首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pex11 is a key player in peroxisome proliferation, but the molecular mechanisms of its function are still unknown. Here, we show that Pex11 contains a conserved sequence at the N-terminus that can adopt the structure of an amphipathic helix. Using Penicillium chrysogenum Pex11, we show that this amphipathic helix, termed Pex11-Amph, associates with liposomes in vitro. This interaction is especially evident when negatively charged liposomes are used with a phospholipid content resembling that of peroxisomal membranes. Binding of Pex11-Amph to negatively charged membrane vesicles resulted in strong tubulation. This tubulation of vesicles was also observed when the entire soluble N-terminal domain of Pex11 was used. Using mutant peptides, we demonstrate that maintaining the amphipathic properties of Pex11-Amph in conjunction with retaining its α-helical structure are crucial for its function. We show that the membrane remodelling capacity of the amphipathic helix in Pex11 is conserved from yeast to man. Finally, we demonstrate that mutations abolishing the membrane remodelling activity of the Pex11-Amph domain also hamper the function of full-length Pex11 in peroxisome fission in vivo.  相似文献   

2.
Protein import into peroxisomes depends on a complex and dynamic network of protein–protein interactions. Pex14 is a central component of the peroxisomal import machinery and binds the soluble receptors Pex5 and Pex19, which have important function in the assembly of peroxisome matrix and membrane, respectively. We show that the N‐terminal domain of Pex14, Pex14(N), adopts a three‐helical fold. Pex5 and Pex19 ligand helices bind competitively to the same surface in Pex14(N) albeit with opposite directionality. The molecular recognition involves conserved aromatic side chains in the Pex5 WxxxF/Y motif and a newly identified F/YFxxxF sequence in Pex19. The Pex14–Pex5 complex structure reveals molecular details for a critical interaction in docking Pex5 to the peroxisomal membrane. We show that mutations of Pex14 residues located in the Pex5/Pex19 binding region disrupt Pex5 and/or Pex19 binding in vitro. The corresponding full‐length Pex14 variants are impaired in peroxisomal membrane localisation in vivo, showing that the molecular interactions mediated by the N‐terminal domain modulate peroxisomal targeting of Pex14.  相似文献   

3.
Peroxisomal biogenesis is an ubiquitin-dependent process because the receptors required for the import of peroxisomal matrix proteins are controlled via their ubiquitination status. A key step is the monoubiquitination of the import receptor Pex5p by the ubiquitin-conjugating enzyme (E2) Pex4p. This monoubiquitination is supposed to take place after Pex5p has released the cargo into the peroxisomal matrix and primes Pex5p for the extraction from the membrane by the mechano-enzymes Pex1p/Pex6p. These two AAA-type ATPases export Pex5p back to the cytosol for further rounds of matrix protein import. Recently, it has been reported that the soluble Pex4p requires the interaction to its peroxisomal membrane-anchor Pex22p to display full activity. Here we demonstrate that the soluble C-terminal domain of Pex22p harbours its biological activity and that this activity is independent from its function as membrane-anchor of Pex4p. We show that Pex4p can be functionally fused to the trans-membrane segment of the membrane protein Pex3p, which is not directly involved in Pex5p-ubiquitination and matrix protein import. However, this Pex3(N)-Pex4p chimera can only complement the double-deletion strain pex4Δ/pex22Δ and ensure optimal Pex5p-ubiquitination when the C-terminal part of Pex22p is additionally expressed in the cell. Thus, while the membrane-bound portion Pex22(N)p is not required when Pex4p is fused to Pex3(N)p, the soluble Pex22(C)p is essential for peroxisomal biogenesis and efficient monoubiquitination of the import receptor Pex5p by the E3-ligase Pex12p in vivo and in vitro. The results merge into a picture of an ubiquitin-conjugating complex at the peroxisomal membrane consisting of three domains: the ubiquitin-conjugating domain (Pex4p), a membrane-anchor domain (Pex22(N)p) and an enhancing domain (Pex22(C)p), with the membrane-anchor domain being mutually exchangeable, while the Ubc- and enhancer-domains are essential.  相似文献   

