首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Five major approaches have been employed to determine the role of endocannabinoids in pain modulation: (1) studies of various markers of endocannabinoid action aimed at determining whether the necessary cannabinoid biochemical machinery is present in those brain areas that control pain sensitivity; (2) administration of exogenous cannabinoids to determine whether endocannabinoid action at appropriate sites would lead to a loss of pain sensitivity; (3) administration of compounds that would affect endocannabinoid action such as antagonists and transport inhibitors to determine whether drug-induced preterbation of cannabinoid action would alter pain sensitivity; (4) studies of genetically altered animals aimed at determining whether pain responses or responses to cannabinergic drugs are altered; and (5) studies that measure the release of endocannabinoids. Converging evidence from each of these research areas indicates that endocannabinods function to control pain in parallel with endogenous opioids but via different mechanisms.  相似文献   

2.
Taste receptor cells play a major role in detection of chemical compounds in the oral cavity. Information derived from taste receptor cells, such as sweet, bitter, salty, sour and umami is important for evaluating the quality of food components. Among five basic taste qualities, sweet taste is very attractive for animals and influences food intake. Recent studies have demonstrated that sweet taste sensitivity in taste receptor cells would be affected by leptin and endocannabinoids. Leptin is an anorexigenic mediator that reduces food intake by acting on leptin receptor Ob-Rb in the hypothalamus. Endocannabinoids such as anandamide [N-arachidonoylethanolamine (AEA)] and 2-arachidonoyl glycerol (2-AG) are known as orexigenic mediators that act via cannabinoid receptor 1 (CB1) in the hypothalamus and limbic forebrain to induce appetite and stimulate food intake. At the peripheral gustatory organs, leptin selectively suppresses and endocannabinoids selectively enhance sweet taste sensitivity via Ob-Rb and CB1 expressed in sweet sensitive taste cells. Thus leptin and endocannabinoids not only regulate food intake via central nervous systems but also modulate palatability of foods by altering peripheral sweet taste responses. Such reciprocal modulation of leptin and endocannabinoids on peripheral sweet sensitivity may play an important role in regulating energy homeostasis.  相似文献   

3.
4.
The analgesic effects of cannabinoid ligands, mediated by CB1 receptors are well established. However, the side-effect profile of CB1 receptor ligands has necessitated the search for alternative cannabinoid-based approaches to analgesia. Herein, we review the current literature describing the impact of chronic pain states on the key components of the endocannabinoid receptor system, in terms of regionally restricted changes in receptor expression and levels of key metabolic enzymes that influence the local levels of the endocannabinoids. The evidence that spinal CB2 receptors have a novel role in the modulation of nociceptive processing in models of neuropathic pain, as well as in models of cancer pain and arthritis is discussed. Recent advances in our understanding of the spinal location of the key enzymes that regulate the levels of the endocannabinoid 2-AG are discussed alongside the outcomes of recent studies of the effects of inhibiting the catabolism of 2-AG in models of pain. The complexities of the enzymes capable of metabolizing both anandamide (AEA) and 2-AG have become increasingly apparent. More recently, it has come to light that some of the metabolites of AEA and 2-AG generated by cyclooxygenase-2, lipoxygenases and cytochrome P450 are biologically active and can either exacerbate or inhibit nociceptive signalling.  相似文献   

5.
One important function of endocannabinoids and related lipid mediators in mammalian central nervous system is modulation of pain. Evidence obtained during the last decade shows that altered levels of these compounds in the brain accompany decreases in pain sensitivity. Such changes, if sexually dimorphic, could account for sex differences in pain and differences that occur during different phases of the hormonal cycle in females. To examine this possibility, we measured the levels of the pain-modulatory lipids anandamide, 2-arachidonoyl glycerol, N-arachidonoyl glycine, N-arachidonoyl gamma amino butyric acid, and N-arachidonoyl dopamine in seven different brain areas (pituitary, hypothalamus, thalamus, striatum, midbrain, hippocampus, and cerebellum) in male rats, and in female rats at five different points in the estrous cycle. The cerebellum did not demonstrate a change in endocannabinoid production across the estrous cycle, whereas all other areas tested showed significant differences in at least one of the compounds measured. These changes in levels occurred predominantly within the 36-h time period surrounding ovulation and behavioral estrus. Differences between males and females were measured as either estrous cycle-independent (all estrous cycles combined) or cycle-dependent (comparisons of males to each estrous cycle). In cycle-independent analyses, small sex differences were observed in the pituitary, hypothalamus, cerebellum, and striatum, whereas no differences were observed in the thalamus, midbrain, and hippocampus. In cycle-dependent analyses, the hypothalamus and pituitary showed largest sex differences followed by the striatum, midbrain, and hippocampus, whereas no sex differences were measured in thalamus and cerebellum. These data provide a basis for investigations into how differences in sex and hormonal status play a role in mechanisms regulating endocannabinoid production and pain.  相似文献   

