首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new autotrophic Thiomicrospira strain, MA-3, was isolated from the surface of a polymetal sulfide deposit collected at a Mid-Atlantic Ridge hydrothermal vent site. The DNA homology among three vent isolates, Thiomicrospira crunogena, Thiomicrospira sp. strain L-12, and Thiomicrospira sp. strain MA-3, was 99.3% or higher, grouping them as the same species, T. crunogena (type strain, ATCC 35932). The fact that T. crunogena and Thiomicrospira sp. strain L-12 were isolated from Pacific vent sites demonstrates a cosmopolitan distribution of this species.  相似文献   

2.
A shallow-water hydrothermal vent system in the Aegean Sea close to the island of Milos (Greece) was chosen to study the diversity and distribution of the chemolithoautotrophic sulfur-oxidizing bacterium Thiomicrospira. Cell numbers in samples from different regions around a solitary vent decreased toward the center of the vent (horizontal distribution), as well as with depth (vertical distribution), corresponding to an increase in temperature (from ca. 25 to 60°C) and a decrease in pH (from ca. pH 7 to 5). Thiomicrospira was one of the most abundant culturable sulfur oxidizers and was even dominant in one region. Phylogenetic analysis of Thiomicrospira spp. present in the highest most-probable-number (MPN) dilutions revealed that most of the obtained sequences grouped in two new closely related clusters within the Thiomicrospira branch. Two different new isolates, i.e., Milos-T1 and Milos-T2, were obtained from high-dilution (10−5) enrichments. Phylogenetic analysis indicated that isolate Milos-T1 is related to the recently described Thiomicrospira kuenenii and Hydrogenovibrio marinus, whereas isolate Milos-T2 grouped with the MPN sequences of cluster 2. The predominance of strain Milos-T2 was indicated by its identification in several environmental samples by hybridization analysis of denaturing gradient gel electrophoresis (DGGE) patterns and by sequencing of one of the corresponding bands, i.e., ML-1, from the DGGE gel. The results shown in this paper support earlier indications that Thiomicrospira species are important members of hydrothermal vent communities.  相似文献   

3.
Brazelton WJ  Baross JA 《PloS one》2010,5(10):e13530

Background

The most widespread bacteria in oxic zones of carbonate chimneys at the serpentinite-hosted Lost City hydrothermal field, Mid-Atlantic Ridge, belong to the Thiomicrospira group of sulfur-oxidizing chemolithoautotrophs. It is unclear why Thiomicrospira-like organisms thrive in these chimneys considering that Lost City hydrothermal fluids are notably lacking in hydrogen sulfide and carbon dioxide.

Methodology/Principal Findings

Here we describe metagenomic sequences obtained from a Lost City carbonate chimney that are highly similar to the genome of Thiomicrospira crunogena XCL-2, an isolate from a basalt-hosted hydrothermal vent in the Pacific Ocean. Even though T. crunogena and Lost City Thiomicrospira inhabit different types of hydrothermal systems in different oceans, their genomic contents are highly similar. For example, sequences encoding the sulfur oxidation and carbon fixation pathways (including a carbon concentration mechanism) of T. crunogena are also present in the Lost City metagenome. Comparative genomic analyses also revealed substantial genomic changes that must have occurred since the divergence of the two lineages, including large genomic rearrangements, gene fusion events, a prophage insertion, and transposase activity.

Conclusions/Significance

Our results show significant genomic similarity between Thiomicrospira organisms inhabiting different kinds of hydrothermal systems in different oceans, suggesting that these organisms are widespread and highly adaptable. These data also indicate genomic processes potentially associated with the adaptation of these lineages into strikingly different habitats.  相似文献   