4.
The peroxisomal matrix protein import is facilitated by cycling import receptors that shuttle between the cytosol and the peroxisomal membrane. The import receptor Pex5p mediates the import of proteins harboring a peroxisomal targeting signal of type I (PTS1). Purified recombinant Pex5p forms a dimeric complex with the PTS1-protein Pcs60p in vitro with a KD of 0.19 μm. To analyze the structural basis for receptor-cargo recognition, the PTS1 and adjacent amino acids of Pcs60p were systematically scanned for Pex5p binding by an in vitro site-directed photo-cross-linking approach. The cross-linked binding regions of the receptor were subsequently identified by high resolution mass spectrometry. Most cross-links were found with TPR6, TPR7, as well as the 7C-loop of Pex5p. Surface plasmon resonance analysis revealed a bivalent interaction mode for Pex5p and Pcs60p. Interestingly, Pcs60p lacking its C-terminal tripeptide sequence was efficiently cross-linked to the same regions of Pex5p. The KD value of the interaction of truncated Pcs60p and Pex5p was in the range of 7.7 μm. Isothermal titration calorimetry and surface plasmon resonance measurements revealed a monovalent binding mode for the interaction of Pex5p and Pcs60p lacking the PTS1. Our data indicate that Pcs60p contains a second contact site for its receptor Pex5p, beyond the C-terminal tripeptide. The physiological relevance of the ancillary binding region was supported by in vivo import studies. The bivalent binding mode might be explained by a two-step concept as follows: first, cargo recognition and initial tethering by the PTS1-receptor Pex5p; second, lock-in of receptor and cargo.  相似文献   

5.
The molecular machinery underlying peroxisomal membrane biogenesis is not well understood. The observation that cells deficient in the peroxins Pex3p, Pex16p, and Pex19p lack peroxisomal membrane structures suggests that these molecules are involved in the initial stages of peroxisomal membrane formation. Pex19p, a predominantly cytosolic protein that can be farnesylated, binds multiple peroxisomal integral membrane proteins, and it has been suggested that it functions as a soluble receptor for the targeting of peroxisomal membrane proteins (PMPs) to the peroxisome. An alternative view proposes that Pex19p functions as a chaperone at the peroxisomal membrane. Here, we show that the peroxisomal sorting determinants and the Pex19p-binding domains of a number of PMPs are distinct entities. In addition, we extend the list of peroxins with which human Pex19p interacts to include the PMP Pex16p and show that Pex19p's CaaX prenylation motif is an important determinant in the affinity of Pex19p for Pex10p, Pex11pbeta, Pex12p, and Pex13p.  相似文献   

6.
The Saccharomyces cerevisiae pex17-1 mutant was isolated from a screen to identify mutants defective in peroxisome biogenesis. pex17-1 and pex17 null mutants fail to import matrix proteins into peroxisomes via both PTS1- and PTS2-dependent pathways. The PEX17 gene (formerly PAS9; Albertini, M., P. Rehling, R. Erdmann, W. Girzalsky, J.A.K.W. Kiel, M. Veenhuis, and W.-H Kunau. 1997. Cell. 89:83–92) encodes a polypeptide of 199 amino acids with one predicted membrane spanning region and two putative coiled-coil structures. However, localization studies demonstrate that Pex17p is a peripheral membrane protein located at the surface of peroxisomes. Particulate structures containing the peroxisomal integral membrane proteins Pex3p and Pex11p are evident in pex17 mutant cells, indicating the existence of peroxisomal remnants (“ghosts”). This finding suggests that pex17 null mutant cells are not impaired in peroxisomal membrane biogenesis. Two-hybrid studies showed that Pex17p directly binds to Pex14p, the recently proposed point of convergence for the two peroxisomal targeting signal (PTS)-dependent import pathways, and indirectly to Pex5p, the PTS1 receptor. The latter interaction requires Pex14p, indicating the potential of these three peroxins to form a trimeric complex. This conclusion is supported by immunoprecipitation experiments showing that Pex14p and Pex17p coprecipitate with both PTS receptors in the absence of Pex13p. From these and other studies we conclude that Pex17p, in addition to Pex13p and Pex14p, is the third identified component of the peroxisomal translocation machinery.  相似文献   