6.
The present review focuses on the role of the endogenous cannabinoid system in the modulation of immune response and control of cancer cell proliferation. The involvement of cannabinoid receptors, endogenous ligands and enzymes for their biosynthesis and degradation, as well as of cannabinoid receptor-independent events is discussed. The picture arising from the recent literature appears very complex, indicating that the effects elicited by the stimulation of the endocannabinoid system are strictly dependent on the specific compounds and cell types considered. Both the endocannabinoid anandamide and its congener palmitoylethanolamide, exert a negative action in the onset of a variety of parameters of the immune response. However, 2-arachidonoylglycerol appears to be the true endogenous ligand for peripheral cannabinoid receptors, although its action as an immunomodulatory molecule requires further characterization. Modulation of the endocannabinoid system interferes with cancer cell proliferation either by inhibiting mitogenic autocrine/paracrine loops or by directly inducing apoptosis; however, the proapoptotic effect of anandamide is not shared by other endocannabinoids and suggests the involvement of non-cannabinoid receptors, namely the VR1 class of vanilloid receptors. In conclusion, further investigations are needed to elucidate the function of endocannabinoids as immunosuppressant and antiproliferative/cytotoxic agents. The experimental evidence reviewed in this article argues in favor of the therapeutic potential of these compounds in immune disorders and cancer.  相似文献   

7.
The long history of the medicinal use of Cannabis sativa and, more recently, of its chemical constituents, the cannabinoids, suggests that also the endogenous ligands of cannabinoid receptors, the endocannabinoids, and, particularly, their derivatives may be used as therapeutic agents. Studies aimed at correlating the tissue and body fluid levels of endogenous cannabinoid-like molecules with pathological conditions have been started and may lead to identify those diseases that can be alleviated by drugs that either mimic or antagonize the action of these substances, or modulate their biosynthesis and degradation. Hints for the therapeutic applications of endocannabinoids, however, can be obtained also from our previous knowledge of marijuana medicinal properties. In this article, we discuss the anti-tumor and anti-inflammatory activity of: (1) the endocannabinoids anandamide (arachidonoylethanolamide) and 2-arachidonoyl glycerol; (2) the bioactive fatty acid amides palmitoylethanolamide and oleamide; and (3) some synthetic derivatives of these compounds, such as the N-acyl-vanillyl-amines. Furthermore, the possible role of cannabimimetic fatty acid derivatives in the pathological consequences of cancer and inflammation, such as cachexia, wasting syndrome, chronic pain and local vasodilation, will be examined.  相似文献   

8.
Mass spectrometric approaches to the identification and quantification of lipid signalling molecules are reviewed. Fatty acid amides are an important new class of lipid signalling molecules which include oleamide, the endocannabinoid anandamide, the endovanilloid/endocannabinoid N-arachidonoyldopamine (NADA) and the endovanilloid N-oleoyldopamine (OLDA) among many others. This diverse group of endogenous compounds comprises combinations of acyl backbones coupled by an amide bond to any of a variety of different small polar molecules such as ethanolamine, various amino acids, and catecholamines. Many fatty acid amides appear to play a role in pain and inflammation. Targeted lipidomics of fatty acid amides aims to identify new members of this diverse class of compounds, of which only a few representative molecules have been characterized to date. This effort has been made feasible by advances in chromatography and mass spectrometry, which permits: (1) identification of compounds present in complex mixtures, (2) astronomical increases in sensitivity due to miniaturization of HPLC components, and (3) novel scanning modes that permit the identification of compounds exhibiting similar structural components. Insofar as lipid signalling molecules such as prostanoids, leukotrienes and endocannabinoids operate via G-protein coupled receptors (GPCR), it appears likely that many of the numerous lipids awaiting identification may serve as ligands for any of the greater than 150 orphan GPCRs.  相似文献   

