首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NIH/3T3 mouse fibroblasts were transfected with the cDNA for manganese superoxide dismutase (MnSOD), and two clones overexpressing MnSOD activity were subsequently characterized by comparison with parental and control plasmid-transfected cells. One clone with a 1.8-fold increase in MnSOD activity had a 1.5-fold increase in glutathione peroxidase (GPX) activity (increased GPX-adapted clone), while a second clone with a 3-fold increase in MnSOD activity had a 2-fold decrease in copper, zinc superoxide dismutase (CuZnSOD) activity (decreased CuZnSOD-adapted clone). Increased reactive oxygen species (ROS) levels compared with parental or control plasmid-transfected cells were observed in nonsynchronous cells in the increased GPX-adapted clone, but not in the decreased CuZnSOD-adapted clone. The two MnSOD-overexpressing clones showed different sensitivities to agents that generate oxidative stress. Flow cytometry analysis of the cell cycle showed altered cell cycle progression in both MnSOD-overexpressing clones. During logarithmic growth, both MnSOD-overexpressing clones showed increased mitochondrial membrane potential compared with parental and control plasmid-transfected cells. Both MnSOD-overexpressing clones showed a decrease in mitochondrial mass at the postconfluent phase of growth, suggesting that mitochondrial mass may be regulated by MnSOD and/or ROS levels. Our results indicate that adaptation of fibroblasts to overexpression of MnSOD can involve more than one mechanism, with the resultant cell phenotype dependent on the adaptation mechanism utilized by the cell. J. Cell. Physiol. 175:359–369, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

2.
It is well established that autocrine growth of human prostate cancer cell line DU145 is dependent on TGF (EGF)/EGFR loop. However, the participation of several other growth factors in proliferation of DU145 cells has been also proposed. We employed two selective tyrosine kinase inhibitors (tyrphostins): AG1024 (an IGFIR inhibitor) and SU1498 (a VEGFR2 inhibitor) for growth regulation of DU145 cells, cultured in chemically defined DMEM/F12 medium. Both the tested compounds inhibited autocrine growth of DU145 cells at similar concentration values (IC50 approximately 2.5 microM). The tyrphostins arrested cell growth of DU145 in G1 phase, similarly as inhibitors of EGFR. However, in contrast to selective inhibitors of EGFR, neither AG1024, nor SU1498 (at concentration < or =10 microM) decreased the viability of the investigated cells. These results strongly suggest that autocrine growth of DU145 cells is stimulated by, at least, three autocrine loops: TGFalpha(EGF)/EGFR, IGFII/IGFIr and VEGF/VEGFR2(VEGFR1). These data support the hypothesis of multi-loops growth regulation of metastatic prostate cancer cell lines.  相似文献   

3.
The receptor tyrosine kinase Axl is overexpressed in a variety of cancers and is known to play a role in proliferation and invasion. Previous data from our laboratory indicate that Axl and its ligand growth arrest-specific 6 (GAS6) may play a role in establishing metastatic dormancy in the bone marrow microenvironment. In the current study, we found that Axl is highly expressed in metastatic prostate cancer cell lines PC3 and DU145 and has negligible levels of expression in a nonmetastatic cancer cell line LNCaP. Knockdown of Axl in PC3 and DU145 cells resulted in decreased expression of several mesenchymal markers including Snail, Slug, and N-cadherin, and enhanced expression of the epithelial marker E-cadherin, suggesting that Axl is involved in the epithelial-mesenchymal transition in prostate cancer cells. The Axl-knockdown PC3 and DU145 cells also displayed decreased in vitro migration and invasion. Interestingly, when PC3 and DU145 cells were treated with GAS6, Axl protein levels were downregulated. Moreover, CoCl(2), a hypoxia mimicking agent, prevented GAS6-mediated downregulation of Axl in these cell lines. Immunochemical staining of human prostate cancer tissue microarrays showed that Axl, GAS6, and hypoxia-inducible factor-1α (Hif-1α; indicator of hypoxia) were all coexpressed in prostate cancer and in bone metastases compared with normal tissues. Together, our studies indicate that Axl plays a crucial role in prostate cancer metastasis and that GAS6 regulates the expression of Axl. Importantly, in a hypoxic tumor microenvironment Axl expression is maintained leading to enhanced signaling.  相似文献   

