首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prestin was found in the membrane of outer hair cells (OHCs) located in the cochlea of the mammalian inner ear. These cells convert changes in the membrane potential into dimensional changes and (if constrained) to an active electromechanical force. The OHCs provide the ear with the mechanism of amplification and frequency selectivity that is effective up to tens of kHz. Prestin is a crucial part of the motor complex driving OHCs. Other cells transfected with prestin acquire electromechanical properties similar to those in the native cell. While the mechanism of prestin has yet to be fully understood, the charge transfer is its critical component. Here we investigate the effect of the mechanics of the surrounding membrane on electric charge transfer by prestin. We simulate changes in the membrane mechanics via the corresponding changes in the free energy of the prestin system. The free energy gradient enters a Fokker-Planck equation that describes charge transfer in our model. We analyze the effects of changes in the membrane tension and membrane elastic moduli. In the case of OHC, we simulate changes in the longitudinal and/or circumferential stiffness of the cell’s orthotropic composite membrane. In the case of cells transfected with prestin, we vary the membrane areal modulus. As a result, we show the effects of the membrane mechanics on the probabilistic characteristics of prestin-associated charge transfer for both stationary and high-frequency conditions. We compare our computational results with the available experimental data and find good agreement with the experiment.  相似文献   

2.
Long-chain n-alcohols decrease the main phase-transition temperature of lipid vesicle membranes at low concentrations but increase it at high concentrations. The nonlinear phenomenon is unrelated to the interdigitation and is analyzed by assuming that alcohols form solid solutions with solid as well as liquid phases. The biphasic response originates from the balance of the free energy difference of alcohols in the liquid and solid membranes (delta gA) and the alcohol-lipid interaction free energy difference (delta u) between the two phases. When delta gA less than 0 and delta u greater than 0, or delta gA less than delta u less than 0, the transition temperature decreases monotonously according to the increase in the alcohol concentration. When delta gA greater than 0 and delta u less than 0, or delta gA greater than delta u greater than 0, it increases monotonously. Biphasic response occurs with a minimum temperature when delta u greater than delta gA greater than 0, and with a maximum temperature when delta u less than delta gA less than 0. When the alcohol carbon-chain length becomes closer to the lipid carbon-chain length, delta u is equalized by delta gA, and the temperature minimum of the main transition is shifted to extremely low alcohol concentrations. Hence, long-chain alcohols predominantly elevate the main transition temperature and lose their anesthetic potency. High pressure decreased both delta gA and delta u. Presumably, high pressure improves the packing efficiency of liquid membranes and decreases the difference between the solid and liquid membrane properties.  相似文献   

3.
The most naive perturbation method to estimate interfacial free energies is based on the assumption that the interface between coexisting phases is infinitely sharp. Although this approximation does not yield particularly accurate estimates for the liquid–vapor surface tension, we find that it works surprisingly well for the interface between a dense liquid and a solid. As an illustration we estimate the liquid–solid interfacial free energy of a Lennard-Jones system with truncated and shifted interactions and compare the results with numerical data that have been reported in the literature. We find that the agreement between theory and simulation is excellent. In contrast, if we apply the same procedure to estimate the variation of the liquid–vapor surface tension, for different variants of the Lennard-Jones potential (truncated/shifted/force-shifted), we find that the agreement with the available simulation data is, at best, fair. The present method makes it possible to obtain quick and easy estimate of the effect on the surface free energy of different potential-truncation schemes used in computer simulations.  相似文献   

4.
General anesthetics are known to cause depression of the freezing point of transitions in biomembranes. This is a consequence of ideal mixing of the anesthetic drugs in the membrane fluid phase and exclusion from the solid phase. Such a generic law provides physical justification of the famous Meyer-Overton rule. We show here that general anesthetics, barbiturates, and local anesthetics all display the same effect on melting transitions. Their effect is reversed by hydrostatic pressure. Thus, the thermodynamic behavior of local anesthetics is very similar to that of general anesthetics. We present a detailed thermodynamic analysis of heat capacity profiles of membranes in the presence of anesthetics. Using this analysis, we are able to describe experimentally observed calorimetric profiles and predict the anesthetic features of arbitrary molecules. In addition, we discuss the thermodynamic origin of the cutoff effect of long-chain alcohols and the additivity of the effect of general and local anesthetics.  相似文献   

