-old wild-type and periostin null mice were exposed to air or 75% oxygen for 14 days. Mesenchymal stromal cells were isolated from tracheal aspirates of premature infants. Hyperoxic exposure of neonatal mice increased alveolar wall periostin expression, particularly in areas of interstitial thickening. Periostin co-localized with α-smooth muscle actin, suggesting synthesis by myofibroblasts. A similar pattern was found in lung sections of infants dying of BPD. Unlike wild-type mice, hyperoxia-exposed periostin null mice did not show larger air spaces or α-smooth muscle-positive myofibroblasts. Compared to hyperoxia-exposed wild-type mice, hyperoxia-exposed periostin null mice also showed reduced lung mRNA expression of α-smooth muscle actin, elastin, CXCL1, CXCL2 and CCL4. TGF-β treatment increased mesenchymal stromal cell periostin expression, and periostin treatment increased TGF-β-mediated DNA synthesis and myofibroblast differentiation. We conclude that periostin expression is increased in the lungs of hyperoxia-exposed neonatal mice and infants with BPD, and is required for hyperoxia-induced hypoalveolarization and interstitial fibrosis.  相似文献   

6.
7.
Background information. Although MSCs (mesenchymal stem cells) and fibroblasts have been well studied, differences between these two cell types are not fully understood. We therefore comparatively analysed antigen and gene profiles, colony‐forming ability and differentiation potential of four human cell types in vitro: commercially available skin‐derived fibroblasts [hSDFs (human skin‐derived fibroblasts)], adipose tissue‐derived stem cells [hASCs (human adipose tissue‐derived stem cells)], embryonic lung fibroblasts (WI38) and dermal microvascular endothelial cells [hECs (human dermal microvascular endothelial cells)]. Results. hSDFs, hASCs and WI38 exhibited a similar spindle‐like morphology and expressed same antigen profiles: positive for MSC markers (CD44, CD73 and CD105) and fibroblastic markers [collagen I, HSP47 (heat shock protein 47), vimentin, FSP (fibroblast surface protein) and αSMA (α smooth muscle actin)], and negative for endothelial cell marker CD31 and haemopoietic lineage markers (CD14 and CD45). We further analysed 90 stem cell‐associated gene expressions by performing real‐time PCR and found a more similar gene expression pattern between hASCs and hSDFs than between hSDFs and WI38. The expression of embryonic stem cell markers [OCT4, KLF4, NANOG, LIN28, FGF4 (fibroblast growth factor 4) and REST] in hASCs and hSDFs was observed to differ more than 2.5‐fold as compared with WI38. In addition, hSDFs and hASCs were able to form colonies and differentiate into adipocytes, osteoblasts and chondrocytes in vitro, but not WI38. Moreover, single cell‐derived hSDFs and hASCs obtained by clonal expansion were able to differentiate into adipocytes and osteoblasts. However, CD31 positive hECs did not show differentiation potential. Conclusions. These findings suggest that (i) so‐called commercially available fibroblast preparations from skin (hSDFs) consist of a significant number of cells with differentiation potential apart from terminally differentiated fibroblasts; (ii) colony‐forming capacity and differentiation potential are specific important properties that discriminate MSCs from fibroblasts (WI38), while conventional stem cell properties such as plastic adherence and the expression of CD44, CD90 and CD105 are unspecific for stem cells.  相似文献   

8.

Background

Periostin, an extracellular matrix protein, is expressed in bone, more specifically, the periosteum and periodontal ligaments, and plays a key role in formation and metabolism of bone tissues. Human adipose tissue-derived mesenchymal stem cells (hASCs) have been reported to differentiate into osteoblasts and stimulate bone repair. However, the role of periostin in hASC-mediated bone healing has not been clarified. In the current study, we examined the effect of periostin on bone healing capacity of hASCs in a critical size calvarial defect model.

Methods and Results

Recombinant periostin protein stimulated migration, adhesion, and proliferation of hASCs in vitro. Implantation of either hASCs or periostin resulted in slight, but not significant, stimulation of bone healing, whereas co-implantation of hASCs together with periostin further potentiated bone healing. In addition, the number of Ki67-positive proliferating cells was significantly increased in calvarial defects by co-implantation of both hASCs and periostin. Consistently, proliferation of administered hASCs was stimulated by co-implantation with periostin in vivo. In addition, co-delivery of hASCs with periostin resulted in markedly increased numbers of CD31-positive endothelial cells and α-SMA-positive arterioles in calvarial defects.

