首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reductive glycine pathway was described as the most energetically favorable synthetic route of aerobic formate assimilation. Here we report the successful implementation of formatotrophy in Escherichia coli by means of a stepwise adaptive evolution strategy. Medium swap and turbidostat regimes of continuous culture were applied to force the channeling of carbon flux through the synthetic pathway to pyruvate establishing growth on formate and CO2 as sole carbon sources. Labeling with 13C-formate proved the assimilation of the C1 substrate via the pathway metabolites. Genetic analysis of intermediate isolates revealed a mutational path followed throughout the adaptation process. Mutations were detected affecting the copy number (gene ftfL) or the coding sequence (genes folD and lpd) of genes which specify enzymes implicated in the three steps forming glycine from formate and CO2, the central metabolite of the synthetic pathway. The mutation R191S present in methylene-tetrahydrofolate dehydrogenase/cyclohydrolase (FolD) abolishes the inhibition of cyclohydrolase activity by the substrate formyl-tetrahydrofolate. The mutation R273H in lipoamide dehydrogenase (Lpd) alters substrate affinities as well as kinetics at physiological substrate concentrations likely favoring a reactional shift towards lipoamide reduction. In addition, genetic reconstructions proved the necessity of all three mutations for formate assimilation by the adapted cells. The largely unpredictable nature of these changes demonstrates the usefulness of the evolutionary approach enabling the selection of adaptive mutations crucial for pathway engineering of biotechnological model organisms.  相似文献   

2.
3.
Bacterial fatty acid synthesis in Escherichia coli is initiated by the condensation of an acetyl-CoA with a malonyl-acyl carrier protein (ACP) by the β-ketoacyl-ACP synthase III enzyme, FabH. E. coli ΔfabH knockout strains are viable because of the yiiD gene that allows FabH-independent fatty acid synthesis initiation. However, the molecular function of the yiiD gene product is not known. Here, we show the yiiD gene product is a malonyl-ACP decarboxylase (MadA). MadA has two independently folded domains: an amino-terminal N-acetyl transferase (GNAT) domain (MadAN) and a carboxy-terminal hot dog dimerization domain (MadAC) that encodes the malonyl-ACP decarboxylase function. Members of the proteobacterial Mad protein family are either two domain MadA (GNAT-hot dog) or standalone MadB (hot dog) decarboxylases. Using structure-guided, site-directed mutagenesis of MadB from Shewanella oneidensis, we identified Asn45 on a conserved catalytic loop as critical for decarboxylase activity. We also found that MadA, MadAC, or MadB expression all restored normal cell size and growth rates to an E. coli ΔfabH strain, whereas the expression of MadAN did not. Finally, we verified that GlmU, a bifunctional glucosamine-1-phosphate N-acetyl transferase/N-acetyl-glucosamine-1-phosphate uridylyltransferase that synthesizes the key intermediate UDP-GlcNAc, is an ACP binding protein. Acetyl-ACP is the preferred glucosamine-1-phosphate N-acetyl transferase/N-acetyl-glucosamine-1-phosphate uridylyltransferase substrate, in addition to being the substrate for the elongation-condensing enzymes FabB and FabF. Thus, we conclude that the Mad family of malonyl-ACP decarboxylases supplies acetyl-ACP to support the initiation of fatty acid, lipopolysaccharide, peptidoglycan, and enterobacterial common antigen biosynthesis in Proteobacteria.  相似文献   

