首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
p38 protein kinase is activated by hyperosmotic shock, participates in the regulation of cell volume sensitive transport and metabolism and is involved in the regulation of various physiological functions including cell proliferation and apoptosis. Similar to apoptosis of nucleated cells, erythrocytes may undergo suicidal death or eryptosis, which is paralleled by cell shrinkage and cell membrane scrambling with phosphatidylserine exposure at the cell surface. Triggers of eryptosis include hyperosmotic shock, which increases cytosolic Ca(2+) activity and ceramide formation. The present study explored whether p38 kinase is expressed in human erythrocytes, is activated by hyperosmotic shock and participates in the regulation of eryptosis. Western blotting was utilized to determine phosphorylation of p38 kinase, forward scatter to estimate cell volume, annexin V binding to depict phosphatidylserine exposure and Fluo3 fluorescence to estimate cytosolic Ca(2+) activity. As a result, erythrocytes express p38 kinase, which is phosphorylated upon osmotic shock (+550 mM sucrose). Osmotic shock decreased forward scatter, increased annexin V binding and increased Fluo3 fluorescence, all effects significantly blunted by the p38 kinase inhibitors SB203580 (2 μM) and p38 Inh III (1 μM). In conclusion, p38 kinase is expressed in erythrocytes and participates in the machinery triggering eryptosis following hyperosmotic shock.  相似文献   

2.
Erythrocyte injury such as osmotic shock, oxidative stress or energy depletion stimulates the formation of prostaglandin E2 through activation of cyclooxygenase which in turn activates a Ca2+ permeable cation channel. Increasing cytosolic Ca2+ concentrations activate Ca2+ sensitive K+ channels leading to hyperpolarization, subsequent loss of KCl and (further) cell shrinkage. Ca2+ further stimulates a scramblase shifting phosphatidylserine from the inner to the outer cell membrane. The scramblase is sensitized for the effects of Ca2+ by ceramide which is formed by a sphingomyelinase following several stressors including osmotic shock. The sphingomyelinase is activated by platelet activating factor PAF which is released by activation of phospholipase A2. Phosphatidylserine at the erythrocyte surface is recognised by macrophages which engulf and degrade the affected cells. Moreover, phosphatidylserine exposing erythrocytes may adhere to the vascular wall and thus interfere with microcirculation. Erythrocyte shrinkage and phosphatidylserine exposure ('eryptosis') mimic features of apoptosis in nucleated cells which however, involves several mechanisms lacking in erythrocytes. In kidney medulla, exposure time is usually too short to induce eryptosis despite high osmolarity. Beyond that high Cl- concentrations inhibit the cation channel and high urea concentrations the sphingomyelinase. Eryptosis is inhibited by erythropoietin which thus extends the life span of circulating erythrocytes. Several conditions trigger premature eryptosis thus favouring the development of anemia. On the other hand, eryptosis may be a mechanism of defective erythrocytes to escape hemolysis. Beyond their significance for erythrocyte survival and death the mechanisms involved in 'eryptosis' may similarly contribute to apoptosis of nucleated cells.  相似文献   

3.
Effect of anandamide on erythrocyte survival.   总被引:1,自引:0,他引:1  
The endocannabinoid anandamide (Arachidonylethanolamide, AEA) is known to induce apoptosis in a wide variety of nucleated cells. The present study explored whether anandamide induces suicidal death of erythrocytes or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine exposure at the erythrocyte surface. Eryptotic cells are phagocytosed and thus cleared from circulating blood. Triggers of eryptosis include increase of cytosolic Ca2+ activity, formation of PGE(2), oxidative stress and excessive cell shrinkage. Erythrocyte Ca2+ activity was estimated from Fluo3 fluorescence, phosphatidylserine exposure from annexin V binding, and erythrocyte volume from forward scatter in FACS analysis. Exposure of erythrocytes to anandamide (= 2.5 microM) increased cytosolic Ca2+ activity, enhanced the percentage of annexin V binding erythrocytes and decreased erythrocyte forward scatter, effects significantly blunted in the presence of cycloxygenase inhibitors acetylsalicylic acid (50 microM) or ibuprofen (100 microM) and in the nominal absence of extracellular Ca2+. Anandamide further enhanced the stimulating effects of hypertonic (addition of 550 mM sucrose) or isotonic (isosmotic replacement of Cl- with gluconate) cell shrinkage on annexin V binding. The present observations demonstrate that anandamide increases cytosolic Ca2+ activity, thus leading to cell shrinkage and cell membrane scrambling of mature erythrocytes.  相似文献   

