首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prior exposure of roots of intact wheat seedlings for 15–30h to hypoxia (0016-006 mol m 02) greatly increased their toleranceto subsequent anoxia, as assessed by the ability of the rootsto elongate upon return to air. Such hypoxically pretreatedroots had 2–4-fold higher activities of pyruvate decarboxylase(PDC) and 35–l7-fold higher activities of alcohol dehydrogenase(ADH) in their 0–1 mm apices and 0–5 mm root tipsthan in apices and tips of roots pretreated in air (026–031mol m3 02). The ADH/ PDC ratio increased I 3–5-fold duringhypoxic pretreatment. Furthermore, the rate of alcoholic fermentationby 0–5 mm tips of the hypoxically pretreated roots was14-4-fold faster than in tips from aerobically pretreated roots.No consistent difference between 02 pretreatment was found foralcoholic fermentation by tissues taken between 10 and 20 mmfrom the root tip. The observed activities of PDC and rates of alcoholic fermentationindicate that alcoholic fermentation is usually rate-limitedby PDC in 0–1 mm apices and 0–5 mm tips of wheatroots. Comparisons with data in the literature indicate thatwheat has at most a small Pasteur effect, which may explainwhy wheat is more intolerant to anoxia than rice. Exogenous glucose delayed the loss of elongation potential inboth aerobically and hypoxically pretreated roots. In the absenceof glucose, more than 85% of aerobically pretreated roots hadlost their elongation potential after 9 h anoxia, compared with30% in the presence of glucose. After 21 h anoxia nearly allaerobically pretreated roots had lost their elongation potential,compared with 10% and 0% of hypoxically pretreated roots inthe absence and presence, of glucose, respectively. The protective effect of glucose was presumably not due to anendogenous sugar deficiency; at the start of anoxia, 0–1mm apices of aerobically pretreated roots contained sufficientsugar for 23 h of their measured rate of ethanol synthesis yet,85% of these apices had lost their elongation potential afteronly 9 h of anoxia. It is suggested that in wheat roots, lowrates of synthesis of ethanol and hence of ATP, lead to injuryof cells, in turn generating a requirement for exogenous glucose,despite high endogenous sugar concentrations. Key words: Wheat seedlings, anoxia, glucose, O2 pretreatment, alcoholic fermentation  相似文献   

2.
Regulation of Pyruvate Decarboxylase In Vitro and In Vivo   总被引:2,自引:0,他引:2  
Results presented in this paper strongly support the view thatregulation of the key enzyme of alcoholic fermentation, pyruvatedecarboxylase (PDC), is achieved in a number of ways, all associatedwith possible lowering of the cytoplasmic pH during anoxia.These mechanisms include not only the well-known acid pH optimumof PDC, but also long-term, reversible changes in characteristicsof the enzyme established both in vitro and in vivo. Following transfer of desalted extracts from pH 6.0 to 7.4,maximal activity of PDC was decreased, while there was a considerableincrease in the lag before maximal activity was reached. Similarchanges in enzyme characteristics were observed when wheat (Triticumaestivum L. cv. Gamenya) roots and rice (Oryza sativa L. cv.Calrose) coleoptiles were transferred from anoxic to aerobicsolutions, provided PDC was assayed within 10 min of the startof maceration. All of the above changes were usually readilyreversible when extracts were returned to pH 6.0, or when plantswere returned to anoxic solutions. Additional regulation of PDC would be achieved by the S0.5 forpyruvate which is 0.75 mol m–3 at pH 6.0, 1.0 mol m–3at pH 6.8, and 2.5 mol m–3 at pH 7.4; the latter is wellabove estimates for pyruvate concentrations in the cytoplasmof aerated tissues. We assess that the combined effects of the acid pH optimum,the high S0.5 at pH 7.4 and the long-term decreases in activityobserved during incubation at pH 7.4 would reduce PDC activityin aerobic cells to at most 7% of the activity in anoxic cells.Possible additional controls for the pathway of alcoholic fermentationare briefly considered. Key words: PDC, regulation, anoxia  相似文献   

