首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The abdominal muscles accelerate airflow during expiration and may also influence the end-expiratory volume and configuration of the thorax. Although much is known about their electrical activity, the degree to which they change length during the respiratory cycle has not been previously assessed. In the present study we measured respiratory changes in transverse abdominis length using sonomicrometry in 14 pentobarbital sodium-anesthetized supine dogs and compared length changes to simultaneously recorded tidal volume and transverse abdominis electromyograms (EMG). To determine muscle resting length at passive functional residual capacity (LFRC), the animals were hyperventilated to apnea. The transverse abdominis was electrically active in all animals during resting O2 breathing (eupnea). During inspiration the transverse abdominis lengthened above resting length in all 14 dogs by a mean of 3.7 +/- 1.1% LFRC; during expiration the transverse abdominis shortened below resting length in 13 of 14 dogs by a mean of 4.2 +/- 0.9% LFRC. Increasing hyperoxic hypercapnia (produced in 9 animals) progressively heightened transverse abdominis EMG and progressively increased the extent of muscle shortening below resting length (to 12.6 +/- 3.2% LFRC at a PCO2 of 90 Torr). During single-breath airway occlusion substantial inspiratory lengthening of the transverse abdominis occurred, both during O2 breathing and during CO2 rebreathing.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Sonomicrometry was used to measure end-expiratory length and tidal shortening of the costal and crural diaphragm in awake chronically instrumented dogs in the right lateral decubitus, standing, and sitting postures. End-expiratory length did not change significantly in standing but fell by 11.5% for the costal and by 14.4% for the crural segment in sitting, when compared with decubitus position. Tidal shortening of both segments did not change significantly in the three postures. From decubitus to sitting, diaphragmatic electromyogram (EMG) activity increased only in some dogs, not significantly for the group. The inspiratory swing of abdominal pressure was always positive in decubitus and negative in standing and sitting. In the latter two postures, abdominal pressure increased gradually during expiration and fell in inspiration, suggesting a phasic expiratory contraction of abdominal muscles. We conclude that diaphragmatic tidal shortening is maintained in the different postures assumed by the awake dog during resting breathing. It seems that the main compensatory mechanism for changes in diaphragmatic operational length is a phasic expiratory contraction of the abdominal muscles rather than an increase in diaphragmatic EMG activity.  相似文献   

3.
Mechanical function of hyoid muscles during spontaneous breathing in cats   总被引:1,自引:0,他引:1  
We assessed the mechanical behavior of the geniohyoid and sternohyoid muscles during spontaneous breathing using sonomicrometry in anesthetized cats. When the animals breathed O2, the hyoid muscles either became longer or did not change length (but never shortened) during inspiration. During progressive hyperoxic hypercapnia, transient increases in geniohyoid muscle inspiratory lengthening occurred in many animals; however, at high PCO2 the geniohyoid invariably shortened during inspiration (mean 4.9% of resting length at the end of CO2 rebreathing; P less than 0.001). The PCO2 at which geniohyoid inspiratory lengthening changed to inspiratory shortening was significantly higher than the CO2 threshold for the onset of geniohyoid electrical activity (P less than 0.01). For the sternohyoid muscle, hypercapnia caused inspiratory lengthening in 13 of 17 cats and inspiratory shortening in 4 of 17 cats; on average the sternohyoid lengthened by 1.6% of resting length at the end of CO2 rebreathing (P less than 0.01). Sternohyoid lengthening occurred in spite of this muscle being electrically active. These results suggest that the relationship between hyoid muscle electrical activity and respiratory changes in length is very complex, so that the presence of hyoid muscle electrical activity does not necessarily indicate muscle shortening, and among the geniohyoid and sternohyoid muscles, the geniohyoid has a primary role as a hypopharyngeal dilator in the spontaneously breathing cat, with the sternohyoid muscle acting in an accessory capacity.  相似文献   