4.
NIH/3T3 mouse embryo fibroblasts were transfected with the cDNA for manganese superoxide dismutase (MnSOD). Previous studies showed characteristic unique AE profiles in nonsynchronous populations of parental, control plasmid-transfected, and MnSOD-overexpressing NIH/3T3 cell lines. However, the present study showed that during S and M phases of the cell cycle, antioxidant enzyme (AE) levels were altered in MnSOD-overexpressing cell lines towards levels in S and M phases of parental and control plasmid-transfected cells. Because of the demonstration that MnSOD overexpression inhibits cell growth in both nonmalignant and malignant cells, the present study was designed to measure AEs, reactive oxygen species (ROS), and glutathione levels in various phases of the cell cycle in both parental NIH/3T3 cells and NIH/3T3 cells overexpressing MnSOD, to try to determine whether AEs, ROS, and glutathione levels could have a possible regulatory role in cell cycle progression. In all cell lines studied, ROS levels were lower in M than S phase of the cell cycle. Total glutathione and glutathione disulfide levels were greatly increased during the M phase of the cell cycle compared with quiescence and S phase in all cell lines studied. This suggests that oxidative stress exists in M phase of the cell cycle with total glutathione levels increased to decrease oxidative stress. Analysis of MnSOD-overexpressing cell clones showed a correlation of decreased cell growth with an increase in ROS in S phase of the cell cycle and a decrease in glutathione in mitosis. The data strongly suggest that specific levels of cell redox state are necessary for cells to successfully progress through the various phases of the cell cycle. J. Cell. Physiol. 177:148–160, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

5.
6.
Previous studies have shown that rapid cell proliferation is associated with elevated glucose consumption. However, those studies did not establish whether glucose is required for prostate cancer cell proliferation or define the molecular mechanisms by which glucose regulates cell division. We addressed these issues by studying two metastatic human prostate cancer cell lines: DU145, which is androgen independent and highly proliferative; and LNCaP, which is androgen dependent and relatively slow growing. We found that proliferation of DU145 cells was significantly inhibited by reduction of glucose in the medium to 0.5 g/L, which is half the physiologic concentration, whereas LNCaP cells grew at control rates even in the presence of only 0.05 g/L glucose. Glucose deprivation of DU145 cells caused a 90% reduction in DNA synthesis; a 10–20-fold reduction in cyclins D and E and CDK4 levels; and cell cycle arrest in G0-G1. However, glucose deprivation did not cause global inhibition of protein synthesis, since mutant p53 levels increased in glucose-deprived DU145 cells. This observed increase in mutant p53 levels was not associated with a rise in p21 levels. Glucose deprivation of DU145 cells also led to apparent dephosphorylation of mutant retinoblastoma (RB) protein. We conclude that: 1) high levels of glucose consumption are required for rapid proliferation of androgen-independent prostate cancer cells, 2) glucose may not be required for slow growth of androgen-dependent prostate cancer cells, and 3) glucose promotes passage of cells through early G1 by increasing the expression of several key cell cycle regulatory proteins that normally inhibit RB function. J. Cell. Physiol. 180:431–438, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

7.
The protoapigenone analogue WYC02-9, a novel synthetic flavonoid, has been shown to act against a variety of experimental tumors. However, its effects on prostate cancer and its mechanism of action are unknown. Thus, WYC02-9 was investigated for its cytotoxicity against DU145 prostate cancer cells, as was the underlying mechanisms by which WYC02-9 might induce DNA damage and apoptotic cell death through reactive oxygen species (ROS). WYC02-9 inhibited the cell growth of three prostate cancer cell lines, especially DU145 cells. In DU145 cells, WYC02-9 increased the generation of intracellular ROS, followed by induction of DNA damage and activation of the ATM-p53-H2A.X pathway and checkpoint-related signals Chk1/Chk2, which led to increased numbers of cells in the S and G2/M phases of the cell cycle. Furthermore, WYC02-9 induced apoptotic cell death through mitochondrial membrane potential decrease and activation of caspase-9, caspase-3, and PARP. The above effects were all prevented by the ROS scavenger N-acetylcysteine. Administration of WYC02-9 in a nude mouse DU145 xenograft model further identified the anti-cancer activity of WYC02-9. These findings therefore suggest that WYC02-9-induced DNA damage and mitochondria-dependent cell apoptosis in DU145 cells are mediated via ROS generation.  相似文献   

