首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary An ethionine resistant mutant of Candida utilis was found to maintain an expanded intracellular pool of free l-methionine in batch and continuous cultures. During glucose-limited growth in mineral salts medium in a continuous fermenter, the free l-methionine pool of the mutant was 40–80% higher than in batch cultures, and varied in the range of 25–30 moles/g dry cells (3.7–4.5 mg/g dry cells).  相似文献   

2.
Summary Cells of Escherichia intermedia were immobilized by entrapment in a polyacrylamide gel and used for the enzymatic production of l-tyrosine from phenol, pyruvate, and ammonia. A preparation containing 50 mg of cells/g of gel retained 60% of its original activity. The effect of temperature, pH and substrate concentration on the activity of free cells was almost identical with the effect on immobilized cells. Phenol showed inhibition and inactivation of the catalyst at high concentration. Synthesis of l-tyrosine (up to 10 g/l) was demonstrated in batch reactors with high conversion yields (95–100%) and a maximal productivity of 2 g/l/h. In continuous reactor the catalyst showed a very high operational stability (more than 54 days without losses).  相似文献   

3.
(R)-Phenylacetylcarbinol (PAC), a pharmaceutical precursor, was produced from benzaldehyde and pyruvate by pyruvate decarboxylase (PDC) of Candida utilis in an aqueous/organic two-phase emulsion reactor. When the partially purified enzyme in this previously established in vitro process was replaced with C. utilis cells and the temperature was increased from 4 to 21 °C, a screen of several 1-alcohols (C4–C9) confirmed the suitability of 1-octanol as the organic phase. Benzyl alcohol, the major by-product in the commercial in vivo conversion of benzaldehyde and sugar to PAC by Saccharomyces cerevisiae, was not formed. With a phase volume ratio of 1:1 and 5.6 g C. utilis l−1 (PDC activity 2.5 U ml−1), PAC levels of 103 g l−1 in the octanol phase and 12.8 g l−1 in the aqueous phase were produced in 15 h at 21 °C. In comparison to our previously published process with partially purified PDC in an aqueous/octanol emulsion at 4 °C, PAC was produced at a 4-times increased specific rate (1.54 versus 0.39 mg U−1 h−1) with simplified catalyst production and reduced cooling cost. Compared to traditional in vivo whole cell PAC production, the yield on benzaldehyde was 26% higher, the product concentration increased 3.9-fold (or 6.9-fold based on the organic phase), the productivity improved 3.1-fold (3.9 g l−1 h−1) and the catalyst was 6.9-fold more efficient (PAC/dry cell mass 10.3 g g−1).*Dedicated with gratitude to Prof. Dr. Franz Lingens – “Theo”.  相似文献   

4.
Summary The rate of production ofl-phenylacetyl carbinol bySaccharomyces cerevisiae in reaction mixtures containing benzaldehyde with sucrose or pyruvate as cosubstrate was investigated in short 1 h incubations. The effect of yeast dose rate, sucrose and benzaldehyde concentration and pH on the rate of reaction was determined. Maximum biotransformation rates were obtained with concentrations of benzaldehyde, sucrose and yeast of 6 g, 40 g and 60 g/l, respectively. Negligible biotransformation rates were observed at a concentration of 8 g/l benzaldehyde. The reaction had a pH optimum of 4.0–4.5. Rates of bioconversion of benzaldehyde and selected substituted aromatic aldehydes using both sucrose and sodium pyruvate as cosubstrate were compared. The rate of aromatic alcohol production was much higher when sucrose was used rather than pyruvate.o-Tolualdehyde and 1-chlorobenzaldehyde were poor substrates for aromatic carbinol formation although the latter produced significant aromatic alcohol in sucrose-containing media. Yields of 2.74 and 3.80 g/l phenylacetyl carbinol were produced from sucrose and pyruvate, respectively, in a 1 h reaction period.  相似文献   

5.
Summary The production of l-lactic acid from whey permeate, a waste product of the dairy industry, by fermentation with the lactic acid bacterium Lactobacillus casei subsp. casei was investigated. A fermentation medium consisting of permeate and supplements, which enables exponential growth of the organisms, was developed. A fast method for determination of free and immobilized biomass in solid-rich media, based on measurement of cellular ATP, was evolved. Continuous fermentations in a stirred tank reactor (STR) and in a fluidized bed reactor (FBR) with immobilized biomass were compared. In the STR a volumetric productivity of 5.5 g/l per hour at 100% substrate conversion [dilution rate (D) = 0.22 h–1] was determined. In the FBR porous sintered glass beads were used for immobilization and a maximum biomass concentration of 105 g/kg support was measured. A productivity of 10 g/l per hour was obtained at D = 0.4 h–1 (substrate conversion 93%) and of 13.5 g/l per hour at D = 1.0 h–1 (substrate conversion 50%). Offprint requests to: W. Krischke  相似文献   