4.
We examined the effects of reversible vagal cooling on respiratory muscle activities in awake chronically instrumented tracheotomized dogs. We specifically analyzed electromyographic (EMG) activity and its ventilatory correlates, end-expiratory lung volume (EELV) and diaphragmatic resting length via sonomicrometry. Elimination of phasic and tonic mechanoreceptor activity by vagal cooling doubled the EMG activity of the costal, crural, and parasternal muscles, with activation occurring sooner relative to the onset of inspiratory flow. Diaphragmatic postinspiration inspiratory activity in the intact dog coincided with a brief mechanical shortening of the diaphragm during early expiration; vagal blockade removed both the electrical activity and the mechanical shortening. Vagal blockade also doubled the EMG activity of a rib cage expiratory muscle, the triangularis sterni, but reduced that of an abdominal expiratory muscle, the transversus abdominis. Within-breath electrical activity of both muscles occurred sooner relative to the onset of expiratory flow during vagal blockade. Vagal cooling was also associated with a 12% increase in EELV and a 5% decrease in end-expiratory resting length of the diaphragm. We conclude that vagal input significantly modulates inspiratory and expiratory muscle activities, which help regulate EELV efficiently and optimize diaphragmatic length during eupneic breathing in the awake dog.  相似文献   

5.
We have tested the possibility that the electromyographic (EMG) activity present in the parasternal intercostal muscles during quiet inspiration was reflexive, rather than agonistic, in nature. Using concentric needle electrodes we measured parasternal EMG activity in four normal subjects during various inspiratory maneuvers. We found that 1) phasic inspiratory activity was invariably present in the parasternal intercostals during quiet breathing, 2) the parasternal EMG activity was generally increased during attempts to perform the tidal breathing maneuver with the diaphragm alone, 3) parasternal EMG activity was markedly decreased or suppressed in the presence of rib cage distortion during diaphragmatic isovolume maneuvers, and 4) that EMG activity could not be voluntarily suppressed during breathing unless the inspired volume was trivial. We conclude that the parasternal EMG activity detected during quiet inspiration in the normal subjects depends on a central involuntary mechanism and is not related to activation of intercostal mechanoreceptors.  相似文献   

6.
Complex relationships exist among electromyograms (EMGs) of the upper airway muscles, respective changes in muscle length, and upper airway volume. To test the effects of preventing lung inflation on these relationships, recordings were made of EMGs and length changes of the geniohyoid (GH) and sternohyoid (SH) muscles as well as of tidal changes in upper airway volume in eight anesthetized cats. During resting breathing, tracheal airway occlusion tended to increase the inspiratory lengthening of GH and SH. In response to progressive hypercapnia, the GH eventually shortened during inspiration in all animals; the extent of muscle shortening was minimally augmented by airway occlusion despite substantial increases in EMGs. SH lengthened during inspiration in six of eight animals under hypercapnic conditions, and in these cats lengthening was greater during airway occlusion even though EMGs increased. Despite the above effects on SH and GH length, upper airway tidal volume was increased significantly by tracheal occlusion under hypercapnic conditions. These data suggest that the thoracic and upper airway muscle reflex effects of preventing lung inflation during inspiration act antagonistically on hyoid muscle length, but, because of the mechanical arrangement of the hyoid muscles relative to the airway and thorax, they act agonistically to augment tidal changes in upper airway volume. The augmentation of upper airway tidal volume may occur in part as a result of the effects of thoracic movements being passively transmitted through the hyoid muscles.  相似文献   

7.
Because the first stage of expiration or "postinspiration" is an active neurorespiratory event, we expect some persistence of diaphragm electromyogram (EMG) after the cessation of inspiratory airflow, as postinspiratory inspiratory activity (PIIA). The costal and crural segments of the mammalian diaphragm have different mechanical and proprioceptive characteristics, so postinspiratory activity of these two portions may be different. In six canines, we implanted chronically EMG electrodes and sonomicrometer transducers and then sampled EMG activity and length of costal and crural diaphragm segments at 4 kHz, 10.2 days after implantation during wakeful, resting breathing. Costal and crural EMG were reviewed on-screen, and duration of PIIA was calculated for each breath. Crural PIIA was present in nearly every breath, with mean duration 16% of expiratory time, compared with costal PIIA with duration -2. 6% of expiratory time (P < 0.002). A linear regression model of crural centroid frequency vs. length, which was computed during the active shortening of inspiration, did not accurately predict crural EMG centroid frequency values at equivalent length during the controlled relaxation of postinspiration. This difference in activation of crural diaphragm in inspiration and postinspiration is consistent with a different pattern of motor unit recruitment during PIIA.  相似文献   