8.
Androgen-ablation is a most commonly prescribed treatment for metastatic prostate cancer but it is not curative. Development of new strategies for treatment of prostate cancer is limited partly by a lack of full understanding of the mechanism by which androgen regulates prostate cancer cell proliferation. This is due, mainly, to the limitations in currently available experimental models to distinguish androgen/androgen receptor (AR)-induced events specific to proliferation from those that are required for cell viability. We have, therefore, developed an experimental model system in which both androgen-sensitive (LNCaP) and androgen-independent (DU145) prostate cancer cells can be reversibly blocked in G(0)/G(1) phase of cell cycle by isoleucine deprivation without affecting their viability. Pulse-labeling studies with (3)H-thymidine indicated that isoleucine-deprivation caused LNCaP and DU145 cells to arrest at a point in G(1) phase which is 12-15 and 6-8 h, respectively, before the start of S phase and that their progression into S phase was dependent on serum factors. Furthermore, LNCaP, but not DU145, cells required AR activity for progression from G(1) into S phase. Western blot analysis of the cell extracts prepared at regular intervals following release from isoleucine-block revealed remarkable differences in the expression of cyclin E, p21(Cip1), p27(Kip1), and Rb at the protein level between LNCaP and DU145 cells during progression from G(1) into S phase. However, in both cell types Cdk-2 activity associated with cyclin E and cyclin A showed an increase only when the cells transited from G(1) into S phase. These observations were further corroborated by studies using exponentially growing cells that were enriched in specific phases of the cell cycle by centrifugal elutriation. These studies demonstrate usefulness of the isoleucine-deprivation method for synchronization of androgen-sensitive and androgen-independent prostate cancer cells, and for examining the role of androgen and AR in progression of androgen-sensitive prostate cancer cells from G(1) into S phase.  相似文献   

9.
Trabectedin (Yondelis, ET-743) is a marine-derived tetrahydroisoquinoline alkaloid. It is originally derived from the Caribbean marine tunicate Ecteinascidia turbinata and currently produced synthetically. Trabectedin is active against a variety of tumor cell lines growing in culture. The present study focused on the effect of trabectedin in cell proliferation, cell cycle progression, apoptosis and spheroid formation in prostate cancer stem cells (CSCs). Cluster of differentiation (CD) 133+high/CD44+high prostate CSCs were isolated from the DU145 and PC-3 human prostate cancer cell line through flow cytometry. We studied the growth-inhibitory effects of trabectedin and its molecular mechanisms on human prostate CSCs and non-CSCs. DU-145 and PC-3 CSCs were treated with 0.1, 1, 10 and 100 nM trabectedin for 24, 48 and 72 h and the growth inhibition rates were examined using the sphere-forming assay. Annexin-V assay and immunofluorescence analyses were performed for the detection of the cell death. Concentration-dependent effects of trabectedin on the cell cycle were also evaluated. The cells were exposed to the different doses of trabectedin for 24, 48 and 72 h to evaluate the effect of trabectedin on the number and diameter of spheroids. According to the results, trabectedin induced cytotoxicity and apoptosis at the IC50 dose, resulting in a significant increase expression of caspase-3, caspase-8, caspase-9, p53 and decrease expression of bcl-2 in dose-dependent manner. Cell cycle analyses revealed that trabectedin induces dose-dependent G2/M-phase cell cycle arrest, particularly at high-dose treatments. Three-dimensional culture studies showed that trabectedin reduced the number and diameter of spheroids of DU145 and PC3 CSCs. Furthermore, we have found that trabectedin disrupted cell-cell interactions via E-cadherin in prostasphere of DU-145 and PC-3 CSCs. Our results showed that trabectedin inhibits cellular proliferation and accelerates apoptotic events in prostate CSCs; and may be a potential effective therapeutic agent against prostate cancer.  相似文献   