4.
Little is known about the functional capability of microbial communities in shallow-sea hydrothermal systems (water depth of <200 m). This study analyzed two high-throughput pyrosequencing metagenomic datasets from the vent and the surface water in the shallow-sea hydrothermal system offshore NE Taiwan. This system exhibited distinct geochemical parameters. Metagenomic data revealed that the vent and the surface water were predominated by Epsilonproteobacteria (Nautiliales-like organisms) and Gammaproteobacteria ( Thiomicrospira -like organisms), respectively. A significant difference in microbial carbon fixation and sulfur metabolism was found between the vent and the surface water. The chemoautotrophic microorganisms in the vent and in the surface water might possess the reverse tricarboxylic acid cycle and the Calvin−Bassham−Benson cycle for carbon fixation in response to carbon dioxide highly enriched in the environment, which is possibly fueled by geochemical energy with sulfur and hydrogen. Comparative analyses of metagenomes showed that the shallow-sea metagenomes contained some genes similar to those present in other extreme environments. This study may serve as a basis for deeply understanding the genetic network and functional capability of the microbial members of shallow-sea hydrothermal systems.  相似文献   

5.
Denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rDNA fragments was used to explore the genetic diversity of hydrothermal vent microbial communities, specifically to determine the importance of sulfur-oxidizing bacteria therein. DGGE analysis of two different hydrothermal vent samples revealed one PCR band for one sample and three PCR bands for the other sample, which probably correspond to the dominant bacterial populations in these communities. Three of the four 16S rDNA fragments were sequenced. By comparison with 16S rRNA sequences of the Ribosomal Database Project, two of the DGGE-separated fragments were assigned to the genusThiomicrospira. To identify these ‘phylotypes’ in more detail, a phylogenetic framework was created by determining the nearly complete 16S rRNA gene sequence (approx. 1500 nucleotides) from three describedThiomicrospira species, viz.,Tms. crunogena, Tms. pelophila, Tms. denitrificans, and from a new isolate,Thiomicrospira sp. strain MA2-6. AllThiomicrospira species exceptTms. denitrificans formed a monophyletic group within the gamma subdivision of the Proteobacteria.Tms. denitrificans was assigned as a member of the epsilon subdivision and was distantly affiliated withThiovulum, another sulfur-oxidizing bacterium. Sequences of two dominant 16S rDNA fragments obtained by DGGE analysis fell into the gamma subdivisionThiomicrospira. The sequence of one fragment was in all comparable positions identical to the 16S rRNA sequence ofTms. crunogena. Identifying a dominant molecular isolate asTms. crunogena indicates that this species is a dominant community member of hydrothermal vent sites. Another ‘phylotype’ represented a newThiomicrospira species, phylogenetically in an intermediate position betweenTms. crunogena andTms. pelophila. The third ‘phylotype’ was identified as aDesulfovibrio, indicating that sulfate-reducing bacteria, as sources of sulfide, may complement sulfur- and sulfide-oxidizing bacteria ecologically in these sulfide-producing hydrothermal vents.  相似文献   

6.
Microbial communities in a shallow submarine hydrothermal system near Taketomi Island, Japan, were investigated using cultivation-based and molecular techniques. The main hydrothermal activity occurred in a craterlike basin (depth, ~23 m) on the coral reef seafloor. The vent fluid (maximum temperature, >52°C) contained 175 μM H2S and gas bubbles mainly composed of CH4 (69%) and N2 (29%). A liquid serial dilution cultivation technique targeting a variety of metabolism types quantified each population in the vent fluid and in a white microbial mat located near the vent. The most abundant microorganisms cultivated from both the fluid and the mat were autotrophic sulfur oxidizers, including mesophilic Thiomicrospira spp. and thermophilic Sulfurivirga caldicuralii. Methane oxidizers were the second most abundant organisms in the fluid; one novel type I methanotroph exhibited optimum growth at 37°C, and another novel type I methanotroph exhibited optimum growth at 45°C. The number of hydrogen oxidizers cultivated only from the mat was less than the number of sulfur and methane oxidizers, although a novel mesophilic hydrogen-oxidizing member of the Epsilonproteobacteria was isolated. Various mesophilic to hyperthermophilic heterotrophs, including sulfate-reducing Desulfovibrio spp., iron-reducing Deferribacter sp., and sulfur-reducing Thermococcus spp., were also cultivated. Culture-independent 16S rRNA gene clone analysis of the vent fluid and mat revealed highly diverse archaeal communities. In the bacterial community, S. caldicuralii was identified as the predominant phylotype in the fluid (clonal frequency, 25%). Both bacterial clone libraries indicated that there were bacterial communities involved in sulfur, hydrogen, and methane oxidation and sulfate reduction. Our results indicate that there are unique microbial communities that are sustained by active chemosynthetic primary production rather than by photosynthetic production in a shallow hydrothermal system where sunlight is abundant.  相似文献   

7.