4.
Microbial flocculation is a phenomenon of aggregation of dispersed bacterial cells in the form of flocs or flakes. In this study, the mechanism of spontaneous flocculation of Escherichia coli cells by overexpression of the bcsB gene was investigated. The flocculation induced by overexpression of bcsB was consistent among the various E. coli strains examined, including the K-12, B, and O strains, with flocs that resembled paper scraps in structure being about 1 to 2 mm. The distribution of green fluorescent protein-labeled E. coli cells within the floc structure was investigated by three-dimensional confocal laser scanning microscopy. Flocs were sensitive to proteinase K, indicating that the main component of the flocs was proteinous. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and nano-liquid chromatography tandem mass spectrometry analyses of the flocs strongly suggested the involvement of outer membrane vesicles (OMVs) in E. coli flocculation. The involvement of OMVs in flocculation was supported by transmission electron microscopy observation of flocs. Furthermore, bcsB-induced E. coli flocculation was greatly suppressed in strains with hypovesiculation phenotypes (ΔdsbA and ΔdsbB strains). Thus, our results demonstrate the strong correlation between spontaneous flocculation and enhanced OMV production of E. coli cells.  相似文献   

5.
We investigated the ability of a detoxified derivative of a Shiga toxin 2 (Stx2)-encoding bacteriophage to infect and lysogenize enteric Escherichia coli strains and to develop infectious progeny from such lysogenized strains. The stx2 gene of the patient E. coli O157:H7 isolate 3538/95 was replaced by the chloramphenicol acetyltransferase (cat) gene from plasmid pACYC184. Phage 3538(Δstx2::cat) was isolated after induction of E. coli O157:H7 strain 3538/95 with mitomycin. A variety of strains of enteropathogenic E. coli (EPEC), enteroinvasive E. coli (EIEC), Stx-producing E. coli (STEC), enterotoxigenic E. coli (ETEC), enteroaggregative E. coli (EAEC), and E. coli from the physiological stool microflora were infected with 3538(Δstx2::cat), and plaque formation and lysogenic conversion of wild-type E. coli strains were investigated. With the exception of one EIEC strain, none of the E. coli strains supported the formation of plaques when used as indicators for 3538(Δstx2::cat). However, 2 of 11 EPEC, 11 of 25 STEC, 2 of 7 EAEC, 1 of 3 EIEC, and 1 of 6 E. coli isolates from the stool microflora of healthy individuals integrated the phage in their chromosomes and expressed resistance to chloramphenicol. Following induction with mitomycin, these lysogenic strains released infectious particles of 3538(Δstx2::cat) that formed plaques on a lawn of E. coli laboratory strain C600. The results of our study demonstrate that 3538(Δstx2::cat) was able to infect and lysogenize particular enteric strains of pathogenic and nonpathogenic E. coli and that the lysogens produced infectious phage progeny. Stx-encoding bacteriophages are able to spread stx genes among enteric E. coli strains.  相似文献   

6.
Naturalized soil Escherichia coli populations need to resist common soil desiccation stress in order to inhabit soil environments. In this study, four representative soil E. coli strains and one lab strain, MG1655, were tested for desiccation resistance via die-off experiments in sterile quartz sand under a potassium acetate-induced desiccation condition. The desiccation stress caused significantly lower die-off rates of the four soil strains (0.17 to 0.40 day−1) than that of MG1655 (0.85 day−1). Cellular responses, including extracellular polymeric substance (EPS) production, exogenous glycine betaine (GB) uptake, and intracellular compatible organic solute synthesis, were quantified and compared under the desiccation and hydrated control conditions. GB uptake appeared not to be a specific desiccation response, while EPS production showed considerable variability among the E. coli strains. All E. coli strains produced more intracellular trehalose, proline, and glutamine under the desiccation condition than the hydrated control, and only the trehalose concentration exhibited a significant correlation with the desiccation-contributed die-off coefficients (Spearman''s ρ = −1.0; P = 0.02). De novo trehalose synthesis was further determined for 15 E. coli strains from both soil and nonsoil sources to determine its prevalence as a specific desiccation response. Most E. coli strains (14/15) synthesized significantly more trehalose under the desiccation condition, and the soil E. coli strains produced more trehalose (106.5 ± 44.9 μmol/mg of protein [mean ± standard deviation]) than the nonsoil reference strains (32.5 ± 10.5 μmol/mg of protein).  相似文献   