6.
d-Ribose, a five-carbon sugar, is used as a key intermediate for the production of various biomaterials, such as riboflavin and inosine monophosphate. A high d-ribose-producing Bacillus subtilis SPK1 strain was constructed by the chemical mutation of the transketolase-deficient strain, B. subtilis JY1. Batch fermentation of B. subtilis SPK1 with 20 g l–1 xylose and 20 g l–1 glucose resulted in 4.78 g l–1 dry cell mass, 23.0 g l–1d-ribose concentration, and 0.72 g l–1 h–1 productivity, corresponding to a 1.5- to 1.7-fold increase when compared with values for the parental strain. A late-exponential phase was chosen as the best point for switching to a fed-batch process. Optimized fed-batch fermentation of B. subtilis SPK1, feeding a mixture of 200 g l–1 xylose and 50 g l–1 glucose after the late-exponential phase reduced the residual xylose and glucose concentrations to less than 7.0 g l–1 and gave the best results of 46.6 g l–1d-ribose concentration and 0.88 g l–1 h–1 productivity which were 2.0- and 1.2-fold higher than the corresponding values in a simple batch fermentation.  相似文献   

7.
Recent progress in enzymatic (R)-phenylacetylcarbinol (PAC) production has established the need for low cost and efficient biocatalyst preparation. Pyruvate decarboxylase (PDC) added in the form of Candida utilis cells showed higher stability towards benzaldehyde and temperature in comparison with partially purified preparations. In the presence of 50 mM benzaldehyde and at 4°C, a half-life of 228 h was estimated for PDC added as C. utilis cells, in comparison with 24 h for the partially purified preparation. Increasing the temperature from 4 to 21°C for PAC production with C. utilis cells resulted in similar final PAC levels of 39 and 43 g l−1 (258 and 289 mM), respectively, from initial 300 mM benzaldehyde and 364 mM pyruvate. The overall volumetric productivity was enhanced 2.8-fold, which reflected the 60% shorter reaction time at the higher temperature. Enantiomeric excess values of 98 and 94% for R-PAC were obtained at 4 and 21°C, respectively, and benzyl alcohol (a potential by-product from benzaldehyde) was not formed.  相似文献   

8.
During L-lactic acid fermentation by Rhizopus oryzae, increasing the phosphate level in the fermentation medium from 0.1 g l–1 to 0.6 g l–1 KH2PO4 reduced the maximal concentration of L-lactic acid and fumaric acid from 85 g l–1 to 71 g l–1 and from 1.36 g l–1 to 0.18 g l–1, respectively; and it decreased the fermentation time from 72 h to 52 h. Phosphate at 0.40 g l–1 KH2PO4 was suitable for both minimizing fumaric acid accumulation and benefiting L-lactic acid production.  相似文献   

9.
Summary Escherichia intermedia cells were immobilized by entrapment in a polyacrylamide gel and used for l-dopa synthesis from pyrocatechol, pyruvate and ammonia. An immobilized cell preparation containing 75 mg cells/g gel retained 45%–50% of the activity of free cells. The effect of temperature, pH and substrate concentration of the initial rate of l-dopa synthesis was very similar for free and immobilized cells. Substrate inhibition was observed for pyrocatechol, pyruvate and ammonia. In a batch reactor, 5.4 g·l-1 l-dopa was obtained, with 100% conversion yield of pyrocatechol and l-dopa productivity of 0.18 g·l-1·h-1. The use of a pyrocatechol-borate complex decreased by-product formation and catalyst inactivation.  相似文献   

10.
Summary All fourCandida blankii isolates evaluated for growth in simulated bagasse hemicellulose hydrolysate utilized the sugars and acetic acid completely. The utilization ofd-xylose,l-arabinose and acetic acid were delayed by the presence ofd-glucose, but after glucose depletion the other carbon sources were utilized simultaneously. The maximum specific growth rate of 0.36 h–1 and cell yield of 0.47 g cells/g carbon source assimilate compared with published results obtained withC. utilis. C. blankii appeared superior toC. utilis for biomass production from hemicellulose hydrolysate in that it utilizedl-arabinose and was capable of growth at higher temperatures.  相似文献   