Background

We studied the meiofauna community at deep-sea hydrothermal vents along a gradient of vent fluid emissions in the axial summit trought (AST) of the East Pacific Rise 9°50′N region. The gradient ranged from extreme high temperatures, high sulfide concentrations, and low pH at sulfide chimneys to ambient deep-sea water conditions on bare basalt. We explore meiofauna diversity and abundance, and discuss its possible underlying ecological and evolutionary processes.

Methodology/Principal Findings

After sampling in five physico-chemically different habitats, the meiofauna was sorted, counted and classified. Abundances were low at all sites. A total of 52 species were identified at vent habitats. The vent community was dominated by hard substrate generalists that also lived on bare basalt at ambient deep-sea temperature in the axial summit trough (AST generalists). Some vent species were restricted to a specific vent habitat (vent specialists), but others occurred over a wide range of physico-chemical conditions (vent generalists). Additionally, 35 species were only found on cold bare basalt (basalt specialists). At vent sites, species richness and diversity clearly increased with decreasing influence of vent fluid emissions from extreme flow sulfide chimney (no fauna), high flow pompei worm (S: 4–7, H''loge: 0.11–0.45), vigorous flow tubeworm (S: 8–23; H''loge: 0.44–2.00) to low flow mussel habitats (S: 28–31; H''loge: 2.34–2.60).

Conclusions/Significance

Our data suggest that with increasing temperature and toxic hydrogen sulfide concentrations and increasing amplitude of variation of these factors, fewer species are able to cope with these extreme conditions. This results in less diverse communities in more extreme habitats. The finding of many species being present at sites with and without vent fluid emissions points to a non endemic deep-sea hydrothermal vent meiofaunal community. This is in contrast to a mostly endemic macrofauna but similar to what is known for meiofauna from shallow-water vents.  相似文献   

8.
Recently, four Thiomicrospira strains were isolated from a coastal mud flat of the German Wadden Sea (T. Brinkhoff and G. Muyzer, Appl. Environ. Microbiol. 63:3789–3796, 1997). Here we describe the use of a polyphasic approach to investigate the functional role of these closely related bacteria. Microsensor measurements showed that there was oxygen penetration into the sediment to a depth of about 2.0 mm. The pH decreased from 8.15 in the overlaying water to a minimum value of 7.3 at a depth of 1.2 mm. Further down in the sediment the pH increased to about 7.8 and remained constant. Most-probable-number (MPN) counts of chemolithoautotrophic sulfur-oxidizing bacteria revealed nearly constant numbers along the vertical profile; the cell concentration ranged from 0.93 × 105 to 9.3 × 105 cells per g of sediment. A specific PCR was used to detect the presence of Thiomicrospira cells in the MPN count preparations and to determine their 16S rRNA sequences. The concentration of Thiomicrospira cells did not decrease with depth. It was found that Thiomicrospira strains were not dominant sulfur-oxidizing bacteria in this habitat. Denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S ribosomal DNA fragments followed by hybridization analysis with a genus-specific oligonucleotide probe revealed the diversity of Thiomicrospira strains in the MPN cultures. Sequence analysis of the highest MPN dilutions in which the genus Thiomicrospira was detected revealed that there were four clusters of several closely related sequences. Only one of the 10 Thiomicrospira sequences retrieved was related to sequences of known isolates from the same habitat. Slot blot hybridization of rRNA isolated from different sediment layers showed that, in contrast to the concentration of Thiomicrospira cells, the concentration of Thiomicrospira-specific rRNA decreased rapidly in the region below the oxic layer of the sediment. This study revealed the enormous sequence diversity of closely related microorganisms present in one habitat, which so far has been found only by sequencing molecular isolates. In addition, it showed that most of the Thiomicrospira populations in the sediment studied were quiescent.  相似文献   