7.
Fischer E  Lüttge U 《Plant physiology》1980,65(5):1004-1008
Accumulation of 14C-labeled glycine and microelectrode techniques were employed to study glycine transport and the effect of glycine on the membrane potential (Δψ) in Lemna gibba G1. Evidence is presented that two processes, a passive uptake by diffusion and a carrier-mediated uptake, are involved in glycine transport into Lemna cells. At the onset of active glycine uptake the component of Δψ which depended on metabolism was decreased. The depolarized membrane repolarized in the presence of glycine. This glycine-induced depolarization followed a saturation curve with increasing glycine concentration which corresponded to carrier-mediated glycine influx kinetics. The transport of glycine was correlated with the metabolically dependent component of Δψ. It is suggested (a) that the transient change in Δψ reflects the operation of an H+-glycine cotransport system driven by an electrochemical H+ gradient; and (b) that this system is energized by an active H+ extrusion. Therefore the maximum depolarization of the membrane consequently depended on both the rate of glycine uptake and the activity of the proton extrusion pump.  相似文献   

8.
The GafD lectin of the G (F17) fimbriae of diarrhea-associated Escherichia coli was overexpressed and purified from the periplasm of E. coli by affinity chromatography on GlcNAc-agarose. The predicted mature GafD peptide comprises 321 amino acids, but the predominant form of GafD recovered from the periplasm was 19,092 Da in size and corresponded to the 178 N-terminal amino acid residues, as judged by mass spectrometry and amino acid sequencing, and was named ΔGafD. Expression of gafD from the cloned gaf gene cluster in DegP-, Lon-, and OmpT-deficient recombinant strains did not significantly decrease the formation of ΔGafD. The peptide was also detected in the periplasm of the wild-type E. coli strain from which the gaf gene cluster originally was cloned. We expressed gafD fragments encoding C-terminally truncated peptides. Peptides GafD1-252, GafD1-224, GafD1-189, and the GafD1-178, isolated from the periplasm by affinity chromatography, had apparent sizes closely similar to that of ΔGafD. Only trace amounts of truncated forms with expected molecular sizes were detected in spheroplasts. In contrast, the shorter GafD1-157 peptide was detected in spheroplasts but not in the periplasm, indicating that it was poorly translocated or was degraded by periplasmic proteases. Pulse-chase assays using gafD indicated that ΔGafD was processed from GafD and is not a primary translation product. The ΔGafD peptide was soluble by biochemical criteria and exhibited specific binding to GlcNAc-agarose. Inhibition assays with mono- and oligosaccharides gave a similar inhibition pattern in the hemagglutination by the G-fimbria-expressing recombinant E. coli strain and in the binding of [14C]ΔGafD to GlcNAc-agarose. ΔGafD bound specifically to laminin, a previously described tissue target for the G fimbria. Our results show that a soluble, protease-resistant subdomain of GafD exhibits receptor-binding specificity similar to that for intact G fimbriae and that it is formed when gafD is expressed alone or from the gaf gene cluster.  相似文献   

9.
The torque of bacterial flagellar motors is generated by interactions between the rotor and the stator and is coupled to the influx of H+ or Na+ through the stator. A chimeric protein, PotB, in which the N-terminal region of Vibrio alginolyticus PomB was fused to the C-terminal region of Escherichia coli MotB, can function with PomA as a Na+-driven stator in E. coli. Here, we constructed a deletion variant of PotB (with a deletion of residues 41 to 91 [Δ41–91], called PotBΔL), which lacks the periplasmic linker region including the segment that works as a “plug” to inhibit premature ion influx. This variant did not confer motile ability, but we isolated a Na+-driven, spontaneous suppressor mutant, which has a point mutation (R109P) in the MotB/PomB-specific α-helix that connects the transmembrane and peptidoglycan binding domains of PotBΔL in the region of MotB. Overproduction of the PomA/PotBΔL(R109P) stator inhibited the growth of E. coli cells, suggesting that this stator has high Na+-conducting activity. Mutational analyses of Arg109 and nearby residues suggest that the structural alteration in this α-helix optimizes PotBΔL conformation and restores the proper arrangement of transmembrane helices to form a functional channel pore. We speculate that this α-helix plays a key role in assembly-coupled stator activation.  相似文献   