Conclusions

These results suggest that recombinant periostin potentiates hASC-mediated bone healing by stimulating proliferation of transplanted hASCs and angiogenesis in calvarial defects.  相似文献   

9.
Lysophosphatidic acid (LPA) is elevated in ascites of ovarian cancer patients and is involved in growth and invasion of ovarian cancer cells. Accumulating evidence suggests a pivotal role of mesenchymal stem cells (MSCs) or stromal cells in tumorigenesis. In the present study, we demonstrated that ascites from ovarian cancer patients and LPA increased migration of human MSCs. The migration of MSCs induced by LPA and malignant ascites was completely abrogated by pretreatment with Ki16425, an antagonist of LPA receptors, and by silencing of endogenous LPA(1), but not LPA(2), with small interference RNA, suggesting a key role of LPA played in the malignant ascites-induced migration. LPA induced activation of ERK through pertussis toxin-sensitive manner, and pretreatment of MSCs with U0126, a MEK inhibitor, or pertussis toxin attenuated the LPA-induced migration. Moreover, LPA induced activation of RhoA in MSCs, and pretreatment of the cells with Y27632, a Rho kinase inhibitor, markedly inhibited the LPA-induced migration. In addition, LPA and malignant ascites increased intracellular concentration of calcium in MSCs, and Ki16425 completely inhibited the elevation of intracellular calcium. These results suggest that LPA is a crucial component of the malignant ascites which induce the migration of MSCs and elevation of intracellular calcium.  相似文献   

10.
Jeon ES  Kim JH  Ryu H  Kim EK 《Cellular signalling》2012,24(6):1241-1250
Granular corneal dystrophy type 2 (GCD2) is an autosomal dominant disease caused by a R124H point mutation in the transforming growth factor-β-induced gene (TGFBI). However, the cellular role of TGFBI and the regulatory mechanisms underlying corneal dystrophy pathogenesis are still poorly understood. Lysophosphatidic acid (LPA) refers to a small bioactive phospholipid mediator produced in various cell types, and binds G protein-coupled receptors to enhance numerous biological responses, including cell growth, inflammation, and differentiation. LPA levels are elevated in injured cornea and LPA is involved in proliferation and wound healing of cornea epithelial cells. Accumulating evidence has indicated a crucial role for LPA-induced expression of TGFBI protein (TGFBIp) through secretion of transforming growth factor-beta1 (TGF-β1). In the current study, we demonstrate that LPA induces TGFBIp expression in corneal fibroblasts derived from normal or GCD2 patients. LPA-induced TGFBIp expression was completely inhibited upon pretreatment with the LPA(1/3) receptor antagonists, VPC32183 and Ki16425, as well as by silencing LPA(1) receptor expression with small hairpin RNA (shRNA) in corneal fibroblasts. LPA induced secretion of TGF-β1 in corneal fibroblasts, and pretreatment with the TGF-β type I receptor kinase inhibitor SB431542 or an anti-TGF-β1 neutralizing antibody also inhibited LPA-induced TGFBIp expression. Furthermore, we show that LPA requires Smad2/3 proteins for the induction of TGFBIp expression. LPA elicited phosphorylation of Smad2/3, and Smad3 specific inhibitor SIS3 or siRNA-mediated depletion of endogenous Smad2/3 abrogates LPA-induced TGFBIp expression. Finally, we demonstrate that LPA-mediated TGFBIp induction requires JNK activation, but not ERK signaling pathways. These results suggest that LPA stimulates TGFBIp expression through JNK-dependent activation of autocrine TGF-β1 signaling pathways and provide important information for understanding the role of phospholipids involved in cornea related diseases.  相似文献   

11.
12.
13.
A range of cell types of mesenchymal origin express α-smooth muscle actin (α-SMA), a protein that plays a key role in controlling cell motility and differentiation along the fibrocyte and myofibroblast lineages. Although α-SMA is often expressed in stromal cells associated to a variety of cancers including hematological malignancies, up to now the role of anti-cancer drugs on α-SMA has not been deeply investigated. In this study, we demonstrated that Nutlin-3, the small molecule inhibitor of the MDM2/p53 interactions, significantly up-regulated the mRNA and protein levels of α-SMA in normal macrophages as well as in p53(wild-type) but not in p53(mutated/null) myeloid leukemic cells. The p53-dependence of α-SMA up-regulation induced by Nutlin-3 was demonstrated in experiments performed with siRNA for p53. Of note, Nutlin-3 mediated up-regulation of α-SMA in OCI leukemic cells was accompanied by cell adhesion to plastic substrate and by reduced cell migratory response in transwell assays. Notably, the role of α-SMA induction in the modulation of myeloid cell migration was clearly documented in α-SMA gene knockdown experiments. In addition, Nutlin-3 significantly up-regulated α-SMA expression in primary endothelial cells, but not in fibroblasts and mesenchymal stem cells (MSC). Conversely, transforming growth factor-β1 up-regulated α-SMA in fibroblasts and MSC, but not in macrophages and endothelial cells. Taken together, these data indicate that Nutlin-3 is a potent inducer of α-SMA in both normal and leukemic myeloid cells as well as in endothelial cells.  相似文献   