3.
Beetroot storage tissue that had been aged in an aerated solutionwas particularly suited for studies of solute losses duringanoxia;retention of betacyanin being a good indicator of tonoplastintegrity. During anoxia, loss of K+ was nearly always greater than thatof Na+ while Cl loss was intermediate. Supply of glucoseduringageing increased the tolerance of beetroot tissue to anoxia.In these tolerant tissues, there were three phases of soluteloss.During the first phase, losses of K+ and amino acids wererapid, presumably due to membrane depolarization from –156to –95 mV. In contrast, losses of Na+ and Cl wereslow. During the second phase, K+ loss had decreased to a lowrate, while losses of Na+ and Cl+ remained slow. Furthermore,the membrane potential remained at –95 to –90mV,which was consistent with the diffusion potential estimatedfrom the modified Goldman equation. In the third and final phase,loss of K+ Na+ Cl+,sugars, and amino acids began to increase,soon followed by loss of betacyanin. Tissues that had lost their betacyanin during anoxia were irreversiblyinjured, as shown by rapid uptake of Evans Blue and afailureto take up K+ , Na+ and Cl+ during re–aeration. In contrast,tissues which had retained their betacyanin did not take upEvansBlue, but took up substantial amounts of K+ , Na+ , and Clafter re–aeration. After return to air for 1.5 h, tissuethat hadretained its betacyanin had a membrane potential of– 154 mV. Key words: Anoxia, beetroot, solute, membrane potential  相似文献   

4.
To investigate regulation of anaerobic carbohydrate catabolism in anoxia-tolerant plant tissue, rate of alcoholic fermentation and maximum catalytic activities of four key enzymes were assessed in coleoptiles of two rice cultivars that differ in tolerance to anoxia. The enzymes were ATP-dependent phosphofructokinase (PFK), pyrophosphate-dependent phosphofructokinase (PFP), pyruvate decarboxylase (PDC), and alcohol dehydrogenase (ADH). During anoxia, rates of coleoptile elongation and ethanol synthesis were faster in the more tolerant variety Calrose than in IR22. Calrose coleoptiles, in contrast to IR22, also showed a sustained Pasteur effect, with the estimated rate of glycolysis during anoxia being 1.4-1.7-fold faster than that of aerobic coleoptiles. In Calrose after 5 d anoxia, maximum catalytic activities of crude enzyme extracts were (in mumol substrate g-1 fresh weight min.-1) 170-240 for ADH, 4-6 for PDC and PFP and 0.4-0.7 for PFK. During anoxia, activity per coleoptile of all four enzymes increased 3-5.5-fold, suggesting that PFK, and PFP, like PDC and ADH, are synthesised in anoxic rice coleoptiles. Enzyme activities, on a fresh weight basis, were lower in IR22 than in Calrose. In vivo activities of PDC and PFK in anoxic coleoptiles from both cultivars were calculated using in vitro activities, estimated substrate levels, cytoplasmic pH, and S0.5 (the substrate level at which 0.5Vmax is reached, without inferring Michaelis-Menten kinetics). Data indicated that potential carbon flux through PFK, rather than through PDC, more closely approximated rates of alcoholic fermentation. That PFK is an important site of regulation was supported further for Calrose coleoptiles by a decrease in the concentration of its substrate pool (F-6-P + G-6-P) following the onset of anoxia. By contrast, in IR22, there was little evidence for control by PFK, consistent with recent evidence that suggests substrate supply limits alcoholic fermentation in this cultivar.  相似文献   

5.
This study evaluated the effects of anoxia on K+ uptake andtranslocation in 3–4-d-old, intact, rice seedlings (Oryzasativa L. cv. Calrose). Rates of net K+ uptake from the mediumover 24 h by coleoptiles of anoxic seedlings were inhibitedby 83–91 %, when compared with rates in aerated seedlings.Similar uptake rates, and degree of inhibition due to anoxia,were found for Rb+ when supplied over 1·5–2 h,starting 22 h after imposing anoxia. The Rb+ uptake indicatedthat intact coleoptiles take up ions directly from the externalsolution. Monovalent cation (K+ and Rb+) net uptake from thesolution was inhibited by anoxia to the same degree for thecoleoptiles of intact seedlings and for coleoptiles excised,‘aged’, and supplied with exogenous glucose. Transportof endogenous K+ from caryopses to coleoptiles was inhibitedless by anoxia than net K+ uptake from the solution, the inhibitionbeing 55 % rather than 87 %. Despite these inhibitions,osmotic pressures of sap (sap) expressed from coleoptiles ofseedlings exposed to 48 h of anoxia, with or without exogenousK+, were 0·66 ± 0·03 MPa; however,the contributions of K+ to sap were 23 and 16 %, respectively.After 24 h of anoxia, the K+ concentrations in the basal10 mm of the coleoptiles of seedlings with or without exogenousK+, were similar to those in aerated seedlings with exogenousK+. In contrast, K+ concentrations had decreased in aeratedseedlings without exogenous K+, presumably due to ‘dilution’by growth; fresh weight gains of the coleoptile being 3·6-to 4·7-fold greater in aerated than in anoxic seedlings.Deposition rates of K+ along the axes of the coleoptiles werecalculated for the anoxic seedlings only, for which we assessedthe elongation zone to be only the basal 4 mm. K+ depositionin the basal 6 mm was similar for seedlings with or withoutexogenous K+, at 0·6–0·87 µmolg–1 f. wt h–1. Deposition rates in zones above6 mm from the base were greater for seedlings with, thanwithout, exogenous K+; the latter were sometimes negative. Weconclude that for the coleoptiles of rice seedlings, anoxiainhibits net K+ uptake from the external solution to a muchlarger extent than K+ translocation from the caryopses. Furthermore,K+ concentrations in the elongation zone of the coleoptilesof anoxic seedlings were maintained to a remarkable degree,contributing to maintenance of sap in cells of these elongatingtissues.  相似文献   