9.
The endocannabinoid system (ECS) plays an important role in pain processing and modulation. Since the specific effects of endocannabinoids within the orofacial area are largely unknown, we aimed to determine whether an increase in the endocannabinoid concentration in the cerebrospinal fluid (CSF) caused by the peripheral administration of the FAAH inhibitor URB597 and tooth pulp stimulation would affect the transmission of impulses between the sensory and motor centers localized in the vicinity of the third and fourth cerebral ventricles. The study objectives were evaluated on rats using a method that allowed the recording of the amplitude of evoked tongue jerks (ETJ) in response to noxious tooth pulp stimulation and URB597 treatment. The amplitude of ETJ was a measure of the effect of endocannabinoids on the neural structures. The concentrations of the endocannabinoids tested (AEA and 2-AG) were determined in the CSF, along with the expression of the cannabinoid receptors (CB1 and CB2) in the tissues of the mesencephalon, thalamus, and hypothalamus. We demonstrated that anandamide (AEA), but not 2-arachidonoylglycerol (2-AG), was significantly increased in the CSF after treatment with a FAAH inhibitor, while tooth pulp stimulation had no effect on the AEA and 2-AG concentrations in the CSF. We also found positive correlations between the CSF AEA concentration and cannabinoid receptor type 1 (CB1R) expression in the brain, and between 2-AG and cannabinoid receptor type 2 (CB2R), and negative correlations between the CSF concentration of AEA and brain CB2R expression, and between 2-AG and CB1R. Our study shows that endogenous AEA, which diffuses through the cerebroventricular ependyma into CSF and exerts a modulatory effect mediated by CB1Rs, alters the properties of neurons in the trigeminal sensory nuclei, interneurons, and motoneurons of the hypoglossal nerve. In addition, our findings may be consistent with the emerging concept that AEA and 2-AG have different regulatory mechanisms because they are involved differently in orofacial pain. We also suggest that FAAH inhibition may offer a therapeutic approach to the treatment of orofacial pain.  相似文献   

10.
Cannabinoid receptors and their ligands   总被引:12,自引:0,他引:12  
There are at least two types of cannabinoid receptors, CB(1) and CB(2), both coupled to G proteins. CB(1) receptors exist primarily on central and peripheral neurons, one of their functions being to modulate neurotransmitter release. CB(2) receptors are present mainly on immune cells. Their roles are proving more difficult to establish but seem to include the modulation of cytokine release. Endogenous agonists for cannabinoid receptors (endocannabinoids) have also been discovered, the most important being arachidonoyl ethanolamide (anandamide), 2-arachidonoyl glycerol and 2-arachidonyl glyceryl ether. Other endocannabinoids and cannabinoid receptor types may also exist. Although anandamide can act through CB(1) and CB(2) receptors, it is also a vanilloid receptor agonist and some of its metabolites may possess yet other important modes of action. The discovery of the system of cannabinoid receptors and endocannabinoids that constitutes the "endocannabinoid system" has prompted the development of CB(1)- and CB(2)-selective agonists and antagonists/inverse agonists. CB(1)/CB(2) agonists are already used clinically, as anti-emetics or to stimulate appetite. Potential therapeutic uses of cannabinoid receptor agonists include the management of multiple sclerosis/spinal cord injury, pain, inflammatory disorders, glaucoma, bronchial asthma, vasodilation that accompanies advanced cirrhosis, and cancer. Following their release onto cannabinoid receptors, endocannabinoids are removed from the extracellular space by membrane transport and then degraded by intracellular enzymic hydrolysis. Inhibitors of both these processes have been developed. Such inhibitors have therapeutic potential as animal data suggest that released endocannabinoids mediate reductions both in inflammatory pain and in the spasticity and tremor of multiple sclerosis. So too have CB(1) receptor antagonists, for example for the suppression of appetite and the management of cognitive dysfunction or schizophrenia.  相似文献   