4.
The natural nutrient component Curcumin with anti-inflammatory and antitumor activity has previously been shown to stimulate apoptosis of several nucleated cell types. The present study has been performed to explore whether Curcumin could similarly induce suicidal death of erythrocytes or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine exposure at the erythrocyte surface. Phosphatidylserine exposing cells are phagocytosed and thus rapidly cleared from circulating blood. Erythrocyte membrane scrambling may be triggered by increase of cytosolic Ca(2+) activity or formation of ceramide. To test for eryptosis, erythrocyte phosphatidylserine exposure has been estimated from annexin V binding, and erythrocyte volume from forward scatter in FACS analysis. Exposure of erythrocytes to Curcumin (= 1 microM) increased annexin V binding and decreased forward scatter, pointing to phosphatidylserine exposure at the cell surface and cell shrinkage. According to Fluo3 fluorescence Curcumin increased cytosolic Ca(2+) activity and according to immunofluorescence Curcumin increased ceramide formation. As shown previously, hypertonic shock (addition of 550mM sucrose), chloride removal and glucose depletion decreased the forward scatter and increased annexin V binding. The effects on annexin binding were enhanced in the presence of Curcumin. Exposure to Curcumin did, however, not significantly enhance the shrinking effect of hypertonic shock or Cl(-) removal and reversed the shrinking effect of glucose withdrawal. The present observations disclose a proeryptotic effect of Curcumin which may affect the life span of circulating erythrocytes.  相似文献   

5.
Prostaglandin-E2 (PGE2) is known to trigger suicidal death of nucleated cells (apoptosis) and enucleated erythrocytes (eryptosis). In erythrocytes PGE2 induced suicidal cell death involves activation of nonselective cation channels leading to Ca2+ entry followed by cell shrinkage and triggering of Ca2+ sensitive cell membrane scrambling with phosphatidylserine (PS) exposure at the cell surface. The present study was performed to explore whether PGE2 induces apoptosis of nucleated cells similarly through cation channel activation and to possibly disclose the molecular identity of the cation channels involved. To this end, Ca2+ activity was estimated from Fluo3 fluorescence, mitochondrial potential from DePsipher fluorescence, phosphatidylserine exposure from annexin binding, caspase activation from caspAce fluorescence, cell volume from FACS forward scatter, and DNA fragmentation utilizing a photometric enzyme immunoassay. Stimulation of K562 human leukaemia cells with PGE2 (50 microM) increased cytosolic Ca2+ activity, decreased forward scatter, depolarized the mitochondrial potential, increased annexin binding, led to caspase activation and resulted in DNA fragmentation. Gene silencing of the Ca2+-permeable transient receptor potential cation channel TRPC7 significantly blunted PGE2-induced triggering of PS exposure and DNA fragmentation. In conclusion, K562 cells express Ca2+-permeable TRPC7 channels, which are activated by PGE2 and participate in the triggering of apoptosis.  相似文献   