7.
Mutations in the SEC238 and SRP54 genes of the yeast Yarrowia lipolytica not only cause temperature-sensitive defects in the exit of the precursor form of alkaline extracellular protease and of other secretory proteins from the endoplasmic reticulum and in protein secretion but also lead to temperature-sensitive growth in oleic acid-containing medium, the metabolism of which requires the assembly of functionally intact peroxisomes. The sec238A and srp54KO mutations at the restrictive temperature significantly reduce the size and number of peroxisomes, affect the import of peroxisomal matrix and membrane proteins into the organelle, and significantly delay, but do not prevent, the exit of two peroxisomal membrane proteins, Pex2p and Pex16p, from the endoplasmic reticulum en route to the peroxisomal membrane. Mutations in the PEX1 and PEX6 genes, which encode members of the AAA family of N-ethylmaleimide-sensitive fusion protein-like ATPases, not only affect the exit of precursor forms of secretory proteins from the endoplasmic reticulum but also prevent the exit of the peroxisomal membrane proteins Pex2p and Pex16p from the endoplasmic reticulum and cause the accumulation of an extensive network of endoplasmic reticulum membranes. None of the peroxisomal matrix proteins tested associated with the endoplasmic reticulum in sec238A, srp54KO, pex1-1, and pex6KO mutant cells. Our data provide evidence that the endoplasmic reticulum is required for peroxisome biogenesis and suggest that in Y. lipolytica, the trafficking of some membrane proteins, but not matrix proteins, to the peroxisome occurs via the endoplasmic reticulum, results in their glycosylation within the lumen of the endoplasmic reticulum, does not involve transport through the Golgi, and requires the products encoded by the SEC238, SRP54, PEX1, and PEX6 genes.  相似文献   

8.
Pex1 and Pex6 are two AAA-ATPases that play a crucial role in peroxisome biogenesis. We have characterized the ultrastructure of the Saccharomyces cerevisiae peroxisome-deficient mutants pex1 and pex6 by various high-resolution electron microscopy techniques. We observed that the cells contained peroxisomal membrane remnants, which in ultrathin cross sections generally appeared as double membrane rings. Electron tomography revealed that these structures consisted of one continuous membrane, representing an empty, flattened vesicle, which folds into a cup shape. Immunocytochemistry revealed that these structures lack peroxisomal matrix proteins but are the sole sites of the major peroxisomal membrane proteins Pex2, Pex10, Pex11, Pex13, and Pex14. Upon reintroduction of Pex1 in Pex1-deficient cells, these peroxisomal membrane remnants (ghosts) rapidly incorporated peroxisomal matrix proteins and developed into peroxisomes. Our data support earlier views that Pex1 and Pex6 play a role in peroxisomal matrix protein import.  相似文献   

9.
We show that the dynamin-like proteins Dnm1p and Vps1p are not required for re-introduction of peroxisomes in Hansenula polymorpha pex3 cells upon complementation with PEX3-GFP. Instead, Dnm1p, but not Vps1p, plays a crucial role in organelle proliferation via fission. In H. polymorpha DNM1 deletion cells (dnm1) a single peroxisome is present that forms long extensions, which protrude into developing buds and divide during cytokinesis. Budding pex11.dnm1 double deletion cells lack these peroxisomal extensions, suggesting that the peroxisomal membrane protein Pex11p is required for their formation. Life cell imaging revealed that fluorescent Dnm1p-GFP spots fluctuate between peroxisomes and mitochondria. On the other hand Pex11p is present over the entire organelle surface, but concentrates during fission at the basis of the organelle extension in dnm1 cells.Our data indicate that peroxisome fission is the major pathway for peroxisome multiplication in H. polymorpha.  相似文献   

10.
Peroxisome targeting signal type-1 (PTS1) receptor, Pex5p, is a key player in peroxisomal matrix protein import. Pex5p recognizes PTS1 cargoes in the cytosol, targets peroxisomes, translocates across the membrane, unloads the cargoes, and shuttles back to the cytosol. Ubiquitination of Pex5p at a conserved cysteine is required for the exit from peroxisomes. However, any potential ubiquitin ligase (E3) remains unidentified in mammals. Here, we establish an in vitro ubiquitination assay system and demonstrate that RING finger Pex10p functions as an E3 with an E2, UbcH5C. The E3 activity of Pex10p is essential for its peroxisome-restoring activity, being enhanced by another RING peroxin, Pex12p. The Pex10p·Pex12p complex catalyzes monoubiquitination of Pex5p at one of multiple lysine residues in vitro, following the dissociation of Pex5p from Pex14p and the PTS1 cargo. Several lines of evidence with lysine-to-arginine mutants of Pex5p demonstrate that Pex10p RING E3-mediated ubiquitination of Pex5p is required for its efficient export from peroxisomes to the cytosol and peroxisomal matrix protein import. RING peroxins are required for both modes of Pex5p ubiquitination, thus playing a pivotal role in Pex5p shuttling.  相似文献   