6.
The relationship between coleoptile elongation and survivalvs. alcoholic fermentation of rice under anoxia is examinedusing eight cultivars differing in submergence tolerance. Anoxiawas imposed on either 1 or 4 d aerated seeds either by N2 flushingsubmerged tissues or by incubating tissues in stagnant deoxygenatedagar at 0·1% w/v; the latter simulated the stagnant conditionsof waterlogged soil. Two cultivars that were most tolerant tosubmergence also had the greatest tolerance to anoxia, whilea submergence intolerant cultivar was also intolerant to anoxia. Coleoptile growth under anoxia was related to rates of ethanolsynthesis (RE), however differences between growth during anoxiaand survival after anoxia indicated that post-anoxic injurymay also be important in rice seeds exposed to anoxia. The correlationbetween coleoptile growth and RE measured on a tissue basisusing intact seeds was r2 = 0·67 among six varietiesover 0-3 d anoxia. This correlation improved to about r2 = 0·85using RE of (embryos plus coleoptiles) over 0-3 d, or coleoptilesat 3 d after anoxia. Coleoptile growth of individual seeds wasusually poorly correlated to RE in these cultivars at 2-3 dafter anoxia. When coleoptiles of similar lengths were obtainedfrom different cultivars using 4 d aerated seeds, there weredifferences in RE and coleoptile growth which were related tocoleoptile growth during 3 or 5 d anoxia, either on a tissue(r2 = 0·85) or a fresh weight basis (r2 = 0·70-0·97respectively). Results are discussed in relation to factorswhich may limit ethanol synthesis in rice exposed to anoxiaand the importance of growth to the survival of seeds and matureplants during submergence in the natural environment.Copyright1994, 1999 Academic Press Anoxia, ethanol, alcoholic fermentation, Oryza sativa L., rice, submergence  相似文献   

7.
8.
Root tips (10-millimeter length) were excised from hypoxically pretreated (HPT, 4% [v/v] oxygen at 25°C for 16 hours) or nonhypoxically pretreated (NHPT, 40% [v/v] oxygen) maize (Zea mays) plants, and their rates of respiration were compared by respirometry under aerobic and anaerobic conditions with exogenous glucose. The respiratory quotient under aerobic conditions with 50 millimolar glucose was approximately 1.0, which is consistent with glucose or other hexose sugars being utilized as the predominant carbon source in glycolysis. Under strictly anaerobic conditions (anoxia), glycolysis was accelerated appreciably in both HPT and NHPT root tips, but the rate of anaerobic respiration quickly declined in NHPT roots. [U-14C]Glucose supplied under anaerobic conditions was taken up and respired by HPT root tips up to five times more rapidly than by NHPT roots. When anaerobic ethanol production was measured with excised root tips in 50 millimolar glucose, HPT tissues consistently produced ethanol more rapidly than NHPT tissues. These data suggest that a period of low oxygen partial pressure is necessary to permit adequate acclimation of the root tip of maize to subsequent anoxia, resulting in more rapid rates of fermentation and generation of ATP.  相似文献   