10.
The influence of extracytoplasmic proteases on the resistance of Escherichia coli to the antimicrobial peptide protamine was investigated by testing strains with deletions in the protease genes degP, ptr, and ompT. Only ΔompT strains were hypersusceptible to protamine. This effect was abolished by plasmids carrying ompT. Both at low and at high Mg2+ concentrations, ompT+ strains cleared protamine from the medium within a few minutes. By contrast, at high Mg2+ concentrations, protamine remained present for at least 1 h in the medium of an ompT strain. These data indicate that OmpT is the protease that degrades protamine and that it exerts this function at the external face of the outer membrane.  相似文献   

11.
12.
This study examined the effect of different apple cultivars upon the UV inactivation of Escherichia coli O157:H7 strains within unfiltered apple cider. Apple cider was prepared from eight different apple cultivars, inoculated with approximately 106 to 107 CFU of three strains of E. coli O157:H7 per ml (933, ATCC 43889, and ATCC 43895), and exposed to 14 mJ of UV irradiation per cm2. Bacterial populations for treated and untreated samples were then enumerated by using nonselective media. E. coli O157:H7 ATCC 43889 showed the most sensitivity to this disinfection process with an average 6.63-log reduction compared to an average log reduction of 5.93 for both strains 933 and ATCC 43895. The highest log reduction seen, 7.19, occurred for strain ATCC 43889 in Rome cider. The same cider produced the lowest log reductions: 5.33 and 5.25 for strains 933 and ATCC 43895, respectively. Among the apple cultivars, an average log reduction range of 5.78 (Red Delicious) to 6.74 (Empire) was observed, with two statistically significant (α ≤ 0.05) log reduction groups represented. Within the paired cultivar-strain analysis, five of eight ciders showed statistically significant (α ≤ 0.05) differences in at least two of the E. coli strains used. Comparison of log reductions among the E. coli strains to the cider parameters of °Brix, pH, and malic acid content failed to show any statistically significant relationship (R2 ≥ 0.95). However, the results of this study indicate that regardless of the apple cultivar used, a minimum 5-log reduction is achieved for all of the strains of E. coli O157:H7 tested.  相似文献   

13.
Polynucleotide sequence similarity tests were carried out to determine the extent of divergence present in a number of Escherichia coli strains, obtained from diverse human, animal, and laboratory sources, and closely related strains of Shigella, Salmonella, and the Alkalescens-Dispar group. At 60 C, relative reassociation of deoxyribonucleic acid (DNA) from the various strains with E. coli K-12 DNA ranged from 100 to 36%, with the highest level of reassociation found for three strains derived from K-12, and the lowest levels for two “atypical” E. coli strains and S. typhimurium. The change in thermal elution midpoint, which indicates the stability of DNA duplexes, ranged from 0.1 to 14.5 C, with thermal stability closely following the reassociation data. Reassociation experiments performed at 75 C, at which temperature only the more closely related DNA species form stable duplexes, gave similar indications of relatedness. At both temperatures, Alkalescens-Dispar strains showed close relatedness to E. coli, supporting the idea that they should be included in the genus Escherichia. Reciprocal binding experiments with E. coli BB, 02A, and K-12 yielded different reassociation values, suggesting that the genomes of these strains are of different size. The BB genome was calculated to be 9% larger than that of K-12, and that of 02A 9% larger than that of BB. Calculation of genome size for a series of E. coli strains yielded values ranging from 2.29 × 109 to 2.97 × 109 daltons. E. coli strains and closely related organisms were compared by Adansonian analysis for their relatedness to a hypothetical median strain. E. coli 0128a was the most closely related to this median organism. In general, these data compared well with the data from reassociation experiments among E. coli strains. However, anomalous results were obtained in the cases of Shigella flexneri, S. typhimurium, and “atypical” E. coli strains.  相似文献   