6.
Blebbistatin, a myosin II inhibitor, interferes with myosin-actin interaction and microtubule assembly. By influencing cytoskeletal dynamics blebbistatin counteracts apoptosis of several types of nucleated cells. Even though lacking nuclei and mitochondria, erythrocytes may undergo suicidal cell death or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine exposure at the cell surface. Triggers of eryptosis include energy depletion and osmotic shock, which enhance cytosolic Ca(2+) activity with subsequent Ca(2+)-sensitive cell shrinkage and cell membrane scrambling. The present study explored the effect of blebbistatin on eryptosis. Cell membrane scrambling was estimated from binding of annexin V to phosphatidylserine at the erythrocyte surface, cell volume from forward scatter in fluorescence-activated cell sorting analysis and cytosolic Ca(2+) concentration from Fluo3 fluorescence. Exposure to blebbistatin on its own (1-50 μM) did not significantly modify cytosolic Ca(2+) concentration, forward scatter, or annexin V binding. Glucose depletion (48 h) was followed by a significant increase of Fluo3 fluorescence and annexin V binding, effects significantly blunted by blebbistatin (Fluo3 fluorescence ≥ 25 μM, annexin V binding ≥ 10 μM). Osmotic shock (addition of 550 mM sucrose) again significantly increased Fluo3 fluorescence and annexin binding, effects again significantly blunted by blebbistatin (Fluo3 fluorescence ≥ 25 μM, annexin V binding ≥ 25 μM). The present observations disclose a novel effect of blebbistatin, i.e., an influence on Ca(2+) entry and suicidal erythrocyte death following energy depletion and osmotic shock.  相似文献   

7.
A series of 16 synthetic scramblase candidates were prepared from a tris(aminoethyl)amine (TREN) scaffold and evaluated for ability to facilitate translocation of fluorescent phospholipid probes across vesicle membranes and endogenous phosphatidylserine across the plasma membrane of nucleated cells. More than half of the compounds were found to greatly accelerate phospholipid translocation in vesicles. However, they were generally unable to induce large increases in the amount of phosphatidylserine on the surface of nucleated mammalian cells, which contrasts with previous results using erythrocytes. Fluorescence microscopy showed that the synthetic scramblases are rapidly trafficked out of the cell plasma membrane and into the membranes of internal organelles. Future molecular designs of synthetic scramblases should focus on structures that are more amphiphilic, a structural feature that is expected to increase plasma membrane residence time.  相似文献   

8.
Lipid molecules in lipoprotein surfaces exchange with their counterparts in cell plasma membranes. In human or experimental liver disease, plasma lipoprotein surfaces are enriched in cholesterol and deficient in arachidonate; corresponding alterations occur in membrane lipids of erythrocytes. To determine whether similar changes take place in membranes of nucleated cells, the lipid content of plasma and of erythrocyte, liver and kidney membranes was measured in rats with acute (3-day) galactosamine-induced hepatitis or chronic (3-week) biliary obstruction. In both models of liver injury the cholesterol:phospholipid ratio in plasma and in erythrocytes was significantly increased (P less than 0.001). Although this ratio was also elevated in liver and kidney microsomes, only in liver microsomes of obstructed rats was the increase significant (P less than 0.001). However, the cholesterol:phospholipid ratio of kidney brush-border membranes, was significantly higher in bile-duct-ligated rats; presumably, compensating mechanisms limit cholesterol accumulation in intracellular membranes. Kidney brush-border membranes from obstructed rats were deficient in arachidonate as were plasma and erythrocytes. However, arachidonate levels were unchanged in kidney microsomes; renal delta 6-desaturase, the rate-limiting enzyme in the conversion of linoleic acid to arachidonic acid, was increased by 50% (P less than 0.001) and may have counteracted a reduced supply of exogenous lipoprotein arachidonate. We conclude that in experimental liver disease lipoprotein-induced lipid abnormalities can occur in renal membranes, although compensatory mechanisms may operate; the alterations seen, cholesterol accumulation and arachidonate depletion, would be expected to interfere with sodium transport and prostaglandin production, respectively. Our findings support the hypothesis that lipid abnormalities in kidney membranes contribute to the renal dysfunction which is a frequent complication of human liver disease.  相似文献   