9.
Ethanolic fermentation, the predominant catabolic pathway in anoxia-tolerant rice coleoptiles, was manipulated in excised and 'aged' tissues via glucose feeding. Coleoptiles with exogenous glucose survived 60 h of anoxia, as evidenced by vigorous rates of K+ and phosphate net uptake and growth of roots and shoots when re-aerated. In contrast, coleoptiles without exogenous glucose showed net losses of K+ and phosphates starting 12 h after anoxia was imposed and these did not recover fully when re-aerated after 60 h of anoxia. Ethanol production (micromol x g(-1) FW x h(-1)) declined from about 7.5 during the first 12 h of anoxia to 5 or 2.2 after 48-60 h, in coleoptiles with or without exogenous glucose, respectively. Carbohydrate concentrations changed only slightly in anoxic coleoptiles with exogenous glucose due to net glucose uptake at 2.6 micromol x g(-1) FW x h(-1). Ethanolic fermentation, and therefore ATP production, may have been down-regulated after an initial period of acclimation to anoxia in coleoptiles with exogenous glucose. Maintenance requirements for energy were assessed to be 3.4-7.6-fold lower in these anoxic coleoptiles than published estimates for non-growing aerated leaf tissues. A modest part of the required economy in energy consumption would have been derived from diminished ion transport; anoxia reduced K+ and phosphate net uptake by 70-90% in these coleoptiles. K+ efflux was 10-fold lower in anoxic than in aerated coleoptiles with exogenous glucose. Using the unidirectional efflux equation, the membrane permeability to K+ was estimated to be 17-fold lower in anoxic than in aerated coleoptiles, presumably due to predominantly closed K+ channels.  相似文献   

10.
Rice (Oriza sativa L.) seedlings were subjected tohypoxic pretreatment (H-PT; incubated in 5% O2 atmosphere) forvarious lengths of time followed by a 24-h anoxic stress. Anoxiatolerance of rice coleoptiles was improved with increasing duration of H-PT, butH-PT longer than 6 h gave no additional improvement. ATP andethanol concentrations in the coleoptiles were increased by H-PT, and the timeand pattern of increase in ATP level and ethanol production rate were similar tothose of increase in the anoxia tolerance. These results suggest that the H-PTmay increase anoxia tolerance due to maintenance of anaerobic glycolysis withinduction of ethanolic fermentation to generate ATP, and hypoxic acclimation toanoxic stress in rice coleoptiles may occur within 6 h.  相似文献   

11.
Anoxia was imposed on 4–6-d-old, intact wheat seedlings,after the roots had first been exposed for 1 d to O2 concentrationsbetween 0·016 and 0·06 mol m–3. Apices ofthe main axis of the seminal roots were considered to have toleratedanoxia if elongation occurred after return from anoxia to air,hereafter called ‘retention of elongation potential’.During anoxia, elongation potential was retained longer in rootsof intact seedlings than in 0–5 mm excised root tips suppliedwith 50 mol m–3 glucose. In intact seedlings, elongation potential was retained longerat 15°C than at 25°C, and at pH 50 and 60 than at pH40. These differences between treatments were maintained inthe presence of exogenous glucose, and glucose supply prolongedthe retention of elongation potential in all anoxic treatments. Elongation potential was retained much longer at very low 02concentrations (0006 to 00l mol m–3) than under anoxia;this was established at pH 40. Anoxia inhibited the transport of sugars from the shoots and/orendosperm to the root by 79-97%, as assessed from experimentswith roots of intact plants exposed to anoxia at pH 60 and 15°C. Overall, the results demonstrate: (i) that the occurrence ofadverse effects of anoxia during waterlogging in the field mayinteract with other environmental factors and (ii) that thereare pronounced difficulties integrating data on tolerance toanoxia obtained in different laboratories. Key words: Anoxia, wheat seedlings, pH, temperature  相似文献   