14.
Epilithic periphyton communities were sampled at three sites on the Minnesota shoreline of Lake Superior from June 2004 to August 2005 to determine if fecal coliforms and Escherichia coli were present throughout the ice-free season. Fecal coliform densities increased up to 4 orders of magnitude in early summer, reached peaks of up to 1.4 × 105 CFU cm−2 by late July, and decreased during autumn. Horizontal, fluorophore-enhanced repetitive-PCR DNA fingerprint analyses indicated that the source for 2% to 44% of the E. coli bacteria isolated from these periphyton communities could be identified when compared with a library of E. coli fingerprints from animal hosts and sewage. Waterfowl were the major source (68 to 99%) of periphyton E. coli strains that could be identified. Several periphyton E. coli isolates were genotypically identical (≥92% similarity), repeatedly isolated over time, and unidentified when compared to the source library, suggesting that these strains were naturalized members of periphyton communities. If the unidentified E. coli strains from periphyton were added to the known source library, then 57% to 81% of E. coli strains from overlying waters could be identified, with waterfowl (15 to 67%), periphyton (6 to 28%), and sewage effluent (8 to 28%) being the major potential sources. Inoculated E. coli rapidly colonized natural periphyton in laboratory microcosms and persisted for several weeks, and some cells were released to the overlying water. Our results indicate that E. coli from periphyton released into waterways confounds the use of this bacterium as a reliable indicator of recent fecal pollution.  相似文献   

15.
Impact of rpoS Deletion on Escherichia coli Biofilms   总被引:6,自引:0,他引:6       下载免费PDF全文
Slow growth has been hypothesized to be an essential aspect of bacterial physiology within biofilms. In order to test this hypothesis, we employed two strains of Escherichia coli, ZK126 (ΔlacZ rpoS+) and its isogenic ΔrpoS derivative, ZK1000. These strains were grown at two rates (0.033 and 0.0083 h−1) in a glucose-limited chemostat which was coupled either to a modified Robbins device containing plugs of silicone rubber urinary catheter material or to a glass flow cell. The presence or absence of rpoS did not significantly affect planktonic growth of E. coli. In contrast, biofilm cell density in the rpoS mutant strain (ZK1000), as measured by determining the number of CFU per square centimeter, was reduced by 50% (P < 0.05). Deletion of rpoS caused differences in biofilm cell arrangement, as seen by scanning confocal laser microscopy. In reporter gene experiments, similar levels of rpoS expression were seen in chemostat-grown planktonic and biofilm populations at a growth rate of 0.033 h−1. Overall, these studies suggest that rpoS is important for biofilm physiology.  相似文献   

16.
Three Escherichia coli strains, two recA strains (DH1 and YK537) and one recA+ strain (KS476) harboring human proapo A-I expression plasmid pUS(pAI), were cultivated in fed-batch mode using a synthetic medium and the amounts of human proapo A-I accumulation were compared under various cultivation conditions. In the expression plasmid, nine proapo A-I genes were tandemly ligated downstream of the tac promoter. Experimental results indicated that selection of the host strain and cultivation temperature was important. Among the three E. coli strains checked, strain DH1 yielded the most effective production of human proapo A-I at 30°C.  相似文献   

17.
Inactivation of the gene encoding the periplasmic protease DegP confers a high-temperature-sensitive phenotype in Escherichia coli. We have previously demonstrated that a degP mutant of E. coli strain CBM (W3110 pldA1) is not temperature sensitive and showed that this was most likely due to constitutive activation of the sigma E and Cpx extracytoplasmic stress regulons in the parent strain. In this study, further characterization of this strain revealed a previously unknown cryptic mutation that rescued the degP temperature-sensitive phenotype by inducing the extracytoplasmic stress regulons. We identified the cryptic mutation as an 11-bp deletion of nucleotides 1884 to 1894 of the adenylate cyclase-encoding cyaA gene (cyaAΔ11). The mechanism in which cyaAΔ11 induces the sigma E and Cpx regulons involves decreased activity of the mutant adenylate cyclase. Addition of exogenous cyclic AMP (cAMP) to the growth medium of a cyaAΔ11 mutant strain that contains a Cpx- and sigma E-inducible degP-lacZ reporter fusion decreased β-galactosidase expression to levels observed in a cyaA+ strain. We also found that a cyaA null mutant displayed even higher levels of extracytoplasmic stress regulon activation compared to a cyaAΔ11 mutant. Thus, we conclude that the lowered concentration of cAMP in cyaA mutants induces both sigma E and Cpx extracytoplasmic stress regulons and thereby rescues the degP temperature-sensitive phenotype.  相似文献   