9.
Dispersal ability plays a key role in the maintenance of species in spatially and temporally discrete niches of deep-sea hydrothermal vent environments. On the basis of population genetic analyses in the eastern Pacific vent fields, dispersal of animals in the mid-oceanic ridge systems generally appears to be constrained by geographical barriers such as trenches, transform faults, and microplates. Four hydrothermal vent fields (the Kairei and Edmond fields near the Rodriguez Triple Junction, and the Dodo and Solitaire fields in the Central Indian Ridge) have been discovered in the mid-oceanic ridge system of the Indian Ocean. In the present study, we monitored the dispersal of four representative animals, Austinograea rodriguezensis, Rimicaris kairei, Alviniconcha and the scaly-foot gastropods, among these vent fields by using indirect methods, i.e., phylogenetic and population genetic analyses. For all four investigated species, we estimated potentially high connectivity, i.e., no genetic difference among the populations present in vent fields located several thousands of kilometers apart; however, the direction of migration appeared to differ among the species, probably because of different dispersal strategies. Comparison of the intermediate-spreading Central Indian Ridge with the fast-spreading East Pacific Rise and slow-spreading Mid-Atlantic Ridge revealed the presence of relatively high connectivity in the intermediate- and slow-spreading ridge systems. We propose that geological background, such as spreading rate which determines distance among vent fields, is related to the larval dispersal and population establishment of vent-endemic animal species, and may play an important role in controlling connectivity among populations within a biogeographical province.  相似文献   

10.
The caridean shrimp Rimicaris exoculata dominates the fauna at several Mid-Atlantic Ridge hydrothermal vent sites. This shrimp has an enlarged gill chamber, harboring a dense ectosymbiotic community of chemoautotrophic bacteria associated with mineral oxide deposits. Until now, their acquisition is not fully understood. At three hydrothermal vent sites, we analyzed the epibionts diversity at different moult stages and also in the first stages of the shrimp life (eggs, hatched eggs (with larvae) and juveniles). Hatched eggs associated with young larvae were collected for the first time directly from gravid females at the Logachev vent site during the Serpentine cruise. An approach using 16S rRNA clone libraries, scanning and transmission electron microscopy, and fluorescent in situ hybridization was used. Molecular results and microscope observations indicated a switch in the composition of the bacterial community between early R. exoculata life cycle stage (egg libraries dominated by the Gammaproteobacteria) and later stages (juvenile/adult libraries dominated by the Epsilonproteobacteria). We hypothesized that the epibiotic phylotype composition could vary according to the life stage of the shrimp. Our results confirmed the occurrence of a symbiosis with Gammaproteobacteria and Epsilonproteobacteria, but more complex than previously assumed. We revealed the presence of active type-I methanotrophic bacteria colonizing the cephalothorax of shrimps from the Rainbow site. They were also present on the eggs from the Logachev site. This could be the first ‘epibiotic'' association between methanotrophic bacteria and hydrothermal vent crustacean. We discuss possible transmission pathways for epibionts linked to the shrimp life cycle.  相似文献   

11.
Studies of genetic connectivity and population structure in deep-sea chemosynthetic ecosystems often focus on endosymbiont-hosting species that are directly dependent on chemical energy extracted from vent effluent for survival. Relatively little attention has been paid to vent-associated species that are not exclusively dependent on chemosynthetic ecosystems. Here we assess connectivity and population structure of two vent-associated invertebrates—the shrimp Chorocaris sp. 2 and the squat lobster Munidopsis lauensis—that are common at deep-sea hydrothermal vents in the western Pacific. While Chorocaris sp. 2 has only been observed at hydrothermal vent sites, M. lauensis can be found throughout the deep sea but occurs in higher abundance around the periphery of active vents We sequenced mitochondrial COI genes and deployed nuclear microsatellite markers for both species at three sites in Manus Basin and either North Fiji Basin (Chorocaris sp. 2) or Lau Basin (Munidopsis lauensis). We assessed genetic differentiation across a range of spatial scales, from approximately 2.5 km to more than 3000 km. Population structure for Chorocaris sp. 2 was comparable to that of the vent-associated snail Ifremeria nautilei, with a single seemingly well-mixed population within Manus Basin that is genetically differentiated from conspecifics in North Fiji Basin. Population structure for Munidopsis lauensis was more complex, with two genetically differentiated populations in Manus Basin and a third well-differentiated population in Lau Basin. The unexpectedly high level of genetic differentiation between M. lauensis populations in Manus Basin deserves further study since it has implications for conservation and management of diversity in deep-sea hydrothermal vent ecosystems.  相似文献   