14.
15.
Earlier, our study demonstrated that lysophosphatidic acid (LPA) receptor mediated cardiomyocyte hypertrophy. However, the subtype-specific functions for LPA1 and LPA3 receptors in LPA-induced hypertrophy have not been distinguished. Growing evidence indicates that microRNAs (miRNAs) are involved in the pathogenesis of cardiac hypertrophy by down-regulating target molecules. The present work therefore aimed at elucidating the functions mediated by different subtypes of LPA receptors and investigating the modulatory role of miRNAs during LPA induced hypertrophy. Experiments were done with cultured neonatal rat cardiomyocytes (NRCMs) exposed to LPA and we showed that knockdown of LPA1 by small interfering RNA (siRNA) enhanced LPA-induced cardiomyocyte hypertrophy, whereas LPA3 silencing repressed hypertrophy. miR-23a, a pro-hypertrophic miRNA, was up-regulated by LPA in cardiomyocytes and its down-regulation reduced LPA-induced cardiomyocyte hypertrophy. Importantly, luciferase reporter assay confirmed LPA1 to be a target of miR-23a, indicating that miR-23a is involved in mediating the LPA-induced cardiomyocyte hypertrophy by targeting LPA1. In addition, knockdown of LPA3, but not LPA1, eliminated miR-23a elevation induced by LPA. And PI3K inhibitor, LY294002, effectively prevented LPA-induced miR-23a expression in cardiomyocytes, suggesting that LPA might induce miR-23a elevation by activating LPA3 and PI3K/AKT pathway. These findings identified opposite subtype-specific functions for LPA1 and LPA3 in mediating cardiomyocyte hypertrophy and indicated LPA1 to be a target of miR-23a, which discloses a link between miR-23a and the LPA receptor signaling in cardiomyocyte hypertrophy.  相似文献   

16.
The phospholipid lysophosphatidic acid (LPA) is a normal constituent of serum that functions as a lipid growth factor and intracellular signaling molecule. In this report, we have investigated the signaling mechanism and function of the tyrosine kinase RAFTK/Pyk2 in LPA-induced cell migration. Analysis of tyrosine phosphorylation upon LPA stimulation in neuroendocrine PC12 cells revealed 6 major tyrosine-phosphorylated proteins with estimated sizes of 180, 120, 115, 68, 44, and 42 kDa. These proteins were identified as epidermal growth factor receptor (EGFR), focal adhesion kinase, RAFTK/Pyk2, paxillin, Erk 1, and Erk 2, respectively. Using specific pharmacological inhibitors, we found that the tyrosine phosphorylation of RAFTK/Pyk2 was intracellular Ca2+-dependent, but not EGFR-dependent, during LPA stimulation of these cells. Moreover, the cytoskeletal and signal scaffolding protein, paxillin, associated with and was regulated by RAFTK/Pyk2 in a Ca2+-dependent manner. Characterization of LPA receptors showed that LPA1 (Edg2) and LPA2 (Edg4) are major receptors for LPA, while LPA3 receptor (Edg7) expression was limited. Upon using the LPA1/LPA3 receptor-specific antagonist VPC 32179, we observed that inhibition of the LPA1/LPA3 receptors had no effect on the LPA-induced phosphorylation of RAFTK, strongly suggesting that the LPA2 receptor is a key mediator of RAFTK phosphorylation. Furthermore, LPA induced PC12 cell migration, which was subsequently blocked by the dominant-negative form of FAK, FRNK. Expression of a dominant-negative form of the small GTPase Ras also blocked LPA-induced cell migration and RAFTK phosphorylation. Taken together, these results indicate that RAFTK is a key signaling molecule that mediates LPA-induced PC12 cell migration in a Ras-dependent manner.  相似文献   

17.
Incubation of ovarian luteal cells with the bioactive lipid mediator lysophosphatidic acid (LPA) for 180 min abolishes gonadotropin-induced steroid production with no attenuation of the cyclic AMP accumulation. Treatment with the lysolipid also diminishes [14C]steroid production in cells preloaded with either [14C]cholesterol or [14C]acetate. Neither the expression of steroidogenic acute regulatory (StAR) protein nor in vitro steroid synthesis is affected in isolated mitochondrial fractions. The LPA-induced attenuation of steroid production occurs only in the mid-cycle corpus luteum and is associated with a transient endogenous expression of mRNA for the lysophosphatidic acid A2 (LPA2) receptor (with no concomitant changes in the expression of LPA1 receptor). Expression of LPA2 is accompanied by LPA-induced sphingosine-1-phosphate (S1P) production. Because luteal cells, in the presence of the sphingosine kinase inhibitor dihydrosphingosine, can overcome the inhibitory effects of LPA on steroid synthesis, we suggest the possible requirement of intracellular S1P production. Interestingly, no LPA-induced inhibition of 8Br-cAMP-stimulated progesterone synthesis can be detected in Leydig tumor cell line MA10 cells expressing only LPA2 receptor. Surprisingly, however, exogenous S1P inhibits agonist-stimulated progesterone in both cell types by inhibiting cyclic AMP accumulation, suggesting different mechanisms of action.  相似文献   