9.
Autoimmunity is associated with defective phagocytic clearance of apoptotic cells. IgM deficient mice exhibit an autoimmune phenotype consistent with a role for circulating IgM antibodies in apoptotic cell clearance. We have extensively characterised IgM binding to non-apoptotic and apoptotic mouse thymocytes and human Jurkat cells using flow cytometry, confocal imaging and electron microscopy. We demonstrate strong specific IgM binding to a subset of Annexin-V (AnnV)+PI (Propidium Iodide)+ apoptotic cells with disrupted cell membranes. Electron microscopy studies indicated that IgM+AnnV+PI+ apoptotic cells exhibited morphologically advanced apoptosis with marked plasma membrane disruption compared to IgM-AnnV+PI+ apoptotic cells, suggesting that access to intracellular epitopes is required for IgM to bind. Strong and comparable binding of IgM to permeabilised non-apoptotic and apoptotic cells suggests that IgM bound epitopes are ''apoptosis independent'' such that IgM may bind any cell with profound disruption of cell plasma membrane integrity. In addition, permeabilised erythrocytes exhibited significant IgM binding thus supporting the importance of cell membrane epitopes. These data suggest that IgM may recognize and tag damaged nucleated cells or erythrocytes that exhibit significant cell membrane disruption. The role of IgM in vivo in conditions characterized by severe cell damage such as ischemic injury, sepsis and thrombotic microangiopathies merits further exploration.  相似文献   

10.
Similar to nucleated cells, erythrocytes may undergo suicidal death or eryptosis, which is characterized by cell shrinkage, cell membrane blebbing and cell membrane phospholipid scrambling. Eryptotic cells are removed and thus prevented from undergoing hemolysis. Eryptosis is stimulated by Ca(2+) following Ca(2+) entry through unspecific cation channels. Ca(2+) sensitivity is enhanced by ceramide, a product of acid sphingomyelinase. Eryptosis is triggered by hyperosmolarity, oxidative stress, energy depletion, hyperthermia and a wide variety of xenobiotics and endogenous substances. Eryptosis is inhibited by nitric oxide, catecholamines and a variety of further small molecules. Erythropoietin counteracts eryptosis in part by inhibiting the Ca(2+)-permeable cation channels but by the same token may foster formation of erythrocytes, which are particularly sensitive to eryptotic stimuli. Eryptosis is triggered in several clinical conditions such as iron deficiency, diabetes, renal insufficiency, myelodysplastic syndrome, phosphate depletion, sepsis, haemolytic uremic syndrome, mycoplasma infection, malaria, sickle-cell anemia, beta-thalassemia, glucose-6-phosphate dehydrogenase-(G6PD)-deficiency, hereditary spherocytosis, paroxysmal nocturnal hemoglobinuria, and Wilson's disease. Enhanced eryptosis is observed in mice with deficient annexin 7, cGMP-dependent protein kinase type I (cGKI), AMP-activated protein kinase AMPK, anion exchanger AE1, adenomatous polyposis coli APC and Klotho as well as in mouse models of sickle cell anemia and thalassemia. Eryptosis is decreased in mice with deficient phosphoinositide dependent kinase PDK1, platelet activating factor receptor, transient receptor potential channel TRPC6, janus kinase JAK3 or taurine transporter TAUT. If accelerated eryptosis is not compensated by enhanced erythropoiesis, clinically relevant anemia develops. Eryptotic erythrocytes may further bind to endothelial cells and thus impede microcirculation.  相似文献   