11.
Freely suspended and Ca-alginate-immobilized cells of Pimelobacter sp. were used for degradation of pyridine. When the pyridine concentration was up to 2 g l–1, freely suspended cells completely degraded pyridine regardless of the initial cell concentrations used. However, when the pyridine concentration increased to 4 g l–1, the initial cell concentration in freely suspended cell culture should be higher than 1.5 g dry cell weight l–1 for complete degradation of pyridine. In addition, a freely suspended cell culture with a high initial cell concentration resulted in a high volumetric pyridine-degradation rate, suggesting the potential use of immobilized cells for pyridine-degradation. When the immobilized cells were used for pyridine-degradation, neither specific pyridine-degradation rate nor tolerance against pyridine was improved. However, a high volumetric pyridine-degradation rate in the range 0.082–0.129 g l–1 hr–1 could be achieved by the immobilized cells because of the high cell concentration. Furthermore, when the immobilized cells were reused in degrading pyridine at a concentration of 2–4 g l–1 they did not lose their pyridine-degrading activity for 2 weeks. Taken together, the data obtained here showed the feasibility of using immobilized cells for pyridine-degradation.  相似文献   

12.
Sulfolobus solfataricus used 2-propanol and 2-propanone (acetone) when grown in static cultures at 78 °C with or without glucose at 10 g l–1. The presence of 3.92 g 2-propanol l–1 in both cases inhibited growth. However, acetone accumulation following 2-propanol depletion suggested that 2-propanol was co-metabolized via the acetone metabolic pathway. Glucose at 10 g l–1 increased 2-propanol and acetone utilization from 0.93 g l–1 to 1.77 g l–1 and from 0.11 g l–1 to 1.62 g l–1, respectively. Without glucose, immobilized S. solfataricus cells increased the 2-propanol removal rate to 0.035 g l–1 h–1, compared to 0.0012 g l–1 h–1 by its suspended counterpart. The results suggest the establishment of an immobilized reactor configuration is preferential for the treatment of high temperature solvent waste streams by this acidothermophilic Crenarchaeon.  相似文献   

13.
Evidence is presented that the high levels of internal l-glutamic and l-aspartic acid in frog Rana esculenta red blood cells are due to the existence of a specific carrier for acidic amino acids of high affinity K m = 3 m and low capacity (Vmax) 0.4 mol l-Glu · Kg–1 dry cell mass · 10 min–1. It is Na+ dependent and the incorporation of l-glutamic acid can be inhibited by l and d-aspartate and l-cysteic acid, while d-glutamic does not inhibit. Moreover, this glutamic uptake shows a bell-shaped dependence on the external pH. All these properties show that this carrier belongs to the system X AG family. Besides the incorporation through this system, l-glutamic acid is also taken up through the ASC system, although, under physiological conditions, this transport is far less important, since it has relatively low affinity K m 39 m but high capacity (V max) 1.8 mol l-Glu · Kg–1 dry cell mass · 10 min–1.  相似文献   

14.
To provide further understanding of the biotransformation of benzaldehyde to L-phenylacetyl carbinol (L-PAC), an intermediate in L-ephedrine production, a kinetic model has been developed for the deactivation of pyruvate decarboxylase (PDC) by benzaldehyde. The model confirms that deactivation is first order with respect to benzaldehyde concentration and exhibits a square root dependency on time. The model covers the range of benzaldehyde concentrations 100–300 mM, as it has been shown previously that 200 mM benzaldehyde can produce L-PAC concentrations up to 190 mM (28.6 g/L) using partially purified PDC from Candida utilis.  相似文献   

15.
Extractive microbial transformation of L-phenylacetylcarbinol (L-PAC) in nonionic surfactant Triton X-100 micelle aqueous solution was investigated by response surface methodology. Based on the Box–Behnken design, a mathematical model was developed for the predication of mutual interactions between benzaldehyde, Triton X-100, and glucose on L-PAC production. It indicated that the negative or positive effect of nonionic surfactant strongly depended on the substrate concentration. The model predicted that the optimal concentration of benzaldehyde, Triton X-100, and glucose was 1.2 ml, 15 g, and 2.76 g per 100 ml, respectively. Under the optimal condition, the maximum L-PAC production was 27.6 mM, which was verified by a time course of extractive microbial transformation. A discrete fed-batch process for verification of cell activity was also presented.  相似文献   

