首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Exoribonucleases are vital in nearly all aspects of RNA metabolism, including RNA maturation, end-turnover, and degradation. RNase II and RNase R are paralogous members of the RNR superfamily of nonspecific, 3'→5', processive exoribonucleases. In Escherichia coli, RNase II plays a primary role in mRNA decay and has a preference for unstructured RNA. RNase R, in contrast, is capable of digesting structured RNA and plays a role in the degradation of both mRNA and stable RNA. Deinococcus radiodurans, a radiation-resistant bacterium, contains two RNR family members. The shorter of these, DrR63, includes a sequence signature typical of RNase R, but we show here that this enzyme is an RNase II-type exonuclease and cannot degrade structured RNA. We also report the crystal structure of this protein, now termed DrII. The DrII structure reveals a truncated RNA binding region in which the N-terminal cold shock domains, typical of most RNR family nucleases, are replaced by an unusual winged helix-turn-helix domain, where the "wing" is contributed by the C-terminal S1 domain. Consistent with its truncated RNA binding region, DrII is able to remove 3' overhangs from RNA molecules closer to duplexes than do other RNase II-type enzymes. DrII also displays distinct sensitivity to pyrimidine-rich regions of single-stranded RNA and is able to process tRNA precursors with adenosine-rich 3' extensions in vitro. These data indicate that DrII is the RNase II of D. radiodurans and that its structure and catalytic properties are distinct from those of other related enzymes.  相似文献   

3.
Endoribonuclease RNase E appears to control the rate-limiting step that mediates the degradation of many mRNA species in bacteria. In this work, an RNase E-like activity in Archaea is described. An endoribonucleolytic activity from the extreme halophile Haloarcula marismortui showed the same RNA substrate specificity as the Escherichia coli RNase E and cross-reacted with a monoclonal antibody raised against E. coli RNase E. The archaeal RNase E activity was partially purified from the extreme halophilic cells and shown, contrary to the E. coli enzyme, to require a high salt concentration for cleavage specificity and stability. These data indicate that a halophilic RNA processing enzyme can specifically recognize and cleave mRNA from E. coli in an extremely salty environment (3 M KCI). Having recently been shown in mammalian cells (A. Wennborg, B. Sohlberg, D. Angerer, G. Klein, and A. von Gabain, Proc. Natl. Acad. Sci. USA 92:7322-7326, 1995), RNase E-like activity has now been identified in all three evolutionary domains: Archaea, Bacteria, and Eukarya. This strongly suggests that mRNA decay mechanisms are highly conserved despite quite different environmental conditions.  相似文献   

4.
5.
6.
7.
RNase II of Escherichia coli (EC 3.1.4.23) has been purified to apparent homogeneity. The K+-activated diesterase activity against poly(U), which defines RNase II, cochromatographs with activity against T4 mRNA or pulse-labeled E. coli RNA successively on DEAE-cellulose, hydroxyapatite or phosphocellulose, and Sephadex G-150 columns. Activities with both substrates are selectively reduced to less than 2% of the wild type level in a newly isolated mutant strain, S296, or after thermal inactivation in a mutant strain with temperature-sensitive RNase II. RNase II releases 5'-XMP without a lag as its only detectable alcohol-soluble produce from all substrates and has an apparent molecular weight of 80,000 to 90,000 in both nondissociating and sodium dodecyl sulfate-polyacrylamide gels. The pure enzyme shows the standard K+ activation against poly(A), poly(U), or poly(C), but only a slight preference for K+ over Na+ ions with T4 mRNA or pulse labeled E. coli RNA as substrate. Uniformly labeled E. coli rRNA or tRNA is degraded little if at all.  相似文献   

8.
9.
In Escherichia coli, REP-stabilizers are structural elements in polycistronic messages that protect 5'-proximal cistrons from 3'-->5' exonucleolytic degradation. The stabilization of a protected cistron can be an important determinant in the level of gene expression. Our results suggest that RNase E, an endoribonuclease, initiates the degradation of REP-stabilized mRNA. However, subsequent degradation of mRNA fragments containing a REP-stabilizer poses a special challenge to the mRNA degradation machinery. Two enzymes, the DEAD-box RNA helicase, RhlB and poly(A) polymerase (PAP) are required to facilitate the degradation of REP-stabilizers by polynucleotide phosphorylase (PNPase). This is the first in vivo evidence that these enzymes are required for the degradation of REP-stabilizers. Furthermore, our results show that REP degradation by RhlB and PNPase requires their association with RNase E as components of the RNA degradosome, thus providing the first in vivo evidence that this ribonucleolytic multienzyme complex is involved in the degradation of structured mRNA fragments.  相似文献   

10.
Running rings around RNA: a superfamily of phosphate-dependent RNases.   总被引:18,自引:0,他引:18  
The exosome of Saccharomyces cerevisiae and the degradosome of Escherichia coli are multienzyme complexes involved in the degradation of mRNA. Both contain enzymes that are similar to the phosphate-dependent exoribonuclease RNase PH. These enzymes are phosphorylases that degrade RNA from the 3'-end. A recent X-ray crystallographic study of the polynucleotide phosphorylase (PNPase) from Streptomyces antibioticus reveals, for the first time, the atomic structure of a member of the RNase PH superfamily. Here, information from the structure of PNPase is used to address two related issues. First, the structure supports the idea that PNPase, which is a trimer of multidomain subunits, arose by duplication of a gene encoding an RNase PH-like enzyme. Second, the structure might explain how RNase PH-like enzymes associate into oligomeric rings that degrade RNA in a processive reaction.  相似文献   