11.
Baroreceptor afferent fibers synapse in the nucleus tractus solitarius (NTS) of the medulla. Neuronal cannabinoid (CB)(1) receptors are expressed in the NTS and central administration of CB(1) receptor agonists affect blood pressure (BP) and heart rate. In addition, there is evidence that endocannabinoids are produced in the brain stem. This study examined whether changes in CB(1) receptor activity in the NTS modulated the baroreceptor reflex, contributing to changes seen in BP and heart rate. Baroreflexes were evoked in anesthetized dogs by pressure ramp stimulations of the isolated carotid sinus before and after microinjection of CB(1) receptor agonist WIN-55212-2 (1.25-1.50 pmol) or antagonist SR-141716 (2.5-3.0 pmol) into cardiovascular regions of the NTS. Microinjection of the SR-141716 did not affect baseline BP or baroreflex sensitivity. However, SR-141716 significantly prolonged the time needed to return to the baseline level of BP after the pressure ramp. Microinjection of WIN-55212-2 had no effect on the baroreflex. These data suggest that endocannabinoids can modulate the excitability of NTS neurons involved in the baroreceptor reflex, leading to modulation of baroreflex regulation.  相似文献   

12.
Endocannabinoids act as retrograde signals to modulate synaptic transmission. Little is known, however, about their significance in integrated network activity underlying motor behavior. We have examined the physiological effects of endocannabinoids in a neuronal network underlying locomotor behavior using the isolated lamprey spinal cord. Our results show that endocannabinoids are released during locomotor activity and participate in setting the baseline burst rate. They are released in response to mGluR1 activation and act as retrograde messengers. This conditional release of endocannabinoids can transform motoneurons and crossing interneurons into modulatory neurons by enabling them to regulate their inhibitory synaptic inputs and thus contribute to the modulation of the locomotor burst frequency. These results provide evidence that endocannabinoid retrograde signaling occurs within the locomotor network and contributes to motor pattern generation and regulation in the spinal cord.  相似文献   

13.
The elucidation of the role of endocannabinoids in physiological and pathological conditions and the transferability of the importance of these mediators from basic evidence into clinical practice is still hampered by the indefiniteness of their circulating reference intervals. In this work, we developed and validated a two-dimensional LC/MS/MS method for the simultaneous measurement of plasma endocannabinoids and related compounds such as arachidonoyl-ethanolamide, palmitoyl-ethanolamide, and oleoyl-ethanolamide, belonging to the N-acyl-ethanolamide (NAE) family, and 2-arachidonoyl-glycerol and its inactive isomer 1-arachidonoyl-glycerol from the monoacyl-glycerol (MAG) family. We found that several pitfalls in the endocannabinoid measurement may occur, from blood withdrawal to plasma processing. Plasma extraction with toluene followed by on-line purification was chosen, allowing high-throughput and reliability. We estimated gender-specific reference intervals on 121 healthy normal weight subjects fulfilling rigorous anthropometric and hematic criteria. We observed no gender differences for NAEs, whereas significantly higher MAG levels were found in males compared with females. MAGs also significantly correlated with triglycerides. NAEs increased with age in females, and arachidonoyl-ethanolamide correlated with adiposity and metabolic parameters in females. This work paves the way to the establishment of definitive reference intervals for circulating endocannabinoids to help physicians move from the speculative research field into the clinical field.  相似文献   