12.
This study describes the occurrence of unique dissimilatory sulfite reductase (DSR) genes at a depth of 1,380 m from the deep-sea hydrothermal vent field at the Suiyo Seamount, Izu-Bonin Arc, Western Pacific, Japan. The DSR genes were obtained from microbes that grew in a catheter-type in situ growth chamber deployed for 3 days on a vent and from the effluent water of drilled holes at 5°C and natural vent fluids at 7°C. DSR clones SUIYOdsr-A and SUIYOdsr-B were not closely related to cultivated species or environmental clones. Moreover, samples of microbial communities were examined by PCR-denaturing gradient gel electrophoresis (DGGE) analysis of the 16S rRNA gene. The sequence analysis of 16S rRNA gene fragments obtained from the vent catheter after a 3-day incubation revealed the occurrence of bacterial DGGE bands affiliated with the Aquificae and γ- and -Proteobacteria as well as the occurrence of archaeal phylotypes affiliated with the Thermococcales and of a unique archaeon sequence that clustered with “Nanoarchaeota.” The DGGE bands obtained from drilled holes and natural vent fluids from 7 to 300°C were affiliated with the δ-Proteobacteria, genus Thiomicrospira, and Pelodictyon. The dominant DGGE bands retrieved from the effluent water of casing pipes at 3 and 4°C were closely related to phylotypes obtained from the Arctic Ocean. Our results suggest the presence of microorganisms corresponding to a unique DSR lineage not detected previously from other geothermal environments.  相似文献   

13.
Hydrothermal venting and the formation of carbonate chimneys in the Lost City hydrothermal field (LCHF) are driven predominantly by serpentinization reactions and cooling of mantle rocks, resulting in a highly reducing, high-pH environment with abundant dissolved hydrogen and methane. Phylogenetic and terminal restriction fragment length polymorphism analyses of 16S rRNA genes in fluids and carbonate material from this site indicate the presence of organisms similar to sulfur-oxidizing, sulfate-reducing, and methane-oxidizing Bacteria as well as methanogenic and anaerobic methane-oxidizing Archaea. The presence of these metabolic groups indicates that microbial cycling of sulfur and methane may be the dominant biogeochemical processes active within this ultramafic rock-hosted environment. 16S rRNA gene sequences grouping within the Methylobacter and Thiomicrospira clades were recovered from a chemically diverse suite of carbonate chimney and fluid samples. In contrast, 16S rRNA genes corresponding to the Lost City Methanosarcinales phylotype were found exclusively in high-temperature chimneys, while a phylotype of anaerobic methanotrophic Archaea (ANME-1) was restricted to lower-temperature, less vigorously venting sites. A hyperthermophilic habitat beneath the LCHF may be reflected by 16S rRNA gene sequences belonging to Thermococcales and uncultured Crenarchaeota identified in vent fluids. The finding of a diverse microbial ecosystem supported by the interaction of high-temperature, high-pH fluids resulting from serpentinization reactions in the subsurface provides insight into the biogeochemistry of what may be a pervasive process in ultramafic subseafloor environments.  相似文献   

14.
The complete genome sequence of the thermophilic sulphur-reducing bacterium, Deferribacter desulfuricans SMM1, isolated from a hydrothermal vent chimney has been determined. The genome comprises a single circular chromosome of 2 234 389 bp and a megaplasmid of 308 544 bp. Many genes encoded in the genome are most similar to the genes of sulphur- or sulphate-reducing bacterial species within Deltaproteobacteria. The reconstructed central metabolisms showed a heterotrophic lifestyle primarily driven by C1 to C3 organics, e.g. formate, acetate, and pyruvate, and also suggested that the inability of autotrophy via a reductive tricarboxylic acid cycle may be due to the lack of ATP-dependent citrate lyase. In addition, the genome encodes numerous genes for chemoreceptors, chemotaxis-like systems, and signal transduction machineries. These signalling networks may be linked to this bacterium''s versatile energy metabolisms and may provide ecophysiological advantages for D. desulfuricans SSM1 thriving in the physically and chemically fluctuating environments near hydrothermal vents. This is the first genome sequence from the phylum Deferribacteres.  相似文献   