12.
The effects of osmotically induced water deficits on the metabolismof aged beetroot and potato discs were investigated. In thispaper the tissue-water relationships in two osmotica, mannitol,and Carbowax 1540, are described. Tissues in equilibrium with Carbowax solutions had lower freshweights than those in isotonic mannitol solutions, particularlyat water potentials below –0.7 J g–1 with potatoand –2.0J g with beetroot. Potato discs killedby freezing and thawing lost water to Carbowax but not to mannitolsolutions. The extra effectiveness of Carbowax solutions inlowering fresh weight was attributed to an osmotic effect acrossthe cell wall. Carbowax was found to penetrate plasmolysed potatotissue, however, at a rate of about 3.0 mg (g fresh weight)–1h. The extent to which water uptake occured on retransfer to waterwas unaffected by the nature of the soulte used, but dependon the degree of dehydration. The following phases were clearlydefined: (1) recovery to the fresh weight at full turgor, whenthe water potential of potato tissue was not reduced below –0.5J g and of beetroot below –1.2 J g–1; (2)a declining degree of recovery with decreasing water potentialover the ranges –0.5 to –1.0 J g–1 and –1.2to –3.0 J g–1 for potato and beetroot, respectively,and (3)in potato, the absence of recovery of fresh weight followingreduction of the water potential below –1.0 J g–1.  相似文献   

13.
Dinitrocresol, Cyanide, and the Pasteur Effect in Yeast   总被引:1,自引:0,他引:1  
At pH 5·0 the respiration of yeast is stimulated by lowconcentrations of 3:5-dinitro-o-cresol, reaching a peak levelof 170 per cent, at 105 M. Concentrations above this inhibitoxygen uptake and cause aerobic fermentation to appear, whichin turn reaches a peak value and is then inhibited. The rateof carbohydrate breakdown, or glycolysis, calculated from therates of respiration and aerobic fermentation, increases steadilyup to 3 x 10–5 M., at which concentration it is 5 timesfaster than the control: higher concentrations depress the rateof glycolysis. The rate of fermentation under nitrogen is abouttwice that of respiration, and it is inhibited over the sameconcentration range as aerobic fermentation. It was found earlier that oxidative assimilation of glucoseby yeast is progressively inhibited by increasing concentrationsof dinitrocresol, and it is now shown that this parallels theincrease in the rate of aerobic glycolysis. It is argued thatdinitrocresol is here acting as an uncoupling agent and thatboth oxidative assimilation and the rate of glycolysis are controlledby the level of energy-rich phosphate. With cyanide there is no stimulation of oxygen uptake, aerobicfermentation only appears when respiration becomes inhibited,and after an initial slight decrease the rate of glycolysisrises to 575 per cent. of the control value at 5 x 10–4M. It is suggested that the rate of glycolysis only increaseswhen respiration has been inhibited sufficiently to reduce therate of formation of energy-rich phosphate.  相似文献   

14.
The effect of a hypoxic pre-treatment (HPT) on improving tolerance to prolonged anoxia conditions in two contrasting Vitis species (V. riparia, anoxia tolerant; V. rupestris, anoxia sensitive) was evaluated. The energy economy of root cells was studied by measuring heat production, the activity of pyruvate decarboxylase (PDC) and alcohol dehdrogenase (ADH), ethanol and ATP production, and K(+) fluxes. The results showed that HPT is an effective tool in order to maintain a sustainable metabolic performance in both the species under anoxia conditions, especially in sensitive species such as V. rupestris. Our results showed that the improved tolerance was mainly driven by: (i) an enhanced activity of key enzymes in alcohol fermentation (ADC and PDC); (ii) the capability to maintain a higher level of respiration, evidenced by a lesser decrease in heat development and ATP production; and (iii) the maintenance of a better ion homeostasis (highlighted by measurement of K(+) fluxes) and K(+) channel functionality.  相似文献   

15.
Ethanolic fermentation is classically associated with flooding tolerance when plant cells switch from respiration to anaerobic fermentation. However, recent studies have suggested that fermentation also has important functions in the presence of oxygen, mainly in germinating pollen and during abiotic stress. Pyruvate decarboxylase (PDC), which catalyzes the first step in this pathway, is thought to be the main regulatory enzyme. Here, we characterize the PDC gene family in Arabidopsis. PDC is encoded by four closely related genes. By using real-time quantitative polymerase chain reaction, we determined the expression levels of each individual gene in different tissues, under normal growth conditions, and when the plants were subjected to anoxia or other environmental stress conditions. We show that PDC1 is the only gene induced under oxygen limitation among the PDC1 gene family and that a pdc1 null mutant is comprised in anoxia tolerance but not other environmental stresses. We also characterize the expression of the aldehyde dehydrogenase (ALDH) gene family. None of the three genes is induced by anoxia but ALDH2B7 reacts strongly to ABA application and dehydration, suggesting that ALDH may play a role in aerobic detoxification of acetaldehyde. We discuss the possible role of ethanolic fermentation as a robust back-up energy production pathway under adverse conditions when mitochondrial function is disturbed.  相似文献   