11.
The prostaglandin PGE(2), a metabolite of the cyclooxygenase pathway, activates Ca(2+)-permeable cation channels in erythrocyte cell membranes leading to entry of Ca(2+) with subsequent eryptosis, i.e. cell shrinkage, breakdown of phosphatidylserine (PS) asymmetry and membrane blebbing, all features typical for apoptosis in nucleated cells. PS exposing cells are recognized by macrophages, engulfed, degraded and thus cleared from circulating blood. The present study explored whether the specific lipoxygenase inhibitor Bay-Y5884 influences eryptosis. As determined by competitive ELISA, Bay-Y5884 (20 microM) enhanced the release of PGE(2) from human erythrocytes. According to whole-cell patch-clamp, Bay-Y5884 (20 microM) activated nonselective cation channels. The effect of Bay-Y5884 on cation channels was abolished by the cyclooxygenase inhibitor diclophenac (10 microM). Bay-Y5884 (30-40 microM) significantly increased erythrocyte free Ca(2+) concentration and PS exposure as analyzed in flow cytometry by Fluo3 fluorescence and annexin-V binding, respectively. PS exposure triggered by 20 microM (but not by 40 microM) Bay-Y5884 was blunted by cyclooxygenase inhibitors acetylsalicylic acid (50 microM) and diclophenac (10 microM). In conclusion, the lipoxygenase inhibitor Bay-Y5884 enhances erythrocyte PGE(2) formation with subsequent activation of non-selective cation channels, Ca(2+) entry and phospholipid scrambling.  相似文献   

12.
Protein and lipid components of the pigeon erythrocyte membrane.   总被引:1,自引:0,他引:1       下载免费PDF全文
The plasma membrane of the nucleated pigeon erythrocyte was isolated by a method that is simple, reproducible and minimally disruptive, the final preparation consisting of whole cell 'ghosts', recovered at over 40% yield. Alternative methods, which yield membrane fragments, were also tested and some of their possible disadvantages demonstrated. Analysis of the protein components of the isolated membranes by gel elctrophoresis in the presence of sodium dodecyl sulphate revealed that their composition is very similar to that of the proteins of human erythrocyte membranes. However, two major proteins are unique to the nucleated cell membrane; these have apparent mol.wts. of 97000 and 57000. Also, the bands designated 4.2 (74500 mol.wt.) and 6 (35000 mol wt.) by Steck [(1974) J. Cell Biol. 62, 1-19] for the human cell membrane are absent from pigon cell membrane. Glycosylated membrane proteins could not be detected in gels stained with the periodate-Schiff-base procedure. Analysis of membrane phospholipids revealed the same components known to be present in mammalian erythrocytes, though in different proportions. These findings are discussed in the light of known physiological and biochemical differences between avian and mature mammalian erythrocytes.  相似文献   

13.
The major feature of sickle cell anemia is the tendency of erythrocytes to sickle when exposed to decreased oxygen tension and to unsickle when reoxygenated. Irreversible sickle cells (ISCs) are sickle erythrocytes which retain bipolar elongated shapes despite reoxygenation. ISCs are believed to owe their biophysical abnormalities to acquired membrane alterations which decrease membrane deformability. While increased membrane surface viscosity has been measured in ISCs, the lateral dynamics of membrane lipids in these cells have not heretofore been examined. We have measured the lateral diffusion of the lipid analog 3,3'-dioctadecylindocyanine iodide (DiI) in the plasma membrane of intact normal erythrocytes, reversible sickle cells (RSCs), and irreversible sickle cells by fluorescence photobleaching recovery (FPR). The diffusion coefficients +/- standard errors of the mean of DiI in intact normal red blood cells (RBCs), RSCs, and ISCs at 37 degrees C are (8.06 +/- 0.29) X 10(-9) cm2 X s-1, (7.74 +/- 0.22) X 10(-9) cm2 X s-1, and (7.29 +/- 0.24) X 10(-9) cm2 X s-1, respectively. A similar decrease in the diffusion coefficient of DiI in the plasma membranes of the three cell types was observed at 4, 10, 17, 23, and 30 degrees C. ANOVA analysis of the changes in DiI diffusion showed significant differences between the RBC and ISC membranes at all temperatures examined. The characteristic breaks in Arrhenius plots of the diffusion coefficients for the RBCs, RSCs, and ISCs occurred at 20, 19, and 18.6 degrees C, respectively. Photobleaching recovery data were used to estimate (Boullier, J.A., Melnykovich, G. and Barisas, B.G. (1982) Biochim. Biophys. Acta 692, 278-286) the microviscosities of the plasma membranes of the three cell types at 25 degrees C. We find significant differences between our microviscosity values and those obtained in previous fluorescence depolarization studies. However, both methods indicate qualitatively similar differences in membrane microviscosity among the various cell types.  相似文献   