18.
Glycine betaine stimulates the growth rate of various bacteria in high osmolarity medium. In our studies, glycine betaine stimulated the growth rate of Escherichia coli K 12 in minimal medium with normal osmolarity at alkaline pH (pH 8.2). Betaine also caused a reduction in the intracellular pools of K+ and low molecular weight thiols in E. coli growing both in medium with high osmolarity and at alkaline pH. These effects of betaine were absent at pH 7.0. In cells growing in high osmolarity medium, 10 mM sodium acetate or 10 M N-ethylmaleimide reduced expression of the osmosensitive gene proU to the same extent as treatment with betaine; however, under these conditions, sodium acetate and N-ethylmaleimide did not stimulate the growth of E. coli. It is proposed that low molecular weight thiols and intracellular pH may participate in the response of E. coli to betaine.  相似文献   

19.
Approximately 280 Escherichia coli isolates were isolated from a bovine feedlot at the University of Connecticut campus via enrichment in lauryl tryptose broth and random selection from MacConkey plates. The E. coli subspecies diversity was estimated by employing whole-cell BOX-PCR genomic fingerprints. A total of 89 distinct operational taxonomic units (OTUs) were identified by employing a criterion of 85% fingerprint similarity as a surrogate for an OTU, while the Chao1 index estimated the E. coli population richness at 128 OTUs. One genotype (at a similarity level of 60%) dominated the population at 66% regardless of sampling depth or location, while no significant vertical distribution pattern was observed in terms of genotype, mobility, antibiotic resistance profile, or biofilm-forming ability. Motility, measured by a soft agar assay, had a very broad range among the E. coli population and was positively correlated with biofilm-forming ability in minimal medium (Spearman's rank correlation coefficient r = 0.619, P < 10−4) but not in Luria broth. Only an estimated 48% of the population possessed gene agn43, which encodes Ag43, a phase-variable outer membrane protein that has been implicated in biofilm formation in minimal medium. We observed significantly more biofilm formation in both minimal medium and Luria broth for agn43+ strains, with a larger effect in minimal medium. This study represents an exhaustive inventory of extant E. coli population diversity at a bovine feedlot and reveals significant subspecies heterogeneity in interfacial behavior.  相似文献   

20.
In this study, we have investigated the ability of detoxified Shiga toxin (Stx)-converting bacteriophages Φ3538 (Δstx2::cat) (H. Schmidt et al., Appl. Environ. Microbiol. 65:3855-3861, 1999) and H-19B::Tn10d-bla (D. W. Acheson et al., Infect. Immun. 66:4496-4498, 1998) to lysogenize enteropathogenic Escherichia coli (EPEC) strains in vivo. We were able to transduce the porcine EPEC strain 1390 (O45) with Φ3538 (Δstx2::cat) in porcine ligated ileal loops but not the human EPEC prototype strain E2348/69 (O127). Neither strain 1390 nor strain E2348/69 was lysogenized under these in vivo conditions when E. coli K-12 containing H-19B::Tn10d-bla was used as the stx1 phage donor. The repeated success in the in vivo transduction of an Stx2-encoding phage to a porcine EPEC strain in pig loops was in contrast to failures in the in vitro trials with these and other EPEC strains. These results indicate that in vivo conditions are more effective for transduction of Stx2-encoding phages than in vitro conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号