16.
This review is a logical development of a previous publication, which summarized the main results of the early period of the systematic and active studying of hypoxic and anoxic stresses in plants. These studies laid a foundation for a new scientific discipline in biology, the investigation relevant to plant anaerobic stress. This review considers a further development of this trend when the investigations embraced a wider set of topics and the discipline acquired an international recognition. The results obtained during last decades by physiologists, biochemists, and molecular biologists engaged in the problem of plant anaerobic stress confirmed the correctness of a concept of the two principal strategies of plant adaptation to hypoxia and anoxia conditions. They are “true” tolerance manifesting at the molecular level under conditions of oxygen deficiency or its absence and “apparent” tolerance, which is realized by avoidance of anaerobiosis due to the long-distance oxygen transport. Therefore, experimental material available now is considered and discussed in this review mainly in the light of these principal notions. Especial attention is paid to the role of stress proteins, which synthesis is induced under hypoxia and anoxia. The results of these experiments confirmed earlier conclusions about the key role of energy (glycolysis and alcoholic fermentation) and carbohydrate (mobilization and utilization of reserved carbohydrates) metabolism in plant adaptation to oxygen deficiency or its absence from the environment. The phenomenon of hypoxic acclimation and its role in plant adaptation to anoxia are also considered. Along with these topics, a further development of pH-stat theory is discussed. A special attention is paid to plant strategy realized by the formation of the net of air-filled spaces (aerenchyma) and long-distance oxygen transport from aerated plant parts to those located in anaerobic environment (apparent tolerance). Among other important aspects, we consider (1) post-anaerobic plant injury by free oxygen radicals; (2) the physiological role of alternative pathways of plant adaptation (nitrate reduction and lipid synthesis); (3) the phenomenon of the adaptation syndrome in plants and possible molecular mechanisms of its realization; and (4) some biotechnological advances in the field of genetic and cell engineering used for the creation of plants more tolerant to anaerobic stress.  相似文献   

17.
Rice plants are severely damaged by complete submergence. Thisis a problem in rice farming and could be the result, in part,of tissue anoxia imposed by a reduced availability of oxygen.To investigate this possibility we monitored alcoholic fermentationproducts as markers for tissue anaerobiosis using sensitivelaser-based spectroscopy able to sense ethanol and acetaldehydedown to 3 nl l–1 and 0·1 nl l–1,respectively. Acetaldehyde emission began within 0·5 hof imposing an oxygen-free gas phase environment followed closelyby ethanol. As treatment progressed, ethanol output increasedand came to exceed acetaldehyde emission as this stabilizedconsiderably after approx. 3 h. On re-entry of air, a sharppost-anaerobic peak of acetaldehyde production was observed.This was found to be diagnostic of a preceding anoxic episodeof 0·5 h or more. When anaerobiosis was lengthenedby up to 14 h, the size of the post-anaerobic acetaldehydeoutburst increased. After de-submergence from oxygen-free water,a similarly strong but slower post-anaerobic acetaldehyde upsurgewas seen, which was accompanied by an increase in ethanol emission.Light almost, but not completely, eliminated fermentation inanaerobic surroundings and also the post-anaerobic or post-submergencepeaks in acetaldehyde production. All photosynthetically generatedoxygen was consumed within the plant. There was no substantialdifference in acetaldehyde and ethanol output between FR13Aand the less submergence-tolerant line CT6241 under any submergencetreatment. In some circumstances, submergence damaged CT6241more than FR13A even in the absence of vigorous fermentation.We conclude that oxygen deprivation may not always determinethe extent of damage caused to rice plants by submergence undernatural conditions.  相似文献   

18.
Using NaH14CO3 (0·01-0·03 mol m–3) fed to5·0 mm of Nitella flexilis in artificial pond water at22–25°C, we have found that uptake in 5 min or in1 h varies with the streaming rate of the fed cell and is reducedby anoxia over the uptake position. We have also found thatthe %14C transported across the node between two internodalcells in tandem is highly sensitive to the streaming rate ineach cell, to the physiological state of the cells (summer versuswinter), to the method of feeding (5 min versus 1 h) and tocovering the node, particularly with winter cells or summercells preconditioned for 3 h in the dark and run in the dark.Transnodal transport by plasmodesmata is sensitive to anoxiaand seems to be at least partly active. Key words: Node, plasmodesmata, anoxia, active transport, influx  相似文献   