18.
In healing tissue, fibroblasts differentiate to α-smooth muscle actin (SMA)-expressing contractile-myofibroblasts, which pull the wound edges together ensuring proper tissue repair. Uncontrolled expansion of the myofibroblast population may, however, lead to excessive tissue scarring and finally to organ dysfunction. Here, we demonstrate that the loss of low-density lipoprotein receptor-related protein (LRP) 1 overactivates the JNK1/2-c-Jun-Fra-2 signaling pathway leading to the induction of α-SMA and periostin expression in human lung fibroblasts (hLF). These changes are accompanied by increased contractility of the cells and the integrin- and protease-dependent release of active transforming growth factor (TGF)-β1 from the extracellular matrix (ECM) stores. Liberation of active TGF-β1 from the ECM further enhances α-SMA and periostin expression thus accelerating the phenotypic switch of hLF. Global gene expression profiling of LRP1-depleted hLF revealed that the loss of LRP1 affects cytoskeleton reorganization, cell-ECM contacts, and ECM production. In line with these findings, fibrotic changes in the skin and lung of Fra-2 transgenic mice were associated with LRP1 depletion and c-Jun overexpression. Altogether, our results suggest that dysregulation of LRP1 expression in fibroblasts in healing tissue may lead to the unrestrained expansion of contractile myofibroblasts and thereby to fibrosis development. Further studies identifying molecules, which regulate LRP1 expression, may provide new therapeutic options for largely untreatable human fibrotic diseases.  相似文献   

19.
Lysophosphatidic acids (LPA) exert multiple biological effects through specific G protein-coupled receptors. The LPA-activated receptor subtype LPA(2) contains a carboxyl-terminal motif that allows interaction with PDZ domain-containing proteins, such as NHERF2 and PDZ-RhoGEF. To identify additional interacting partners of LPA(2), the LPA(2) carboxyl-terminus was used to screen a proteomic array of PDZ domains. In addition to the previously identified NHERF2, several additional LPA(2)-interacting PDZ domains were found. These included MAGI-2, MAGI-3 and neurabin. In the present work, we demonstrate the specific interaction between LPA(2) and MAGI-3, and the effects of MAGI-3 in colon cancer cells using SW480 as a cell model. MAGI-3 specifically bound to LPA(2), but not to LPA(1) and LPA(3). This interaction was mediated via the fifth PDZ domain of MAGI-3 interacting with the carboxyl-terminal 4 amino acids of LPA(2), and mutational alteration of the carboxyl-terminal sequences of LPA(2) severely attenuated its ability to bind MAGI-3. LPA(2) also associated with MAGI-3 in cells as determined by co-affinity purification. Overexpression of MAGI-3 in SW480 cells showed no apparent effect on LPA-induced activation of Erk and Akt. In contrast, silencing of MAGI-3 expression by siRNA drastically inhibited LPA-induced Erk activation, suggesting that the lack of an effect by overexpression was due to the high endogenous MAGI-3 level in these cells. Previous studies have shown that the cellular signaling elicited by LPA results in activation of the small GTPase RhoA by Galpha(12/13) - as well as Galpha(q)-dependent pathways. Overexpression of MAGI-3 stimulated LPA-induced RhoA activation, whereas silencing of MAGI-3 by siRNA resulted in a small but statistically significant decrease in RhoA activation. These results demonstrate that MAGI-3 interacts directly with LPA(2) and regulates the ability of LPA(2) to activate Erk and RhoA.  相似文献   

20.
Hepatic myofibroblasts constitute a heterogenous population of highly proliferative, pro-fibrogenic, pro-inflammatory, pro-angiogenic and contractile cells that sustain liver fibrogenesis and then fibrotic progression of chronic liver diseases of different aetiology to the common advanced-stage of cirrhosis. These α-smooth muscle actin-positive myofibroblast-like cells, according to current literature, mainly originate by a process of activation and trans-differentiation that involves either hepatic stellate cells or fibroblasts of portal areas. Hepatic myofibroblasts can also originate from bone marrow-derived cells, including mesenchymal stem cells or circulating fibrocytes able to engraft chronically injured liver, as well as, in certain conditions, by a process of epithelial to mesenchymal transition involving hepatocytes and cholangiocytes. Hepatic myofibroblasts may have also additional crucial roles in modulating immune response and in the cross talk with hepatic progenitor (stem) cells as well as with malignant cells of either primary hepatocellular carcinomas or of metastatic cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号