14.
Biochemical studies of the plasma membrane and the cytoskeleton of nucleated erythrocytes are strongly limited by the difficulties encountered in enucleating large quantities of cells. We describe an easily built hydrodynamic system which allows rapid preparation of large amounts of avian and fish erythrocyte plasma membranes. The contents of two 25-ml syringes containing hemolyzed nucleated erythrocytes are forced through four capillaries to a specially designed mixing chamber which fills a collecting syringe. The 50-ml erythrocyte suspension can be processed in 2 s. The high speed flow is achieved with a hand-activated piston. The turbulences in the mixing chamber are carried to an optimal efficiency by the vis-à-vis disposition of the four mixing jets. The enucleated membranes are separated from the nuclei and residual nucleated cells by differential centrifugations. They do not show contamination with nuclear material. Erythrocytes from chicken and trout have been used. They present striking differences in their stability toward hydrodynamic disruption, erythrocytes from chicken being far more stable. Ninety-five percent of trout erythrocytes are enucleated after only one run through the mixing chamber. Two runs performed at the maximal flow rate are necessary to enucleate chicken erythrocytes with a yield of 80%. In the former case most of the purified enucleated plasma membranes are fragmented in small vesicles while they retain a large size in the case of chicken erythrocytes. The proteins of the membranes thus prepared are characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis: we found that erythrocyte membranes from trout are remarkable for their small spectrin content compared to those from chicken.  相似文献   

15.
Ceramide is known to trigger apoptosis of nucleated cells and eryptosis of erythrocytes. Eryptosis is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Besides ceramide, stimulators of eryptosis include increase of cytosolic Ca2+‐activity ([Ca2+]i) and oxidative stress. Ceramide is degraded by acid ceramidase and inhibition of the enzyme similarly triggers apoptosis. The present study explored, whether ceramidase inhibitor Ceranib‐2 induces eryptosis. Flow cytometry was employed to quantify phosphatidylserine‐exposure at the cell surface from annexin‐V‐binding, cell volume from forward scatter, [Ca2+]i from Fluo3‐fluorescence, reactive oxygen species (ROS) from DCF dependent fluorescence, and ceramide abundance utilizing specific antibodies. Hemolysis was estimated from hemoglobin concentration in the supernatant. A 48 h exposure of human erythrocytes to Ceranib‐2 significantly increased the percentage of annexin‐V‐binding cells (≥50 μM) and the percentage of hemolytic cells (≥10 μM) without significantly modifying forward scatter. Ceranib‐2 significantly increased Fluo3‐fluorescence, DCF fluorescence and ceramide abundance. The effect of Ceranib‐2 on annexin‐V‐binding was not significantly blunted by removal of extracellular Ca2+. Ceranib‐2 triggers phospholipid scrambling of the erythrocyte cell membrane, an effect at least in part due to increase of ceramide abundance and induction of oxidative stress, but not dependent on Ca2+ entry. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Eryptosis or apoptosis-like death of erythrocytes is characterized by phosphatidylserine exposure and erythrocyte shrinkage, both typical features of nucleated apoptotic cells. Eryptosis is triggered by activation of nonselective Ca2+-permeable cation channels with subsequent entry of Ca2+ and stimulation of Ca2+-sensitive scrambling of the cell membrane. The channels are activated and thus eryptosis is triggered by Cl removal, osmotic shock, oxidative stress, or glucose deprivation. The present study has been performed to compare cation channel activity and susceptibility to eryptosis in neonatal and adult erythrocytes. Channel activity was determined by patch-clamp analysis, cytosolic Ca2+ activity by fluo-3 fluorescence, phosphatidylserine exposure by FITC-labeled annexin V binding, and cell shrinkage by decrease in forward scatter in fluorescence-activated cell sorting analysis. Prostaglandin E2 (PGE2) formation, cation channel activity, Ca2+ entry, annexin V binding, and decreased forward scatter were triggered by removal of Cl in both adult and neonatal erythrocytes. The effects were, however, significantly blunted in neonatal erythrocytes. Osmotic shock, PGE2, and platelet-activating factor similarly increased annexin V binding and decreased forward scatter, effects again significantly reduced in neonatal erythrocytes. On the other hand, spontaneous and oxidative (addition of tert-butylperoxide) stress-induced eryptosis was significantly larger in neonatal erythrocytes. In conclusion, cation channel activity, Ca2+ leakage, and thus channel-dependent triggering of eryptosis are blunted, whereas spontaneous and oxidative stress-induced eryptosis is more pronounced in neonatal erythrocytes. annexin V; osmotic cell shrinkage; calcium; apoptosis  相似文献   