8.
Fournier, Mario, and Michael I. Lewis. Functional roleand structure of the scalene: an accessory inspiratory muscle inhamster. J. Appl. Physiol. 81(6):2436-2444, 1996.Although the scalene muscle (Sca) is a primaryinspiratory muscle in humans, its respiratory function in other speciesis less clear. The electromyographic (EMG) activity of the Sca wasstudied during resting ventilation (eupnea) in both the awake andanesthetized hamster and after a variety of respiratory challenges inthe anesthetized animal. The EMG activities of the medial Sca and thecostal diaphragm were compared. The medial Sca, the major component ofthe Sca, originates from cervical transverse processes 2 to 5 andinserts primarily onto rib 4, with a small segment onto rib 3. In both the anesthetized and awake animal, the Sca was always silent during quiet breathing. WithCO2-stimulated hyperpnea, the Scawas always recruited during inspiration in phase with the diaphragm.Active recruitment of the Sca was also observed after resistive loading and total airway occlusion. After ipsilateral phrenicotomy, the Sca waspersistently recruited during eupnea. The specificity of the EMGsignals was tested both by excluding cross contamination from other ribcage muscles and by selective denervation studies. Muscle spindles wereidentified in the medial Sca histochemically, suggesting that therespiratory activity of the Sca can also be modulated by changes inmuscle length and/or load. These results indicate that the Scafunctions as an accessory inspiratory muscle in the hamster and mayplay an important role in conditions of chronic load.

  相似文献   

9.
Maintenance of airway patency during breathing involves complex interactions between pharyngeal dilator muscles. The few previous studies of geniohyoid activity using multiunit electromyography (EMG) have suggested that geniohyoid shows predominantly inspiratory phasic activity. This study aimed to quantify geniohyoid respiration-related activity with single motor unit (SMU) EMG recordings. Six healthy subjects of normal body mass index were studied. Intramuscular EMG recordings of geniohyoid activity were made with a monopolar needle with subjects in supine and seated positions. The depth of the geniohyoid was identified by ultrasound, and the electrode position was confirmed with maneuvers to isolate activity in geniohyoid and genioglossus. Activity was recorded at 85 sites in the geniohyoid during quiet breathing (45 supine and 40 seated). When subjects were supine, 33 sites (73%) showed no activity during breathing and 10 (22%) showed tonic activity. In addition, one site showed a tonic SMU with increased expiratory discharge, and one site in another subject had one unit with expiratory phasic activity. When subjects were seated, 27 sites (68%) in the geniohyoid showed no activity, 12 sites (30%) showed tonic activity that was not respiration related, and one unit at one site showed phasic expiratory activity. The average peak discharge frequency of geniohyoid motor units was 16.2 ± 3.1 impulses/s during the "geniohyoid maneuver," which was the first part of a swallow. In contrast to previous findings, the geniohyoid shows some tonic activity but minimal respiration-related activity in healthy subjects in quiet breathing. The geniohyoid has little active role in airway stability under these conditions.  相似文献   

10.
Electromyographic activity of expiratory muscles in the rat   总被引:2,自引:0,他引:2  
We examined the participation of expiratory muscles on breathing in the rat. The experiments were performed on 16 male rats in halothane [1.5%] or urethane [1.3 g/kg i.p.] anaesthesia. We recorded the electromyographic [EMG] activity of intercostal and abdominal muscles with a concentric needle electrode during quiet breathing, breathing against increased pressure in the airways and during the expiration reflex. In halothane anaesthesia the EMG expiratory phasic activity was observed only in internal intercostal muscles in 40% of spots examined during quiet breathing and in 58.5% when breathing against increased pressure. The EMG activity during the expiratory reflex was difficult to evaluate. In the abdominal muscles permanent EMG activity was found in 66% of trials. In urethane anaesthesia no phasic expiratory EMG activity was observed in intercostal or abdominal muscles. In abdominal muscles in 9% of trials a permanent activity was found.  相似文献   