15.
Recent molecular characterizations of microbial communities from deep-sea hydrothermal sites indicate the predominance of bacteria belonging to the epsilon subdivision of Proteobacteria (epsilon Proteobacteria). Here, we report the first enrichments and characterizations of four epsilon Proteobacteria that are directly associated with Alvinella pompejana, a deep sea hydrothermal vent polychete, or with hydrothermal vent chimney samples. These novel bacteria were moderately thermophilic sulfur-reducing heterotrophs growing on formate as the energy and carbon source. In addition, two of them (Am-H and Ex-18.2) could grow on sulfur lithoautrotrophically using hydrogen as the electron donor. Optimal growth temperatures of the bacteria ranged from 41 to 45°C. Phylogenetic analysis of the small-subunit ribosomal gene of the two heterotrophic bacteria demonstrated 95% similarity to Sulfurospirillum arcachonense, an epsilon Proteobacteria isolated from an oxidized marine surface sediment. The autotrophic bacteria grouped within a deeply branching clade of the epsilon Proteobacteria, to date composed only of uncultured bacteria detected in a sample from a hydrothermal vent along the mid-Atlantic ridge. A molecular survey of various hydrothermal vent environments demonstrated the presence of two of these bacteria (Am-N and Am-H) in more than one geographic location and habitat. These results suggest that certain epsilon Proteobacteria likely fill important niches in the environmental habitats of deep-sea hydrothermal vents, where they contribute to overall carbon and sulfur cycling at moderate thermophilic temperatures.  相似文献   

16.
Despite the frequent isolation of nitrate-respiring Epsilonproteobacteria from deep-sea hydrothermal vents, the genes coding for the nitrate reduction pathway in these organisms have not been investigated in depth. In this study we have shown that the gene cluster coding for the periplasmic nitrate reductase complex (nap) is highly conserved in chemolithoautotrophic, nitrate-reducing Epsilonproteobacteria from deep-sea hydrothermal vents. Furthermore, we have shown that the napA gene is expressed in pure cultures of vent Epsilonproteobacteria and it is highly conserved in microbial communities collected from deep-sea vents characterized by different temperature and redox regimes. The diversity of nitrate-reducing Epsilonproteobacteria was found to be higher in moderate temperature, diffuse flow vents than in high temperature black smokers or in low temperatures, substrate-associated communities. As NapA has a high affinity for nitrate compared with the membrane-bound enzyme, its occurrence in vent Epsilonproteobacteria may represent an adaptation of these organisms to the low nitrate concentrations typically found in vent fluids. Taken together, our findings indicate that nitrate reduction is widespread in vent Epsilonproteobacteria and provide insight on alternative energy metabolism in vent microorganisms. The occurrence of the nap cluster in vent, commensal and pathogenic Epsilonproteobacteria suggests that the ability of these bacteria to respire nitrate is important in habitats as different as the deep-sea vents and the human body.  相似文献   

17.
The emblematic hydrothermal worm Alvinella pompejana is one of the most thermo tolerant animal known on Earth. It relies on a symbiotic association offering a unique opportunity to discover biochemical adaptations that allow animals to thrive in such a hostile habitat. Here, by studying the Pompeii worm, we report on the discovery of the first antibiotic peptide from a deep-sea organism, namely alvinellacin. After purification and peptide sequencing, both the gene and the peptide tertiary structures were elucidated. As epibionts are not cultivated so far and because of lethal decompression effects upon Alvinella sampling, we developed shipboard biological assays to demonstrate that in addition to act in the first line of defense against microbial invasion, alvinellacin shapes and controls the worm''s epibiotic microflora. Our results provide insights into the nature of an abyssal antimicrobial peptide (AMP) and into the manner in which an extremophile eukaryote uses it to interact with the particular microbial community of the hydrothermal vent ecosystem. Unlike earlier studies done on hydrothermal vents that all focused on the microbial side of the symbiosis, our work gives a view of this interaction from the host side.  相似文献   