17.
Herein, using a recently developed hydration-sensitive ratiometric biomembrane probe based on 3-hydroxyflavone (F2N12S) that binds selectively to the outer leaflet of plasma membranes, we compared plasma membranes of living cells and lipid vesicles as model membranes. Through the spectroscopic analysis of the probe response, we characterized the membranes in terms of hydration and polarity (electrostatics). The hydration parameter value in cell membranes was in between the values obtained with liquid ordered (Lo) and liquid disordered (Ld) phases in model membranes, suggesting that cell plasma membranes exhibit a significant fraction of Lo phase in their outer leaflet. Moreover, two-photon fluorescence microscopy experiments show that cell membranes labeled with this probe exhibit a homogeneous lipid distribution, suggesting that the putative domains in Lo phase are distributed all over the membrane and are highly dynamic. Cholesterol depletion affected dramatically the dual emission of the probe suggesting the disappearance of the Lo phase in cell membranes. These conclusions were corroborated with the viscosity sensitive diphenylhexatriene derivative TMA-DPH, showing membrane fluidity in intact cells intermediate between those for Lo and Ld phases in model membranes, as well as a significant increase in fluidity after cholesterol depletion. Moreover, we observed that cell apoptosis results in a similar loss of Lo phase, which could be attributed to a flip of sphingomyelin from the outer to the inner leaflet of the plasma membrane due to apoptosis-driven lipid scrambling. Our data suggest a new methodology for evaluating the Lo phase in membranes of living cells.  相似文献   

18.
Eryptosis, a suicidal death of mature erythrocytes, is characterized by decrease of cell volume, cell membrane blebbing, and breakdown of cell membrane asymmetry with phosphatidylserine exposure at the cell surface. Triggers of eryptosis include increased cytosolic Ca(2+) activity, which could result from activation of Ca(2+)-permeable cation channels. Ca(2+) triggers phosphatidylserine exposure and activates Ca(2+)-sensitive K(+) channels, leading to cellular K(+) loss and cell shrinkage. The cation channels and thus eryptosis are stimulated by Cl(-) removal and inhibited by erythropoietin. The present experiments explored eryptosis in transgenic mice overexpressing erythropoietin (tg6). Erythrocytes were drawn from tg6 mice and their wild-type littermates (WT). Phosphatidylserine exposure was estimated from annexin binding and cell volume from forward scatter in fluorescence-activated cell sorting (FACS) analysis. The percentage of annexin binding was significantly larger and forward scatter significantly smaller in tg6 than in WT erythrocytes. Transgenic erythrocytes were significantly more resistant to osmotic lysis than WT erythrocytes. Cl(-) removal and exposure to the Ca(2+) ionophore ionomycin (1 microM) increased annexin binding and decreased forward scatter, effects larger in tg6 than in WT erythrocytes. The K(+) ionophore valinomycin (10 nM) triggered eryptosis in both tg6 and WT erythrocytes and abrogated differences between genotypes. An increase of extracellular K(+) concentration to 125 mM blunted the difference between tg6 and WT erythrocytes. Fluo-3 fluorescence reflecting cytosolic Ca(2+) activity was larger in tg6 than in WT erythrocytes. In conclusion, circulating erythrocytes from tg6 mice are sensitized to triggers of eryptosis but more resistant to osmotic lysis, properties at least partially due to enhanced Ca(2+) entry and increased K(+) channel activity.  相似文献   