11.
The interosseous external intercostal (EI) muscles of the upper rib cage are electrically active during inspiration, but the mechanical consequence of their activation is unclear. In 16 anesthetized dogs, we simultaneously measured EI (3rd and 4th interspaces) and parasternal intercostal (PA) (3rd interspace) electromyogram and length. Muscle length was measured by sonomicrometry and expressed as a percentage of resting length (%LR). During resting breathing, each muscle was electrically active and shortened to a similar extent. Sequential EI muscle denervation (3rd and 4th interspaces) followed by PA denervation (3rd interspace) demonstrated significant reductions in the degree of inspiratory shortening for each muscle. Mean EI muscle shortening of the third and fourth interspaces decreased from -3.4 +/- 0.5 and -3.0 +/- 0.4% LR (SE) under control conditions to -0.2 +/- 0.2 and -0.8 +/- 0.3% LR, respectively, after selective denervation of each of these muscles (P less than 0.001 for each). After selective denervation of the PA muscle, its shortening decreased from -3.5 +/- 0.3 to +0.6% LR (SE) (P less than 0.001). PA muscle denervation also caused the EI muscle in the third interspace to change from inspiratory shortening of -0.2% to inspiratory lengthening of +0.2% +/- 0.2 (P less than 0.05). We conclude that during eupneic breathing 1) the EI muscles of the upper rib cage, like the PA muscles, are inspiratory agonists and actively contribute to rib cage expansion and 2) PA muscle contraction contributes to EI muscle shortening.  相似文献   

12.
We have previously demonstrated that the shortening of the canine parasternal intercostals during inspiration results primarily from the muscles' own activation (J. Appl. Physiol. 64: 1546-1553, 1988). In the present studies, we have tested the hypothesis that other inspiratory rib cage muscles may contribute to the parasternal inspiratory shortening. Eight supine, spontaneously breathing dogs were studied. Changes in length of the third or fourth right parasternal intercostal were measured during quiet breathing and during single-breath airway occlusion first with the animal intact, then after selective denervation of the muscle, and finally after bilateral phrenicotomy. Denervating the parasternal virtually eliminated the muscle shortening during quiet inspiration and caused the muscle to lengthen during occluded breaths. After phrenicotomy, however, the parasternal, while being denervated, shortened again a significant amount during both quiet inspiration and occluded breaths. These data thus confirm that a component of the parasternal inspiratory shortening is not active and results from the action of other inspiratory rib cage muscles. Additional studies in four animals demonstrated that the scalene and serratus muscles do not play any role in this phenomenon; it must therefore result from the action of intrinsic rib cage muscles.  相似文献   

13.
In humans during stimulated ventilation, substantial abdominal muscle activity extends into the following inspiration as postexpiratory expiratory activity (PEEA) and commences again during late inspiration as preexpiratory expiratory activity (PREA). We hypothesized that the timing of PEEA and PREA would be changed systematically by posture. Fine-wire electrodes were inserted into the rectus abdominis, external oblique, internal oblique, and transversus abdominis in nine awake subjects. Airflow, end-tidal CO2, and moving average electromyogram (EMG) signals were recorded during resting and CO2-stimulated ventilation in both supine and standing postures. Phasic expiratory EMG activity (tidal EMG) of the four abdominal muscles at any level of CO2 stimulation was greater while standing. Abdominal muscle activities during inspiration, PEEA, and PREA, were observed with CO2 stimulation, both supine and standing. Change in posture had a significant effect on intrabreath timing of expiratory muscle activation at any level of CO2 stimulation. The transversus abdominis showed a significant increase in PEEA and a significant decrease in PREA while subjects were standing; similar changes were seen in the internal oblique. We conclude that changes in posture are associated with significant changes in phasic expiratory activity of the four abdominal muscles, with systematic changes in the timing of abdominal muscle activity during early and late inspiration.  相似文献   