11.
In Saccharomyces cerevisiae, peroxisomal inheritance from mother cell to bud is conducted by the class V myosin motor, Myo2p. However, homologues of S. cerevisiae Myo2p peroxisomal receptor, Inp2p, are not readily identifiable outside the Saccharomycetaceae family. Here, we demonstrate an unexpected role for Pex3 proteins in peroxisome inheritance. Both Pex3p and Pex3Bp are peroxisomal integral membrane proteins that function as peroxisomal receptors for class V myosin through direct interaction with the myosin globular tail. In cells lacking Pex3Bp, peroxisomes are preferentially retained by the mother cell, whereas most peroxisomes gather and are transferred en masse to the bud in cells overexpressing Pex3Bp or Pex3p. Our results reveal an unprecedented role for members of the Pex3 protein family in peroxisome motility and inheritance in addition to their well-established role in peroxisome biogenesis at the endoplasmic reticulum. Our results point to a temporal link between peroxisome formation and inheritance and delineate a general mechanism of peroxisome inheritance in eukaryotic cells.  相似文献   

12.
The conserved CaaX box peroxin Pex19p is known to be modified by farnesylation. The possible involvement of this lipid modification in peroxisome biogenesis, the degree to which Pex19p is farnesylated, and its molecular function are unknown or controversial. We resolve these issues by first showing that the complete pool of Pex19p is processed by farnesyltransferase in vivo and that this modification is independent of peroxisome induction or the Pex19p membrane anchor Pex3p. Furthermore, genomic mutations of PEX19 prove that farnesylation is essential for proper matrix protein import into peroxisomes, which is supposed to be caused indirectly by a defect in peroxisomal membrane protein (PMP) targeting or stability. This assumption is corroborated by the observation that mutants defective in Pex19p farnesylation are characterized by a significantly reduced steady-state concentration of prominent PMPs (Pex11p, Ant1p) but also of essential components of the peroxisomal import machinery, especially the RING peroxins, which were almost depleted from the importomer. In vivo and in vitro, PMP recognition is only efficient when Pex19p is farnesylated with affinities differing by a factor of 10 between the non-modified and wild-type forms of Pex19p. Farnesylation is likely to induce a conformational change in Pex19p. Thus, isoprenylation of Pex19p contributes to substrate membrane protein recognition for the topogenesis of PMPs, and our results highlight the importance of lipid modifications in protein-protein interactions.A large number of eukaryotic intracellular proteins are post-translationally modified by the covalent attachment of either 15 or 20 carbon isoprenoids known as farnesyl or geranylgeranyl, respectively. This process (referred to as protein prenylation) affects lipases, kinases, inositol and protein-tyrosine phosphatases, lamins, and most of the small GTPases (13). Protein prenylation was shown to enable reversible association of modified proteins with lipid bilayers and to modulate protein-protein interactions (46).The farnesyl group is attached to the cysteine of the C-terminal motif known as the CaaX box, where “a” indicates aliphatic amino acids and X is usually serine, methionine, glutamine, alanine, or threonine (3). Farnesyltransferase (FTase)3 consists of two subunits, the α-subunit and the β-subunit (Ram2p and Ram1p in yeast). The α-subunit is shared by the geranylgeranyl transferase (GGTase I), whereas the β-subunit is unique for FTase (7).The peroxisome biogenesis protein (peroxin) Pex19p is one of a few farnesylated non-GTPases that are conserved between yeast and humans. Pex19p was initially identified as a prenylated protein (PxF) (8, 9) or housekeeping gene product (HK33) (10). A loss-of-function mutation in human PEX19 is associated with complementation group CG-J/CG-14 of Zellweger syndrome (11). In the absence of Pex19p, cells lack functional peroxisomes (1113). Pex19p is mostly cytosolic and interacts with all peroxisomal membrane proteins (PMPs) analyzed (1416).Different and