14.
Adult animals submitted to a single prolonged episode of maternal deprivation (MD) [24 h, postnatal days (PND) 9-10] show behavioral alterations that resemble specific symptoms of schizophrenia. These behavioral impairments may be related to neuronal loss in the hippocampus triggered by elevated glucocorticoids. Furthermore, our previous data suggested functional relationships between MD stress and the endocannabinoid system. In this study, we addressed the effects of MD on hippocampal glial cells and the possible relationship with changes in plasma corticosterone (CORT) levels. In addition, we investigated the putative involvement of the endocannabinoid system by evaluating (a) the effects of MD on hippocampal levels of endocannabinoids (b) The modulation of MD effects by two inhibitors of endocannabinoids inactivation, the fatty acid amide hydrolase inhibitor N-arachidonoyl-serotonin (AA-5-HT), and the endocannabinoid reuptake inhibitor, OMDM-2. Drug treatments were administered once daily from PND 7 to PND 12 at a dose of 5 mg/kg, and the animals were sacrificed at PND 13. MD induced increased CORT levels in both genders. MD males also showed an increased number of astrocytes in CA1 and CA3 areas and a significant increase in hippocampal 2-arachidonoylglycerol. The cannabinoid compounds reversed the endocrine and cellular effects of maternal deprivation. We provide direct evidence for gender-dependent cellular and biochemical effects of MD on developmental hippocampus, including changes in the endocannabinoid system.  相似文献   

15.
Cannabinoids and brain injury: therapeutic implications   总被引:6,自引:0,他引:6  
Mounting in vitro and in vivo data suggest that the endocannabinoids anandamide and 2-arachidonoyl glycerol, as well as some plant and synthetic cannabinoids, have neuroprotective effects following brain injury. Cannabinoid receptor agonists inhibit glutamatergic synaptic transmission and reduce the production of tumour necrosis factor-alpha and reactive oxygen intermediates, which are factors in causing neuronal damage. The formation of the endocannabinoids anandamide and 2-arachidonoyl glycerol is strongly enhanced after brain injury, and there is evidence that these compounds reduce the secondary damage incurred. Some plant and synthetic cannabinoids, which do not bind to the cannabinoid receptors, have also been shown to be neuroprotective, possibly through their direct effect on the excitatory glutamate system and/or as antioxidants.  相似文献   

16.
Inverse agonism and neutral antagonism at cannabinoid CB1 receptors   总被引:14,自引:0,他引:14  
Pertwee RG 《Life sciences》2005,76(12):1307-1324
There are at least two types of cannabinoid receptor, CB1 and CB2, both G protein coupled. CB1 receptors are expressed predominantly at nerve terminals and mediate inhibition of transmitter release whereas CB2 receptors are found mainly on immune cells, one of their roles being to modulate cytokine release. Endogenous cannabinoid receptor agonists also exist and these "endocannabinoids" together with their receptors constitute the "endocannabinoid system". These discoveries were followed by the development of a number of CB1- and CB2-selective antagonists that in some CB1 or CB2 receptor-containing systems also produce "inverse cannabimimetic effects", effects opposite in direction from those produced by cannabinoid receptor agonists. This review focuses on the CB1-selective antagonists, SR141716A, AM251, AM281 and LY320135, and discusses possible mechanisms by which these ligands produce their inverse effects: (1) competitive surmountable antagonism at CB1 receptors of endogenously released endocannabinoids, (2) inverse agonism resulting from negative, possibly allosteric, modulation of the constitutive activity of CB1 receptors in which CB1 receptors are shifted from a constitutively active "on" state to one or more constitutively inactive "off" states and (3) CB1 receptor-independent mechanisms, for example antagonism of endogenously released adenosine at A1 receptors. Recently developed neutral competitive CB1 receptor antagonists, which are expected to produce inverse effects through antagonism of endogenously released endocannabinoids but not by modulating CB1 receptor constitutive activity, are also discussed. So too are possible clinical consequences of the production of inverse cannabimimetic effects, there being convincing evidence that released endocannabinoids can have "autoprotective" roles.  相似文献   

17.
The neuromodulatory effects of cannabinoids in the central nervous system have mainly been associated with G-protein coupled cannabinoid receptor (CB1R) mediated inhibition of voltage-gated calcium channels (VGCCs). Numerous studies show, however, that cannabinoids can also modulate VGCCs independent of CB1R activation. Nevertheless, despite the fact that endocannabinoids have a nearly equal efficacy for direct and CB1R-mediated effects on VGCC, the role of the direct cannabinoid–VGCC interaction has been largely underestimated.In this review, we summarize recent studies on the modulation of different types of VGCCs by cannabinoids, highlight the evidence for and implications of the CB1R-independent modulation, and put forward the concept, that direct interaction of cannabinoids and VGCCs is as important in regulation of VGCCs function as the CB1R-mediated effects.  相似文献   