18.
Microbial processes within deep-sea hydrothermal plumes affect ocean biogeochemistry on global scales. In rising hydrothermal plumes, a combination of microbial metabolism and particle formation processes initiate the transformation of reduced chemicals like hydrogen sulfide, hydrogen, methane, iron, manganese and ammonia that are abundant in hydrothermal vent fluids. Despite the biogeochemical importance of this rising portion of plumes, it is understudied in comparison to neutrally buoyant plumes. Here we use metagenomics and bioenergetic modeling to describe the abundance and genetic potential of microorganisms in relation to available electron donors in five different hydrothermal plumes and three associated background deep-sea waters from the Eastern Lau Spreading Center located in the Western Pacific Ocean. Three hundred and thirty one distinct genomic ‘bins'' were identified, comprising an estimated 951 genomes of archaea, bacteria, eukarya and viruses. A significant proportion of these genomes is from novel microorganisms and thus reveals insights into the energy metabolism of heretofore unknown microbial groups. Community-wide analyses of genes encoding enzymes that oxidize inorganic energy sources showed that sulfur oxidation was the most abundant and diverse chemolithotrophic microbial metabolism in the community. Genes for sulfur oxidation were commonly present in genomic bins that also contained genes for oxidation of hydrogen and methane, suggesting metabolic versatility in these microbial groups. The relative diversity and abundance of genes encoding hydrogen oxidation was moderate, whereas that of genes for methane and ammonia oxidation was low in comparison to sulfur oxidation. Bioenergetic-thermodynamic modeling supports the metagenomic analyses, showing that oxidation of elemental sulfur with oxygen is the most dominant catabolic reaction in the hydrothermal plumes. We conclude that the energy metabolism of microbial communities inhabiting rising hydrothermal plumes is dictated by the underlying plume chemistry, with a dominant role for sulfur-based chemolithoautotrophy.  相似文献   

19.
20.

Background

The shrimp Rimicaris exoculata dominates the faunal biomass at many deep-sea hydrothermal vent sites at the Mid-Atlantic Ridge. In its enlarged gill chamber it harbors a specialized epibiotic bacterial community for which a nutritional role has been proposed.

Methodology/Principal Findings

We analyzed specimens from the Snake Pit hydrothermal vent field on the Mid-Atlantic Ridge by complementing a 16S rRNA gene survey with the analysis of genes involved in carbon, sulfur and hydrogen metabolism. In addition to Epsilon- and Gammaproteobacteria, the epibiotic community unexpectedly also consists of Deltaproteobacteria of a single phylotype, closely related to the genus Desulfocapsa. The association of these phylogenetic groups with the shrimp was confirmed by fluorescence in situ hybridization. Based on functional gene analyses, we hypothesize that the Gamma- and Epsilonproteobacteria are capable of autotrophic growth by oxidizing reduced sulfur compounds, and that the Deltaproteobacteria are also involved in sulfur metabolism. In addition, the detection of proteobacterial hydrogenases indicates the potential for hydrogen oxidation in these communities. Interestingly, the frequency of these phylotypes in 16S rRNA gene clone libraries from the mouthparts differ from that of the inner lining of the gill chamber, indicating potential functional compartmentalization.

Conclusions

Our data show the specific association of autotrophic bacteria with Rimicaris exoculata from the Snake Pit hydrothermal vent field, and suggest that autotrophic carbon fixation is contributing to the productivity of the epibiotic community with the reductive tricarboxylic acid cycle as one important carbon fixation pathway. This has not been considered in previous studies of carbon fixation and stable carbon isotope composition of the shrimp and its epibionts. Furthermore, the co-occurrence of sulfur-oxidizing and sulfur-reducing epibionts raises the possibility that both may be involved in the syntrophic exchange of sulfur compounds, which could increase the overall efficiency of this epibiotic community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号