10.
We investigated the effects of KML001 (NaAsO2, sodium metaarsenite, Kominox), an orally bioavailable arsenic compound, on the growth and death of human prostate cancer cells and its mechanism of action. Growth inhibition was assessed by cytotoxicity assays in the presence or absence of inhibitor of apoptosis, inhibitor of autophagy or antioxidant N-Acetyl-L-cysteine to study mechanism of cell death induced by KML001 in PC3, DU145 and LNCaP prostate cancer cell lines. Electron microscopy, flow cytometry and Western blotting were used to study apoptotic and autophagic mechanisms. The DU145 xenograft model was used to determine the efficacy of KML001 in vivo. KML001 decreased the viability of cells and increased the percentage of annexin V-positive cells dose-dependently in prostate cancer cells, and LNCaP cells were more sensitive to KML001 than PC3 or DU145 cells. Electron microscopy revealed typical apoptotic characters and autophagic vacuoles in cells treated with KML001. Exposure to KML001 in prostate cancer cells induced apoptosis and autophagy in a time- and dose-dependent manner. KML001 induced dose-dependent accumulation of reactive oxygen species, and scavenging the reactive oxygen species with N-Acetyl-L-cysteine reduced LC3 and cleaved poly (ADP-ribose) polymerase. KML001 significantly inhibited tumor growth in the DU145 xenograft model. In addition, significant decrease of proliferation and significant increases of apoptosis and autophagy were observed in KML001-treated tumors than in vehicle-treated tumors. Exposure of human prostate cancer cells to KML001 induced both apoptosis and autophagic cell death via oxidative stress pathway. And KML001 had an antiproliferative effect on DU145 cells in xenograft mice.  相似文献   

11.
Purvalanol and roscovitine are cyclin dependent kinase (CDK) inhibitors that induce cell cycle arrest and apoptosis in various cancer cells. We further hypothesized that co-treatment of CDK inhibitors with rapamycin, an mTOR inhibitor, would be an effective combinatory strategy for the inhibition of prostate cancer regard to androgen receptor (AR) status due to inhibition of proliferative pathway, PI3K/AKT/mTOR, and induction of cell death mechanisms. Androgen responsive (AR+), PTEN?/? LNCaP and androgen independent (AR?), PTEN+/? DU145 prostate cancer cells were exposed to purvalanol (20 µM) and roscovitine (30 µM) with or without rapamycin for 24 h. Cell viability assay, immunoblotting, flow cytometry and fluorescence microscopy was used to define the effect of CDK inhibitors with or without rapamycin on proliferative pathway and cell death mechanisms in LNCaP and DU145 prostate cancer cells. Co-treatment of rapamycin modulated CDK inhibitors-induced cytotoxicity and apoptosis that CDK inhibitors were more potent to induce cell death in AR (+) LNCaP cells than AR (?) DU145 cells. CDK inhibitors in the presence or absence of rapamycin induced cell death via modulating upstream PI3K/AKT/mTOR signaling pathway in LNCaP cells, exclusively only treatment of purvalanol have strong potential to inhibit both upstream and downstream targets of mTOR in LNCaP and DU145 cells. However, co-treatment of rapamycin with CDK inhibitors protects DU145 cells from apoptosis via induction of autophagy mechanism. We confirmed that purvalanol and roscovitine were strong apoptotic and autophagy inducers that based on regulation of PI3K/AKT/mTOR signaling pathway. Co-treatment of rapamycin with purvalanol and roscovitine exerted different effects on cell survival and death mechanisms in LNCaP and DU145 cell due to their AR receptor status. Our studies show that co-treatment of rapamycin with CDK inhibitors inhibit prostate cancer cell viability more effectively than either agent alone, in part, by targeting the mTOR signaling cascade in AR (+) LNCaP cells. In this point, mTOR is a fine-tuning player in purvalanol and roscovitine-induced apoptosis and autophagy via regulation of PI3K/AKT and the downstream targets, which related with cell proliferation.  相似文献   

12.
DNA damage caused by alkylating agents results in a G2 checkpoint arrest. DNA mismatch repair (MMR) deficient cells are resistant to killing by alkylating agents and are unable to arrest the cell cycle in G2 phase after alkylation damage. We investigated the response of two MMR-deficient prostate cancer cell lines DU145 and LNCaP to the alkylating agent MNNG. Our studies reveal that DU145 cancer cells are more sensitive to killing by MNNG than LNCaP. Investigation of the underlying reasons for lower resistance revealed that the DU145 cells contain low endogenous levels of cyclin B1. We provide direct evidence that the endogenous level of cyclin B1 modulates the sensitivity of MMR-deficient prostate cancer cells to alkylating agents.  相似文献   