not all exclusive models have been proposed for Pex19p function. First, Pex19p might be an import receptor for PMPs that recognizes its substrates in the cytosol and delivers them to the peroxisomal membrane (15, 17, 18). This function would be analogous to that of the peroxisomal import receptors Pex5p and Pex7p, which recognize and deliver matrix proteins with PTS1 (peroxisomal targeting signal type 1) and PTS2 to peroxisomes (19). Second, Pex19p might act as a PMP chaperone that prevents newly synthesized PMPs from aggregation and degradation in the cytosol (17, 20). Third, Pex19p might act as a PMP membrane insertion factor (14, 16). Fourth, Pex19p might be required as an association/dissociation factor of membrane protein complexes (21) and has been reported to be required for the targeting of Pex3p from the ER to the peroxisomal membrane (22). Finally, Pex19p function is dependent on Pex3p, which serves as a docking factor at the peroxisomal membrane (12, 2224). All models agree on the importance of PMP recognition for Pex19p function (25).Pex19p shows only a moderate degree of sequence conservation, with less than 20% amino acid identity between yeast and human Pex19p. Its CaaX box, however, has been retained throughout evolution (see Fig. 1). Information on the status and the requirement of Pex19p farnesylation has so far been available only through often conflicting side observations. Mammalian PEX19 was described to be partially farnesylated in CHO-K1 cells (11), but other studies with human fibroblasts challenged the relevance of Pex19p farnesylation (15, 26). It was speculated that in Saccharomyces cerevisiae, farnesylation is required for an essential aspect of Pex19p function (12). This notion was recently contradicted (27). Work on other yeasts similarly suggested that farnesylation would be dispensable for Pex19p function (13, 28, 29).Open in a separate windowFIGURE 1.Pex19p is completely farnesylated in vivo, independent of peroxisome induction and Pex3p. A and B, Pex19p is fully modified by yeast FTase in vivo. Whole cell lysates from non-induced cells of the indicated strains were analyzed by immunoblotting. Blots were probed with anti-Pex19p antibodies. The non-farnesylated form of Pex19p of a Δram1 mutant (arrowhead) cannot be detected in extracts from wild-type yeast (arrow) (A), whereas it reappears after reintroduction of Ram1p (B). C, the yeast farnesylation machinery can be saturated by overexpression of GST-Pex19p. A Coomassie-stained gel of purified farnesylated and non-farnesylated Pex19p is shown. GST-Pex19p was expressed under control of a copper-inducible promoter in Δpex19 and Δram1 strains and isolated by affinity chromatography. In Δram1 (right), only the non-farnesylated GST-Pex19p can be detected. In Δpex19 (left) two bands appear, corresponding to non-farnesylated GST-Pex19p (upper band) and farnesylated GST-Pex19p (lower band). D, Pex19p farnesylation levels are independent of peroxisome induction and are not affected by the absence of the Pex19p membrane anchor Pex3p. Cells were grown on YPD medium and, where indicated, washed and grown on 0.1% oleate medium for 17 h for peroxisome induction. Lysates were fractionated by centrifugation (20,000 × g, 1 h, 4 °C) and analyzed as in A. Blots were probed with antibodies against Pex19p. E, evolutionary conservation of the Pex19p farnesylation site in fungi, plant, and metazoa.In this study, we determined the in vivo farnesylation status of Pex19p and its dependence on peroxisome induction and on Pex3p. We discovered that Pex19p is fully modified by FTase and investigated whether Pex19p farnesylation is required for PMP recognition and stability. By peptide blots, two-hybrid analysis, and fluorescence polarization titration, we showed that farnesylation increases the affinity for PMPs by a factor of about 10. Last, we provide evidence that the interaction between farnesylated Pex19p and PMPs is achieved through a farnesylation-induced structural change in Pex19p rather than through direct farnesyl-PMP interaction. Our results exemplify the biological relevance of isoprenylation-dependent protein-protein interactions.  相似文献   