18.
In recent years, cannabinoid receptors and their endogenous ligands (endocannabinoids) have been identified within the brain. The high density of CB1 cannabinoid receptors within the basal ganglia suggests a potential role for endocannabinoids in the control of voluntary movement and in basal ganglia-related movement disorders such as Parkinson's disease. However, whether endocannabinoids play a role in regulating motor behavior in health and disease is unknown. Here we report the presence in two regions of the basal ganglia, the globus pallidus and substantia nigra, of the endocannabinoids 2-arachidonoylglycerol (2AG) and anandamide. The levels of the latter compound are approximately threefold higher than those previously reported in any other brain region. In the reserpine-treated rat, an animal model of Parkinson's disease, suppression of locomotion is accompanied by a sevenfold increase in the levels of the 2AG in the globus pallidus, but not in the other five brain regions analyzed. Stimulation of locomotion in the reserpine-treated rat by either of the two selective agonists of D2 and D1 dopamine receptors, quinpirole and R-(+/-)-3-allyl-6-chloro-7, 8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide (Cl-APB), respectively, results in the reduction of both anandamide and 2AG levels in the globus pallidus. Finally, full restoration of locomotion in the reserpine-treated rat is obtained by coadministration of quinpirole and the selective antagonist of the cannabinoid CB1 receptor subtype, SR141716A. These findings indicate a link between endocannabinoid signaling in the globus pallidus and symptoms of Parkinson's disease in the reserpine-treated rat, and suggest that modulation of the endocannabinoid signaling system might prove useful in treating this or other basal ganglia-related movement disorders.  相似文献   

19.
Bonnard E  Mazarguil H  Zajac JM 《Peptides》2002,23(6):1107-1113
Pharmacological studies have implicated the anti-opioid neuropeptide FF (NPFF) in the modulation of pain transmission. Since its physiological role has not yet been fully elucidated, the present study examined whether antisense peptide nucleic acid (PNA) complementary to the NPFF precursor (proNPFF(A)) modified pain sensitivity. Mice received three intraperitoneal (i.p.) injections (10mg/kg) of antisense PNA (As-proNPFF(A)) over a period of 24h. As-proNPFF(A) treatment significantly increased the basal tail withdrawal latency in the tail-flick test. This analgesia persisted during 2 days and was completely reversed by naloxone. Thus, antisense PNAs, by decreasing anti-opioid effects, revealed a basal endogenous opioid activity. Our results evidence a physiological interplay between NPFF and opioid systems and further support the use of PNA as effective antisense agents, for studying gene function in vivo.  相似文献   

20.
Non-redundant functions of cyclooxygenases: oxygenation of endocannabinoids   总被引:1,自引:0,他引:1  
The two cyclooxygenase (COX) enzymes catalyze the oxygenation of arachidonic acid to prostaglandin endoperoxides, which are the common intermediates in the biosynthesis of the bioactive lipids prostaglandins and thromboxane. COX-1 and COX-2 are approximately 60% identical in amino acid sequence, exhibit highly homologous three-dimensional structures, and appear functionally similar at the biochemical level. Recent work has uncovered a subtle functional difference between the two enzymes, namely the ability of COX-2 to efficiently utilize neutral derivatives (esters and amides) of arachidonic acid as substrates. Foremost among these neutral substrates are the endocannabinoids 2-arachidonoylglycerol and arachidonoylethanolamide. This raises the possibility that COX-2 oxygenation plays a role in a novel signaling pathway dependent on agonist-induced release of endocannabinoids and their selective oxygenation by COX-2. Among the products of COX-2 oxygenation of endocannabinoids are glyceryl prostaglandins, some of which (e.g. glyceryl prostaglandin E(2) and glyceryl prostaglandin I(2)) exhibit interesting biological activities in inflammatory, neurological, and vascular systems. These compounds are produced in intact cells stimulated with physiological agonists and have been isolated from in vivo sources. Important concepts relevant to the hypothesis of a COX-2-selective signaling pathway are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号