13.
Prostate carcinoma is one of the most common malignant tumors and has become a more common cancer in men. Previous studies demonstrated that evodiamine (EVO) exhibited anti-tumor activities on several cancers, but its effects on androgen-independent prostate cancer are unclear. In the present study, the action mechanisms of EVO on the growth of androgen-independent prostate cancer cells (DU145 and PC3 cells) were explored. EVO dramatically inhibited the growth and elevated cytotoxicity of DU145 and PC3 cells. The flow cytometric analysis of EVO-treated cells indicated a block of G2/M phase and an elevated level of DNA fragmentation. The G2/M arrest was accompanied by elevated Cdc2 kinase activity, an increase in expression of cyclin B1 and phosphorylated Cdc2 (Thr 161), and a decrease in expression of phosphorylated Cdc2 (Tyr 15), Myt-1, and interphase Cdc25C. TUNEL examination showed that EVO-induced apoptosis was observed at 72 h. EVO elevated the activities of caspase 3, 8, and 9 in DU145 cells, while in PC3 cells only the activities of caspase 3 and 9 were elevated. EVO also triggered the processing of caspase 3 and 9 in both DU145 and PC3 cells. We demonstrate that roscovitine treatment result in the reversion of G2/M arrest in response to EVO in both DU145 and PC3. However, inhibitory effect of roscovitine on EVO-induced apoptosis could only be observed in DU145 rather than PC3. In DU145, G2/M arrest might be a signal for initiation of EVO-triggered apoptosis. Whereas EVO-triggered PC3 apoptosis might be independent of G2/M arrest. These results suggested that EVO inhibited the growth of prostate cancer cell lines, DU145 and PC3, through an accumulation at G2/M phase and an induction of apoptosis.  相似文献   

14.
Dual roles of E-cadherin in prostate cancer invasion   总被引:6,自引:0,他引:6  
The role(s) of E-cadherin in tumor progression, invasion, and metastasis remains somewhat enigmatic. In order to investigate various aspects of E-cadherin biological activity, particularly in prostate cancer progression, our laboratory cloned unique subpopulations of the heterogeneous DU145 human prostatic carcinoma cell line and characterized their distinct biological functions. The data revealed that the highly invasive, fibroblastic-like subpopulation of DU145 cells (designated DU145-F) expressed less than 0.1-fold of E-cadherin protein when compared to the parental DU145 or the poorly invasive DU145 cells (designated DU145-E). Experimental disruption of E-cadherin function stimulated migration and invasion of DU145-E and other E-cadherin-positive prostate cancer cell lines, but did not affect the fibroblastic-like DU145-F subpopulation. Within the medium of parental DU145 cells, the presence of an 80 kDa E-cadherin fragment was detected. Subsequent functional analyses revealed the stimulatory effect of this fragment on the migratory and invasive capability of E-cadherin-positive cells. These results suggest that E-cadherin plays an important role in regulating the invasive potential of prostate cancer cells through an unique paracrine mechanism.  相似文献   

15.
16.
Adrenomedullin (AM) is a multifunctional peptide expressed in the normal and malignant prostate, and in prostate cancer cells. To elucidate the potential role of AM in prostate cancer, we have transfected the human AM gene into PC-3, DU 145, and LNCaP prostate cancer cells. Northern blot, Western blot, and radioimmunoassay techniques confirmed an increase in the synthesis and secretion of the 6kDa mature peptide, in the AM-transfected clones. Proliferation and cell cycle assays demonstrated that AM overexpression inhibited cell proliferation in PC-3 and LNCaP cells through a G0/G1 cell cycle arrest, but not in DU 145 cells. In vivo growth assays also confirmed that, at least in PC-3, AM produced a very significant reduction of tumor volume. In addition, the three cell lines expressed the CL/RCP/RAMP-2 receptor complex by RT-PCR, which suggests that AM peptide acts through an autocrine loop in prostate cancer cells. Although cAMP elevation is the most common pathway involved in AM signalling, stimulation of PC-3, DU 145, and LNCaP with synthetic AM did not increase intracellular cAMP. However, short-term stimulation of PC-3 cells with synthetic AM increased ERK1/2 activation. On the contrary, long-term stimulation, or AM overexpression, caused a reduction in the basal activation of ERK1/2. In summary, our results demonstrate that AM (either overexpressed or exogenously added) causes an inhibition of prostate cancer cell growth. This inhibition does not depend on changes in intracellular cAMP levels, but may be related to ERK1/2 activation.  相似文献   