13.
We have analyzed the role of the three members of the Pex11 protein family in peroxisome formation in the filamentous fungus Penicillium chrysogenum. Two of these, Pex11 and Pex11C, are components of the peroxisomal membrane, while Pex11B is present at the endoplasmic reticulum. We show that Pex11 is a major factor involved in peroxisome proliferation. We also demonstrate that P. chrysogenum cells deleted for known peroxisome fission factors (all Pex11 family proteins and Vps1) still contain peroxisomes. Interestingly, we find that, unlike in mammals, Pex16 is not essential for peroxisome biogenesis in P. chrysogenum, as partially functional peroxisomes are present in a pex16 deletion strain. We also show that Pex16 is not involved in de novo biogenesis of peroxisomes, as peroxisomes were still present in quadruple Δpex11 Δpex11B Δpex11C Δpex16 mutant cells. By contrast, pex3 deletion in P. chrysogenum led to cells devoid of peroxisomes, suggesting that Pex3 may function independently of Pex16. Finally, we demonstrate that the presence of intact peroxisomes is important for the efficiency of ß-lactam antibiotics production by P. chrysogenum. Remarkably, distinct from earlier results with low penicillin producing laboratory strains, upregulation of peroxisome numbers in a high producing P. chrysogenum strain had no significant effect on penicillin production.  相似文献   

14.
Two distinct pathways have recently been proposed for the import of peroxisomal membrane proteins (PMPs): a Pex19p- and Pex3p-dependent class I pathway and a Pex19p- and Pex3p-independent class II pathway. We show here that Pex19p plays an essential role as the chaperone for full-length Pex3p in the cytosol. Pex19p forms a soluble complex with newly synthesized Pex3p in the cytosol and directly translocates it to peroxisomes. Knockdown of Pex19p inhibits peroxisomal targeting of newly synthesized full-length Pex3p and results in failure of the peroxisomal localization of Pex3p. Moreover, we demonstrate that Pex16p functions as the Pex3p-docking site and serves as the peroxisomal membrane receptor that is specific to the Pex3p–Pex19p complexes. Based on these novel findings, we suggest a model for the import of PMPs that provides new insights into the molecular mechanisms underlying the biogenesis of peroxisomes and its regulation involving Pex3p, Pex19p, and Pex16p.  相似文献   

15.
We describe the isolation and characterization of a homologous pair of proteins, Pex25p (YPL112c) and Pex27p (YOR193w), whose C-termini are similar to the entire Pex11p. All three proteins localize to the peroxisomal membrane and are likely to form homo-oligomers. Deletion of any of the three genes resulted in enlarged peroxisomes as revealed by fluorescence and electron microscopy. The partial growth defect on fatty acids of a pex25Δ mutant was not exacerbated by the additional deletion of PEX27; however, when PEX11 was deleted on top of that, growth was abolished on all fatty acids. Moreover, a severe peroxisomal protein import defect was observed in the pex11Δpex25Δpex27Δ triple mutant strain. This import defect was also observed when cells were grown on ethanol-containing medium, where peroxisomes are not required, suggesting that the function of the proteins in peroxisome biogenesis exceeds their role in proliferation. When Pex25p was overexpressed in the triple mutant strain, growth on oleic acid was completely restored and a massive proliferation of laminar membranes and peroxisomes was observed. Our data demonstrate that Pex11p, Pex25p, and Pex27p build a family of proteins whose members are required for peroxisome biogenesis and play a role in the regulation of peroxisome size and number.  相似文献   