14.
Continuous positive airway pressure (CPAP) is known to produce activation of the expiratory muscles. Several factors may determine whether this activation can assist inspiration. In this study we asked how and to what extent expiratory muscle contraction can assist inspiration during CPAP. Respiratory muscle response to CPAP was studied in eight supine anesthetized dogs. Lung volume and diaphragmatic initial length were defended by recruitment of the expiratory muscles. At the maximum CPAP of 18 cmH2O, diaphragmatic initial lengths were longer than predicted by the passive relationship by 52 and 46% in the costal and crural diaphragmatic segments, respectively. During tidal breathing after cessation of expiratory muscle activity, a component of passive inspiration occurred before the onset of inspiratory diaphragmatic electromyogram (EMG). At CPAP of 18 cmH2O, passive inspiration represented 24% of the tidal volume (VT) and tidal breathing was within the relaxation characteristic. Diaphragmatic EMG decreased at CPAP of 18 cmH2O; however, VT and tidal shortening were unchanged. We identified passive and active components of inspiration. Passive inspiration was limited by the time between the cessation of expiratory activity and the onset of inspiratory activity. We conclude that increased expiratory activity during CPAP defends diaphragmatic initial length, assists inspiration, and preserves VT. Even though breathing appeared to be an expiratory act, there remained a significant component of active inspiratory diaphragmatic shortening, and the major portion of VT was produced during active inspiration.  相似文献   

15.
In this article, we aimed at investigating the interaction between breathing and swallowing patterns in normal subjects. Ten healthy volunteers were included in the study. Diaphragm EMG activity was recorded by a needle electrode inserted into the 7th or 8th intercostal space. Swallowing was monitored by submental EMG activity, and laryngeal vertical movement was recorded by using a movement sensor. A single voluntary swallow was initiated during either the inspiration or expiration phases of respiration, and changes in EMG activity were evaluated. When a swallow coincided with either inspiration or expiration, the duration of the respiratory phase was prolonged. Normal subjects were able to voluntarily swallow during inspiration. During the inspiration phase with swallowing, diaphragmatic activity did not ceased and during the expiration phase with swallowing, there was a muscle activity in the diaphragm muscle.  相似文献   

16.
Six normal adults were studied 1) to compare respiratory-related posterior cricoarytenoid (PCA) muscle activity during wakefulness and sleep and 2) to determine the effect of upper airway occlusions during non-rapid-eye-movement (NREM) sleep on PCA activity. A new electromyographic technique was developed to implant hooked-wire electrodes into the PCA by using a nasopharyngoscope. A previously described technique was used to induce upper airway occlusions during NREM sleep (Kuna and Smickley, J. Appl. Physiol. 64: 347-353, 1988). The PCA exhibited phasic inspiratory activity during quiet breathing in wakefulness and sleep in all subjects. Discounting changes in tonic activity, peak amplitude of PCA inspiratory activity during stage 3-4 NREM sleep decreased to 77% of its value in wakefulness. Tonic activity throughout the respiratory cycle was present in all subjects during wakefulness but was absent during state 3-4 NREM sleep. In this sleep stage, PCA phasic activity abruptly terminated near the end of inspiration. During nasal airway occlusions in NREM sleep, PCA phasic activity did not increase significantly during the first or second occluded effort. The results, in combination with recent findings for vocal cord adductors in awake and sleeping adults, suggest that vocal cord position during quiet breathing in wakefulness is actively controlled by simultaneously acting antagonistic intrinsic laryngeal muscles. In contrast, the return of the vocal cords toward the midline during expiration in stage 3-4 NREM sleep appears to be a passive phenomenon.  相似文献   