19.
This study demonstrated that, in rice seedlings, genotypic differencein tolerance to anoxia only occurred when anoxia was imposedat imbibition, but not at 3 d after imbibition. When seeds wereimbibed and grown in anoxia, IR22 (anoxia-‘intolerant’)grew much slower and had lower soluble sugar concentrationsin coleoptiles and seeds than Amaroo (anoxia-‘tolerant’),while Calrose was intermediate. After 3 d in anoxia, the sugarconcentrations in embryos and endosperms of anoxic seedlingswere nearly 4-fold lower in IR22 than in Amaroo. Sugar deficitin the embryo of IR22 is presumably due to the limitation ofsugar mobilization rather than the capacity of transport asshown by similar sugar accumulation ratios of 1.8 between embryoand endosperm in IR22 and Amaroo at 3 d in anoxia. With 20 molm–3 exogenous glucose, coleoptile extension and freshweight increments in anoxic seedlings of IR22 were much closerto those in the two other genotypes, nevertheless protein concentrationremained lowest on a fresh weight basis in the coleoptiles ofIR22; indicating that protein synthesis has a lower priorityfor energy apportionment during anoxia than processes crucialto coleoptile extension. In contrast to these responses to anoxiaimposed at imbibition, IR22 had nearly the same high toleranceto anoxia as Calrose and Amaroo, when anoxia was imposed onseedlings subsequent to 48 h aeration followed by 16 h hypoxicpretreatment. In fact, coleoptiles of anoxic IR22 had highersugar concentrations and grew faster than Calrose, and exogenousglucose had no effect on the coleoptile extension of IR22. Excisedcoleoptile tips of IR22 and Amaroo with exogenous glucose hadsimilar rates of ethanol production and were equally tolerantto anoxia. In conclusion, much of the anoxia ‘intolerance’of IR22 when germinated in anoxia could be attributed to limitedsubstrate availability to the embryo and coleoptile, presumablydue to slow starch hydrolysis in the endosperm. Key words: Anoxia, coleoptile, embryo, endosperm, ethanol production, germination, growth, Oryza sativa L., solute net uptake or loss, sugar availability.  相似文献   

20.
BACKGROUND AND AIMS: Anoxia-tolerant plant tissues synthesize a number of proteins during anoxia, in addition to the 'classical anaerobic proteins' involved in glycolysis and fermentation. The present study used a model system of rice coleoptile tips to elucidate patterns of protein synthesis in this anoxia-tolerant plant tissue. METHODS: Coleoptile tips 7-11 mm long were excised from intact seedlings exposed to anoxia, or excised from hypoxically pre-treated seedlings and then exposed to anoxia for 72 h. Total proteins or 35S-labelled proteins were extracted, separated using two-dimensional isoelectric focusing/SDS-polyacrylamide gel electrophoresis and analysed using mass spectrometry. KEY RESULTS: The coleoptile tips excised after intact seedlings had been exposed to anoxia for 72 h had a similar proteome to tips that were first excised and then exposed to anoxia. After 72 h anoxia, Bowman-Birk trypsin inhibitors and a glycine-rich RNA-binding protein decreased in abundance, whereas a nucleoside diphosphate kinase and several proteins with unknown functions were strongly enhanced. Using [35S]methionine as label, proteins synthesized at high levels in anoxia, and also in aeration, included a nucleoside diphosphate kinase, a glycine-rich RNA-binding protein, a putative elicitor-inducible protein and a putative actin-depolymerizing factor. Proteins synthesized predominately in anoxia included a pyruvate orthophosphate dikinase (PPDK), alcohol dehydrogenase 1 and 2, fructose 1,6-bisphosphate aldolase and a protein of unknown function. CONCLUSION: The induction of PPDK in anoxic rice coleoptiles might, in combination with pyruvate kinase (PK), enable operation of a 'substrate cycle' producing PPi from ATP. Production of PPi would (a) direct energy to crucial transport processes across the tonoplast (i.e. the H+-PPiase); (b) be required for sucrose hydrolysis via sucrose synthase; and (c) enable acceleration of glycolysis, via pyrophosphate:fructose 6-phosphate 1-phosphotransferase (PFP) acting in parallel with phosphofructokinase (PFK), thus enhancing ATP production in anoxic rice coleoptiles; ATP production would need to be increased if there was a substantial requirement for PPi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号