16.
The Pex5p receptor recognizes newly synthesized peroxisomal matrix proteins which have a C-terminal peroxisomal targeting signal to the peroxisome. After docking to protein complexes on the membrane, these proteins are translocated across the membrane. The docking mechanism remains unclear, as no structural data on the multicomponent docking complex are available. As the interaction of the cargo-loaded Pex5p receptor and the peroxisomal membrane protein Pex14p is the essential primary docking step, we have investigated the solution structure of these complexes by small angle x-ray scattering and static light scattering. Titration studies yielded a 1:6 stoichiometry for the Pex5p·Pex14p complex, and low resolution structural models were reconstructed from the x-ray scattering data. The free full-length human Pex5p is monomeric in solution, with an elongated, partially unfolded N-terminal domain. The model of the complex reveals that the N terminus of Pex5p remains extended in the presence of cargo and Pex14p, the latter proteins being significantly intermingled with the Pex5p moiety. These results suggest that the extended structure of Pex5p may play a role in interactions with other substrates such as lipids and membrane proteins during the formation of functional multiprotein complexes.Peroxisomes are ubiquitous organelles in eukaryotes which are involved in different metabolic pathways (1). Peroxisomal matrix proteins, which contain a peroxisomal targeting signal (PTS),4 are imported into the peroxisome by recognition of two different import receptors, Pex5p or Pex7p. These receptors recognize specific signal sequences, PTS1 and PTS2, respectively (1). At the molecular level the C-terminal PTS1 signal is bound in a central cavity of the ring-like structure of the seven tetrapeptide repeat (TPR) domains of the C-terminal part of Pex5p (Pex5p(C)) (25). It was recently proposed that some of the structural principles of the Pex5p/cargo interaction may also apply to the PTS2 cargo recognition of the Pex7p receptor (5).The next step of PTS-protein import, docking of the cargo loaded receptor to the translocon, involves the peroxisomal protein Pex14p (6). Multiple Pex14p binding sites with di-aromatic pentapeptide motifs (WXXX(F/Y)) were shown to be present in the N terminus of Pex5p (79). The number of these motifs, however, varies among species. The human Pex5p receptor, which has been investigated in this contribution, has a total of seven motifs. A recent NMR structure of the N-terminal domain of Pex14p and the first WXXX(F/Y) motif of Pex5p reveals an α-helical conformation of the motif (10). Interactions between Pex5p and other proteins and by their association with the peroxisomal membrane possibly lead to dissociation of the PTS-protein from Pex5p (1113). The exact sequence of events in the import mechanism remains, however, unknown. It is in particular unclear how, in contrast with other organelles, peroxisomes can import folded oligomeric, functional proteins (14).Previous biophysical work indicated that the N terminus half of Pex5p is unfolded in vitro (15, 16). Recent protease sensitivity assays showed that the proteolytic profiles of the full-length receptor Pex5p(F) change in the presence of PTS1 peptide and the Pex13p Src homology 3 domain, which is another docking factor (16, 17), indicating conformational changes of Pex5p upon binding these receptor ligands. Furthermore, it was found that Pex5p may even traverse the peroxisomal membrane, leaving only a small N-terminal fragment in the cytosol while exposing the C-terminal TPR domain to the luminal side of the membrane (11).Although recognition of many PTS cargos seems to be confined to the C-terminal TPR domains of Pex5p, it has become clear that the N-terminal part of Pex5p is primarily involved in docking of the receptor onto the peroxisomal membrane and other docking factors. Because only poorly diffracting crystals have been purified to date, we investigated its solution structure by small angle x-ray scattering (SAXS) and static light scattering (SLS). Complexes with the PTS1 cargo sterol carrier protein 2 (SCP2), which functions as lipid transfer protein, were also studied as the crystal structure of Pex5p(C)/SCP2 is already known (4). Our results indicate that human Pex5p(F) is a monomer with an extended N terminus. The stoichiometry of Pex5p(F)·Pex14p(N)·PTS1 complex has been assessed by titration with SAXS, SLS, and gel filtration, and a low resolution structural model of the complex has been reconstructed in which Pex5p(F) remains extended upon Pex14p(N) binding.  相似文献   

17.
Peroxisomal matrix protein import is facilitated by cycling receptors that recognize their cargo proteins in the cytosol by a peroxisomal targeting sequence (PTS) and ferry them to the peroxisomal membrane. Subsequently, the cargo is translocated into the peroxisomal lumen, whereas the receptor is released to the cytosol for further rounds of protein import. This cycle is controlled by the ubiquitination status of the receptor, which is best understood for the PTS1‐receptor. While polyubiquitination of PTS‐receptors results in their proteasomal degradation, the monoubiquitinated PTS‐receptors are exported to the cytosol and recycled for further rounds of protein import. Here, we describe the identification of two ubiquitination cascades acting on the PTS2 co‐receptor Pex18p. Using in vivo and in vitro approaches, we demonstrate that the polyubiquitination of Pex18p requires the ubiquitin‐conjugating enzyme (E2) Ubc4p, which cooperates with the RING (really interesting new gene)‐type ubiquitin‐protein ligases (E3) Pex2p as well as Pex10p. Monoubiquitination of Pex18p depends on the E2 enzyme Pex4p (Ubc10p), which functions in concert with the E3 enzymes Pex12p and Pex10p. Our findings for the PTS2‐pathway complement the data on PTS1‐receptor ubiquitination and add up to a unified concept of the ubiquitin‐based regulation of peroxisomal import .  相似文献   