5.
General anesthetics are known to cause depression of the freezing point of transitions in biomembranes. This is a consequence of ideal mixing of the anesthetic drugs in the membrane fluid phase and exclusion from the solid phase. Such a generic law provides physical justification of the famous Meyer-Overton rule. We show here that general anesthetics, barbiturates, and local anesthetics all display the same effect on melting transitions. Their effect is reversed by hydrostatic pressure. Thus, the thermodynamic behavior of local anesthetics is very similar to that of general anesthetics. We present a detailed thermodynamic analysis of heat capacity profiles of membranes in the presence of anesthetics. Using this analysis, we are able to describe experimentally observed calorimetric profiles and predict the anesthetic features of arbitrary molecules. In addition, we discuss the thermodynamic origin of the cutoff effect of long-chain alcohols and the additivity of the effect of general and local anesthetics.  相似文献   

6.
7.
The membrane-buffer partition coefficient of tetracaine was measured by direct ultraviolet spectrophotometry in dimyristoylphosphatidylcholine unilamellar liposomes at temperatures above and below the main phase transition. The partition coefficients of uncharged tetracaine to solid-gel (18 degrees C) and liquid-crystal (30 degrees C) membranes were 6.9 x 10(4) and 1.2 x 10(5), respectively. Despite the general assumption that local anesthetic binding to the solid membrane is negligible, this study showed that the solid membrane binding amounts to 57.5% of the liquid membrane binding. Binding of the charged form to the liquid or solid membrane was not detectable under the present experimental condition of 0.03 mM tetracaine bulk concentration. The present method measures metachromasia of local anesthetics when bound to lipid membranes. Its advantage is that the separation of the vesicles from the solution is not required. A linearized equation is presented that estimates the partition coefficient or binding constant graphically from a linear plot of the absorbance data. The method is applicable for estimation of drug partition when a measurable spectral change occurs due to complex formation.  相似文献   

8.
The main phase transition of phospholipid bilayers is a property expressed by the order-disorder conformational change of the lipid tails. Nevertheless, with ionizable phospholipids, changes in the surface charge have large effects on the membrane properties. The free energy of a charged phospholipid membrane depends on the degree of ionization, area per phospholipid molecule, and the temperature. Here, the effect of surface electrostatic charges on the temperature and the enthalpy of the main phase transition of dimyristoylphosphatidic acid vesicle membranes is analyzed. A simple equation is presented that describes the relationship among the surface charge density, the phase-transition temperature, the surface area ratio between solid and liquid membranes, and the excess enthalpy. The theory indicated that the pH-induced shift in the excess enthalpy is attributable to the change in the surface area ratio between the solid and liquid membranes.  相似文献   

9.
Close to melting transitions it is possible to propagate solitary electromechanical pulses which reflect many of the experimental features of the nerve pulse including mechanical dislocations and reversible heat production. Here we show that one also obtains the possibility of periodic pulse generation when the constraint for the nerve is the conservation of the overall length of the nerve. This condition generates an undershoot beneath the baseline ('hyperpolarization') and a 'refractory period', i.e., a minimum distance between pulses. In this paper, we outline the theory for periodic solutions to the wave equation and compare these results to action potentials from the femoral nerve of the locust (Locusta migratoria). In particular, we describe the frequently occurring minimum-distance doublet pulses seen in these neurons and compare them to the periodic pulse solutions.  相似文献   

10.
Cationic local anesthetics decreased the transition temperature of the anionic phospholipid (dimyristoylphosphatidic acid, DMPA) vesicles. The counterion concentration changes the electrical double layer effect, and affects the magnitude of temperature depression caused by anesthetics. From the counterion effect on the transition-temperature depression, the partition coefficients of cationic local anesthetics to liquid-crystalline and solid-gel DMPA membranes were separately estimated. The differences in the partition coefficients between solid-gel and liquid-crystalline membranes correlated to the nerve blocking potencies. There are at least two states in the nerve membranes: resting state at higher temperature and excited state at lower temperature. We speculate that the resting state corresponds to the liquid-crystalline state, and the excited state to the solid-gel state. The difference in the partition coefficients to the resting and excited states is the cause of local anesthesia.  相似文献   