16.
The effect of nutritional limitations, such as phosphorus and carbon, on the production of l-lysine by Corynebacterium glutamicum was studied in continuous culture. We observed that phosphate-limited cultures at low growth rates were favourable to l-lysine production. l-Lysine was produced when a culture at low dilution rate (0.03 h–1) was established. A dilution rate of about 0.04 h–1 should be maintained in order to assure good productivity and an l-lysine yield of 0.53 g/g. Under carbon-limiting conditions the maintenance energy and growth yield of 0.03 g/g·g–1·h–1 and 0.41 g/g, respectively, have been obtained. Under these limiting conditions the l-lysine production was not favoured even at lower dilution rates.Correspondence to: N. Coello  相似文献   

17.
A bacterial strain of Acinetobacter sp., which was capable of enzymatic production of pyruvate from lactate, was cultured in a 5-l reactor with a basal salt medium. After 14 h of fed-batch fermentation, 9.56 g l–1 cell concentration in the broth was obtained with 20 g l–1 (178 mM) sodium lactate and 4 g l–1 NH4Cl in the medium; and the biotransformation ability was 2.51 units ml–1. The cells were harvested from one reactor and then used for pyruvate production from lactate in the same reactor. l-lactate at a concentration about 527 mM was almost stoichiometrically converted to pyruvate in 28 h. After a total 42 h of cell culture and biotransformation, the transformative yield was about 0.72 g g–1 pyruvate from lactate and the rate of pyruvate production was calculated as 1.33 g l–1 h–1 during the process. The results suggested this simple enzymatic production of pyruvate from lactate should be a promising process and may bring a yield higher than that by microbial fermentation. By this process, the recovery of pyruvate from such a simple reaction liquid is relatively easy and inexpensive to perform.  相似文献   

18.
Synopsis Arsenic persists in Chautauqua Lake, New York waters 13 years after cessation of herbicide (sodium arsenite) application and continues to cycle within the lake. Arsenic concentrations in lake water ranged from 22.4–114.81 g l–1, = 49.0 ag l–1. Well water samples generally contained less than 10 g l–1 arsenic. Arsenic concentrations in lake water exceeded U.S. Public Health Service recommended maximum concentrations (10 g l–1) and many samples exceeded the maximum permissible limit (50 g l–1). Fish accumulated arsenic from water but did not magnify it. Fish to water arsenic ratios ranged from 0.4–41.6. Black crappie (Pomoxis nigromaculatus) contained the highest arsenic concentrations (0.14–2.04 g g–1 ), X = 0.7 g g–1) while perch (Perca flavescens), muskellunge (Esox masquinongy) and largemouth bass (Micropterus salmoides) contained the lowest concentrations (0.02–0.13 g g–1). Arsenic concentrations in fish do not appear to pose a health hazard for human consumers.  相似文献   

19.
Escherichia coli strain HS3, metabolically engineered to have Met, AHVr, IleL and AECr characteristics, produced 58.0 g/l of l-threonine, but it was neither salt-tolerant nor osmotolerant; and the growth and threonine production of the strain were severely inhibited both by the addition of NaCl with a concentration higher than 2% and by the presence of glucose with a concentration higher than 10%. Therefore, salt-tolerant mutants were isolated. The salt-tolerant mutants, HS454 and HS528 which were derived from strain HS3, were both tolerant to salt (2%) and hyperproductive. The growth and l-threonine production by the mutant strain HS454 were almost unaffected by a glucose concentration lower than 10%, but gradually reduced with increasing glucose concentration, up to 15%. However, the mutant strain HS528 showed slightly enhanced growth and l-threonine production with increasing glucose concentration, up to 10–12.5%. Strains HS454 and HS528 produced 69.8 g/l and 74.0 g/l of l-threonine, respectively in a 5-l jar fermentor. Received: 21 January 2000 / Received revision: 31 March 2000 / Accepted: 5 May 2000  相似文献   

20.
Summary Ethylenediamine (EDA) is toxic to the cyanobacterium Anabaena variabilis and inhibits nitrogenase activity. The inhibition of nitrogenase was prevented by pretreatment of cells with l-methionine-d,l-sulphoximine (MSX). Mutant strains of Anabaena variabilis (ED81, ED92), resistant to EDA, had low levels of glutamine synthetase (GS) biosynthetic activity compared with the wild type strain. ED92 had a low level of GS protein whereas ED81 had a similar level to that of the parent strain as estimated using antibodies against GS. Both strains fixed N2 and liberated NH4 + into the media. Following immobilization of the mutant strains, sustained photoproduction of NH4 + was obtained in air-lift reactors at rates of up to 50 mol NH4 + mg chl a–1 h–1, which were comparable to the rates obtained when immobilized cyanobacteria were treated with MSX.Abbreviations EDA 1,2-diaminoethane (ethylenediamine) - GS glutamine synthetase - MSX l-methionine-d,l-sulphoximine  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号