11.
12.
The hydrolytic endoribonuclease RNase E, which is widely distributed in bacteria and plants, plays key roles in mRNA degradation and RNA processing in Escherichia coli. The enzymatic activity of RNase E is contained within the conserved amino-terminal half of the 118 kDa protein, and the carboxy-terminal half organizes the RNA degradosome, a multi-enzyme complex that degrades mRNA co-operatively and processes ribosomal and other RNA. The study described herein demonstrates that the carboxy-terminal domain of RNase E has little structure under native conditions and is unlikely to be extensively folded within the degradosome. However, three isolated segments of 10-40 residues, and a larger fourth segment of 80 residues, are predicted to be regions of increased structural propensity. The larger of these segments appears to be a protein-RNA interaction site while the other segments possibly correspond to sites of self-recognition and interaction with the other degradosome proteins. The carboxy-terminal domain of RNase E may thus act as a flexible tether of the degradosome components. The implications of these and other observations for the organization of the RNA degradosome are discussed.  相似文献   

13.
14.
E(rns) is an envelope glycoprotein of classical swine fever virus (CSFV) and has an unusual feature of RNase activity. In the present study, we demonstrate that E(rns) counteracts Newcastle disease virus (NDV)-mediated induction of IFN-beta. For this purpose, E(rns) fused to the enhanced green fluorescent protein (EGFP) was transiently expressed in porcine kidney 15 (PK15) cells. In luciferase activity assay, E(rns)-EGFP was found to prevent IFN-beta promoter-driven luciferase expression and block the induction of IFN-beta promoter mediated by NDV in a dosedependent manner. Through IFN-specific semi-quantitative RT-PCR detection, obvious decrease of IFN-beta mRNA in NDV-infected PK15 cells was observed in the presence of E(rns)-EGFP. In contrast, EGFP alone showed none of this block capacity. In addition, E(rns)-EGFP mutations with RNase inactivation were also found to block NDV-mediated induction of IFN-beta. These evidences establish a novel function for CSFV E(rns) glycoprotein in counteraction of the IFN-beta induction pathway.  相似文献   

15.
16.
17.
RNase II is a member of the widely distributed RNR family of exoribonucleases, which are highly processive 3'-->5' hydrolytic enzymes that play an important role in mRNA decay. Here, we report the crystal structure of E. coli RNase II, which reveals an architecture reminiscent of the RNA exosome. Three RNA-binding domains come together to form a clamp-like assembly, which can only accommodate single-stranded RNA. This leads into a narrow, basic channel that ends at the putative catalytic center that is completely enclosed within the body of the protein. The putative path for RNA agrees well with biochemical data indicating that a 3' single strand overhang of 7-10 nt is necessary for binding and hydrolysis by RNase II. The presence of the clamp and the narrow channel provides an explanation for the processivity of RNase II and for why its action is limited to single-stranded RNA.  相似文献   

18.
The ptsG mRNA encoding the major glucose transporter is rapidly degraded in an RNase E-dependent manner in response to the accumulation of glucose 6-P or fructose 6-P when the glycolytic pathway is blocked at its early steps in Escherichia coli. RNase E, a major endonuclease, is associated with polynucleotide phosphorylase (PNPase), RhlB helicase and a glycolytic enzyme, enolase, which bind to its C-terminal scaffold region to form a multienzyme complex called the RNA degradosome. The role of enolase within the RNase E-based degradosome in RNA decay has been totally mysterious. In this article, we demonstrate that the removal of the scaffold region of RNase E suppresses the rapid degradation of ptsG mRNA in response to the metabolic stress without affecting the expression of ptsG mRNA under normal conditions. We also demonstrate that the depletion of enolase but not the disruption of pnp or rhlB eliminates the rapid degradation of ptsG mRNA. Taken together, we conclude that enolase within the degradosome plays a crucial role in the regulation of ptsG mRNA stability in response to a metabolic stress. This is the first instance in which a physiological role for enolase in the RNA degradosome has been demonstrated. In addition, we show that PNPase and RhlB within the degradosome cooperate to eliminate short degradation intermediates of ptsG mRNA.  相似文献   

19.
RNase L is an antiviral endoribonuclease that cleaves viral mRNAs after single-stranded UA and UU dinucleotides. Poliovirus (PV) mRNA is surprisingly resistant to cleavage by RNase L due to an RNA structure in the 3C(Pro) open reading frame (ORF). The RNA structure associated with the inhibition of RNase L is phylogenetically conserved in group C enteroviruses, including PV type 1 (PV1), PV2, PV3, coxsackie A virus 11 (CAV11), CAV13, CAV17, CAV20, CAV21, and CAV24. The RNA structure is not present in other human enteroviruses (group A, B, or D enteroviruses). Coxsackievirus B3 mRNA and hepatitis C virus mRNA were fully sensitive to cleavage by RNase L. HeLa cells expressing either wild-type RNase L or a dominant-negative mutant RNase L were used to examine the effects of RNase L on PV replication. PV replication was not inhibited by RNase L activity, but rRNA cleavage characteristic of RNase L activity was detected late during the course of PV infection, after assembly of intracellular virus. Rather than inhibiting PV replication, RNase L activity was associated with larger plaques and better cell-to-cell spread. Mutations in the RNA structure associated with the inhibition of RNase L did not affect the magnitude of PV replication in HeLa cells expressing RNase L, consistent with the absence of observed RNase L activity until after virus assembly. Thus, PV carries an RNA structure in the 3C protease ORF that potently inhibits the endonuclease activity of RNase L, but this RNA structure does not prevent RNase L activity late during the course of infection, as virus assembly nears completion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号