19.
Protein kinase CK1 (casein kinase 1) isoforms are involved in the regulation of various physiological functions including apoptosis. The specific CK1 inhibitor D4476 may either inhibit or foster apoptosis. Similar to apoptosis of nucleated cells, eryptosis, the suicidal death of erythrocytes, is paralleled by cell shrinkage and cell membrane scrambling with phosphatidylserine exposure at the cell surface. Triggers of eryptosis include increase of cytosolic Ca(2+) activity following energy depletion (removal of glucose) or oxidative stress (exposure to the oxidant tert-butyl hydroperoxide [TBOOH]). Western blotting was utilized to verify that erythrocytes express the protein kinase CK1α, and FACS analysis to determine whether the CK1 inhibitor D4476 and CK1α activator pyrvinium pamoate modify forward scatter (reflecting cell volume), annexin V binding (reflecting phosphatidylserine exposure), and Fluo3 fluorescence (reflecting cytosolic Ca(2+) activity). As a result, both, human and murine erythrocytes express CK1 isoform α. Glucose depletion (48 hours) and exposure to 0.3 mM TBOOH (30 minutes) both decreased forward scatter, increased annexin V binding and increased Fluo3 fluorescence. CK1 inhibitor D4476 (10 μM) significantly blunted the decrease in forward scatter, the increase in annexin V binding and the increase in Fluo 3 fluorescence. (R)-DRF053, another CK1 inhibitor, similarly blunted the increase in annexin V binding upon glucose depletion. The CK1α specific activator pyrvinium pamoate (10 μM) significantly enhanced the increase in annexin V binding and Fluo3 fluorescence upon glucose depletion and TBOOH exposure. In the presence of glucose, pyrvinium pamoate slightly but significantly increased Fluo3 fluorescence. In conclusion, CK1 isoform α participates in the regulation of erythrocyte programmed cell death by modulating cytosolic Ca(2+) activity.  相似文献   

20.
Activation of AMP-activated protein kinase (AMPK) upon energy depletion stimulates energy production and limits energy utilization. Erythrocytes lacking AMPK are susceptible to suicidal cell death (eryptosis). A hallmark of eryptosis is cell membrane scrambling with phosphatidylserine exposure at the erythrocyte surface, which can be identified from annexin V-binding. AMPKα1-deficient mice (ampk(-/-)) suffer from anemia due to accelerated clearance of erythrocytes from circulating blood. To determine the link between AMPK and the eryptotic phenotype, we performed a global proteome analysis of erythrocytes from ampk(-/-) mice and wild-type mice using high-accuracy mass spectrometry and label-free quantitation and measured changes of expression levels of 812 proteins. Notably, the p21-activated kinase 2 (PAK2), previously implicated in apoptosis, was detected as downregulated in erythrocytes of ampk(-/-) mice, pointing to its potential role in eryptosis. To validate this, we showed that specific inactivation of PAK2 with the inhibitor IPA3 in human and murine ampk(+/+) erythrocytes increases the binding of annexin V and augments the stimulating effect of glucose deprivation on annexin V-binding. Inhibition of PAK2 failed to significantly modify annexin V-binding in ampk(-/-) erythrocytes, showing that AMPK and PAK2 exert similar phenotypes upon inactivation in erythrocytes. This study presents the first large-scale analysis of protein expression in erythrocytes from AMPKα1-deficient mice and reveals a role of PAK2 kinase in eryptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号