18.
Abstract. Using a new screening procedure for the isolation of peroxisomal import mutants in Pichia pastoris, we have isolated a mutant (pex7) that is specifically disturbed in the peroxisomal import of proteins containing a peroxisomal targeting signal type II (PTS2). Like its Saccharomyces cerevisiae homologue, PpPex7p interacted with the PTS2 in the two-hybrid system, suggesting that Pex7p functions as a receptor. The pex7Δ mutant was not impaired for growth on methanol, indicating that there are no PTS2-containing enzymes involved in peroxisomal methanol metabolism. In contrast, pex7Δ cells failed to grow on oleate, but growth on oleate could be partially restored by expressing thiolase (a PTS2-containing enzyme) fused to the PTS1. Because the subcellular location and mechanism of action of this protein are controversial, we used various methods to demonstrate that Pex7p is both cytosolic and intraperoxisomal. This suggests that Pex7p functions as a mobile receptor, shuttling PTS2-containing proteins from the cytosol to the peroxisomes. In addition, we used PpPex7p as a model protein to understand the effect of the Pex7p mutations found in human patients with rhizomelic chondrodysplasia punctata. The corresponding PpPex7p mutant proteins were stably expressed in P. pastoris, but they failed to complement the pex7Δ mutant and were impaired in binding to the PTS2 sequence.  相似文献   

19.
Pex11 proteins are involved in membrane remodelling processes of peroxisomes, and are key components of peroxisomal division and proliferation. In mammals, three Pex11 isoforms, Pex11α, Pex11β, and Pex11γ exist. Here we demonstrate that Pex11β, but not Pex11α or Pex11γ, is almost exclusively extracted from peroxisomal membranes of paraformaldehyde-fixed cells by permeabilisation with the non-ionic detergent Triton X-100. This results in diminished detection of Myc-Pex11β in immunofluorescence preparations and appearance of the protein in the Triton X-100 extract. To our knowledge, Pex11β is the first peroxisomal membrane protein showing such a peculiar behaviour. Loss of Pex11β can be avoided by permeabilisation with digitonin, the addition of glutaraldehyde to the fixative, or the expression of a Pex11 fusion protein with a larger protein tag (e.g. YFP). Our observations further point to different functions and biochemical properties of the Pex11 isoforms within the peroxisomal membrane and during peroxisome proliferation.  相似文献   

20.
Entamoeba histolytica is believed to be devoid of peroxisomes, like most anaerobic protists. In this work, we provided the first evidence that peroxisomes are present in E. histolytica, although only seven proteins responsible for peroxisome biogenesis (peroxins) were identified (Pex1, Pex6, Pex5, Pex11, Pex14, Pex16, and Pex19). Targeting matrix proteins to peroxisomes is reduced to the PTS1-dependent pathway mediated via the soluble Pex5 receptor, while the PTS2 receptor Pex7 is absent. Immunofluorescence microscopy showed that peroxisomal markers (Pex5, Pex14, Pex16, Pex19) are present in vesicles distinct from mitosomes, the endoplasmic reticulum, and the endosome/phagosome system, except Pex11, which has dual localization in peroxisomes and mitosomes. Immunoelectron microscopy revealed that Pex14 localized to vesicles of approximately 90–100 nm in diameter. Proteomic analyses of affinity-purified peroxisomes and in silico PTS1 predictions provided datasets of 655 and 56 peroxisomal candidates, respectively; however, only six proteins were shared by both datasets, including myo-inositol dehydrogenase (myo-IDH). Peroxisomal NAD-dependent myo-IDH appeared to be a dimeric enzyme with high affinity to myo-inositol (Km 0.044 mM) and can utilize also scyllo-inositol, D-glucose and D-xylose as substrates. Phylogenetic analyses revealed that orthologs of myo-IDH with PTS1 are present in E. dispar, E. nutalli and E. moshkovskii but not in E. invadens, and form a monophyletic clade of mostly peroxisomal orthologs with free-living Mastigamoeba balamuthi and Pelomyxa schiedti. The presence of peroxisomes in E. histolytica and other archamoebae breaks the paradigm of peroxisome absence in anaerobes and provides a new potential target for the development of antiparasitic drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号