17.
ABSTRACT

KHC-4 is a 2-phenyl-4-quinolone analogue that exhibits anticancer activity. Aberrant activation of β-catenin signaling contributes to prostate cancer development and progression. Therefore, targeting β-catenin expression could be a useful approach to treating prostate cancer. We found that KHC-4 can inhibit β-catenin expression and its signaling pathway in DU145 prostate cancer cells. Treatment with KHC-4 decreased total β-catenin expression and concomitantly decreased β-catenin levels in both the cytoplasm and nucleus of cells. KHC-4 treatment also inhibited β-catenin expression and that of its target proteins, PI3K, AKT, GSK3β and TBX3. We monitored the stability of β-catenin with the proteasomal inhibitor, MG132, in DU145 cells and found that MG132 reversed KHC-4-induced proteasomal β-catenin degradation. We verified CDK1/β-catenin expression in KHC-4 treated DU145 cells. We found that roscovitine treatment reversed cell proliferation by arresting the cell cycle at the G2/M phase and β-catenin expression caused by KHC-4 treatment. We suggest that KHC-4 inhibits β-catenin signaling in DU145 prostate cancer cells.  相似文献   

18.
Although selenium compounds have been extensively studied as chemopreventative agents for prostate cancer, little is known about the potential use of selenium compounds for chemotherapy. We have shown that selenite inhibits cell growth and induces apoptosis in androgen-dependent LAPC-4 prostate cancer cells. LAPC-4 cells were more sensitive to selenite-induced apoptosis than primary cultures of normal prostate cells. Selenite-induced apoptosis in LAPC-4 cells correlated with a decrease in the Bcl-2:Bax expression ratio. Selenite-induced oxidative stress and apoptosis are dependent upon its reaction with reduced GSH. LAPC-4 cells treated with selenite showed decreased levels of total GSH and increased concentrations of GSSG. Thus, selenite altered the intracellular redox status toward an oxidative state by decreasing the ratio of GSH:GSSG. Because increased levels of Bcl-2 and GSH are associated with radioresistance, we examined the ability of selenite to sensitize prostate cancer cells to gamma-irradiation. Both LAPC-4 and androgen-independent DU 145 cells pretreated with selenite showed increased sensitivity to gamma-irradiation as measured by clonogenic survival assays. Importantly, selenite-induced radiosensitization was observed in combination with a clinically relevant dose of 2 Gy. These data suggest that altering the redox environment of prostate cancer cells with selenite increases the apoptotic potential and sensitizes them to radiation-induced cell killing.  相似文献   

19.
The effect of PectaSol on Dox (Doxorubicin) cytotoxicity in terms of apoptosis and cell cycle changes in PCa (prostate cancer) cell lines (DU‐145 and LNCaP) has been investigated. Combination of PectaSol and Dox resulted in a viability of 29.4 and 32.6% (P<0.001) in DU‐145 and LNCaP cells. The IC50 values decreased 1.5‐fold and 1.3‐fold in the DU‐145 and LNCaP cells respectively. In the DU‐145 cells, combination of PectaSol and Dox resulted in a reduction in p27 gene and protein expression (P<0.001). In LNCaP cells, this combination increased p53, p27 and Bcl‐2 expression. Treatment with both drugs in DU‐145 cells led to an increase in sub‐G1 arrest (54.6% compared with 12.2% in Dox). In LNCaP cells, combination of the drugs led to an increased in G2/M arrest (61.7% compared with 53.6% in Dox). Based on these findings, progressive cytotoxicity effect of Dox and PectaSol together rapidly induce cell death in DU‐145 through apoptosis and in LNCaP cells through cell cycle arrest (G2/M arrest).  相似文献   

20.
The effect of TGFbeta1 on the proliferation and plasminogen activator system (PA) of two prostate carcinoma cell lines, PC3 and DU145, was investigated. PA, particularly urokinase plasminogen activator (uPA), has been implicated in extracellular proteolysis, local invasiveness, metastatic spread and angiogenesis. High levels of uPA and plasminogen activator inhibitor-1 (PAI-1) correlate with poor prognosis in several cancers. TGFbeta1 had no significant effect on the proliferation of either cell line. TGFbeta1 increased the production of uPA in PC3 and DU145 cells. Despite the very low PAI-1 protein levels in both cell lines, TGFbeta1 treatment resulted in a remarkable increase in PAI-1 secretion. PAI-2 protein was also increased by 59% in the PC3 cells. A divergent effect of TGFbeta1 on the uPA enzyme activity was observed (28% decrease in PC3 and 131% increase in DU145 cells). Overall, TGFbeta1 treatment did not affect the invasion of reconstituted basement membrane of PC3 cells. In addition to the uPA:PAI-1 ratio, the presence of PAI-2 may be an important factor in the determination of metastatic sites for prostate cancer cells. In conclusion, the potential contribution of TGFbeta1 to tumor invasion may be considered as positive, based on both loss of growth inhibition and stimulation of components of the invasive system of prostate carcinoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号