17.
The respiratory-related activity of the arytenoideus (AR) muscle, a vocal cord adductor, was investigated in 10 healthy adults during wakefulness and sleep. AR activity was measured with intramuscular hooked-wire electrodes implanted by means of a fiber-optic nasopharyngoscope. Correct placement of the electrodes was confirmed by discharge patterns during voluntary maneuvers. The AR usually exhibited respiratory-related activity during quiet breathing in all awake subjects. Tonic activity was frequently present throughout the respiratory cycle. The pattern of phasic discharge during wakefulness exhibited considerable intrasubject variability both in timing and level of activity. Phasic activity usually began in midinspiration and terminated in mid- to late expiration. Periods of biphasic discharge were observed in four subjects. Phasic discharge primarily confined to expiration was also commonly observed. During quiet breathing in wakefulness, the level of phasic AR activity appeared to be directly related to the time of expiration. The AR was electrically silent in the six subjects who achieved stable periods of non-rapid-eye-movement sleep. Rapid-eye-movement sleep was observed in three subjects and was associated with sporadic paroxysmal bursts of AR activity. The results during wakefulness indicate that vocal cord adduction in expiration is an active phenomenon and suggest that the larynx may have an active role in braking exhalation.  相似文献   

18.
The effect of isocapnic hypoxia and hyperoxic hypercapnia on the electrical activity of the posterior cricoarytenoid (PCA) muscle was determined in eight normal adult humans by use of standard rebreathing techniques and was compared with PCA activity during voluntary hyperventilation performed under isocapnic and hypocapnic conditions. PCA activity was recorded with intramuscular hooked-wire electrodes implanted through a fiberoptic nasopharyngoscope. During quiet breathing in all subjects, the PCA was phasically active on inspiration and tonically active throughout the respiratory cycle. At comparable increments in respiratory output, hypercapnia, hypoxia, and voluntary hyperventilation appeared to be associated with similar increases in phasic or tonic PCA activity. During quiet breathing, the onset of phasic PCA activity usually occurred before inspiratory airflow and extended beyond the start of expiratory airflow. The duration of phasic PCA preactivation and postinspiratory phasic PCA activity remained unchanged during progressive hypercapnia and progressive hypoxia. The results, in combination with recent findings for vocal cord adductors, suggest that vocal cord position throughout the respiratory cycle during hyperpnea is actively controlled by simultaneously acting and antagonistic intrinsic laryngeal muscles.  相似文献   

19.
Submental electromyorgams (SM EMG) were recorded from 20 preterm babies (gestational age 30 +/- 2 wk, postmenstrual age at study 35 +/- 2 wk) (mean +/- SD) and 3 full-term infants (7-14 days old). SM EMG was evaluated during eupnea and brief experimental airway occlusion. Phasic inspiratory SM EMG was rarely seen during eupnea. SM EMG tended to increase on the first occluded effort, although this increase was not statistically significant in most babies. All infants showed progressive breath-by-breath augmentation of phasic SM EMG during occlusions in rapid-eye-movement (REM) as well as quiet (QS) sleep; phasic increases in SM EMG were similar during REM and QS occlusions in the majority (16/22) of babies. Periods of airway closure were detected during 24 occlusions in 5 infants; phasic SM EMG was reduced on these occasions. The results are consistent with the idea that recruitment of upper airway muscles contributes to the stability of the airway of the preterm human.  相似文献   

20.
The electrical activity and the respiratory changes in length of the third parasternal intercostal muscle were measured during single-breath airway occlusion in 12 anesthetized, spontaneously breathing dogs in the supine posture. During occluded breaths in the intact animal, the parasternal intercostal was electrically active and shortened while pleural pressure fell. In contrast, after section of the third intercostal nerve at the chondrocostal junction and abolition of parasternal electrical activity, the muscle always lengthened. This inspiratory muscle lengthening must be related to the fall in pleural pressure; it was, however, approximately 50% less than the amount of muscle lengthening produced, for the same fall in pleural pressure, by isolated stimulation of the phrenic nerves. These results indicate that 1) the parasternal inspiratory shortening that occurs during occluded breaths in the dog results primarily from the muscle inspiratory contraction per se, and 2) other muscles of the rib cage, however, contribute to this parasternal shortening by acting on the ribs or the sternum. The present studies also demonstrate the important fact that the parasternal inspiratory contraction in the dog is really agonistic in nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号