11.
In this paper we calculate surface conformation and deformation free energy associated with the incorporation of gramicidin channels into phospholipid bilayer membranes. Two types of membranes are considered. One is a relatively thin solvent-free membrane. The other is a thicker solvent-containing membrane. We follow the approach used for the thin membrane case by Huang (1986) in that we use smectic liquid crystal theory to evaluate the free energy associated with distorting the membrane to other than a flat configuration. Our approach is different from Huang, however, in two ways. One is that we include a term for surface tension, which Huang did not. The second is that one of our four boundary conditions for solving the fourth-order differential equation describing the free energy of the surface is different from Huang's. The details of the difference are described in the text. Our results confirm that for thin membranes Huang's neglect of surface tension is appropriate. However, the precise geometrical form that we calculate for the surface of the thin membrane in the region of the gramicidin channel is somewhat different from his. For thicker membranes that have to deform to a greater extent to accommodate the channel, we find that the contribution of surface tension to the total energy in the deformed surface is significant. Computed results for the shape of the deformed surface, the total energy in the deformed surface, and the contributions of different components to the total energy, are presented for the two types of membranes considered. These results may be significant for understanding the mechanisms of dimer formation and breakup, and the access resistance for ions entering gramicidin channels.  相似文献   

12.
The antagonizing action of hydrostatic pressure against anesthesia is well known. The present study was undertaken to quantitate the effects of hydrostatic pressure and anesthetics upon the phase-transition temperature of dipalmitoyl phosphatidylcholine vesicles. The drugs used to anesthetize the phospholipid vesicles included an inhalation anesthetic, halothane, a dissociable local anesthetic, lidocaine and an undissociable local anesthetic, benzyl alcohol. All anesthetics decreased the phase-transition temperature dose-dependently. In the case of lidocaine, the depression was pH dependent and only uncharged molecules were effective. The application of hydrostatic pressure increased the phase-transition temperature both in the presence and the absence of anesthetics. The temperature-pressure relationship was linear over the entire pressure range studied up to 340 bars. Through the use of Clapeyron-Clausius equation, the volume change accompanying the phase-transition of the membrane was calculated to be 27.0 cm3/mol. Although the anesthetics decreased the phase-transition temperature, the molar volume change accompanying the phase-transition was not altered. The anesthetics displaced the temperature-pressure lines parallel to each other. The mole fraction of the anesthetics in the liquid crystalline membrane, calculated from the van't Hoff equation, was independent of pressure. This implies that pressure does not displace the anesthetics from the liquid membrane, and the partition of these agents remains constant. The volume change of the anesthetized phospholipid membranes is entirely dependent upon the phase-transition and not on the space occupied by the anesthetics.  相似文献   

13.
Freestanding layered membrane–based devices have broad applications in highly efficient energy‐storage/conversion systems. The liquid–solid interface is considered as a unique yet versatile interface for constructing such layered membrane–based devices. In this review, the authors outline recent developments in the fabrication of soft materials to functionalize layered devices from the aspect of liquid–solid interfacial assembly and engineering arts. Seven liquid–solid interfacial assembly strategies, including flow‐directed, superlattice, solvent‐casting, evaporation‐induced, dip‐coating, spinning, and electrospinning assemblies, are comprehensively highlighted with a focus on their synthetic pathways, formation mechanisms, and interface engineering strategies. Meanwhile, recent representative works on layered membrane–based devices for electrochemical energy applications are presented. Finally, challenges and opportunities of this research area are highlighted in order to stimulate future developments. This review not only offers comprehensive and practical approaches to assemble liquid–solid interfaces with soft materials for various important layered electrochemical energy devices but also sheds lights on fundamental insights by thoughtful discussions on performance enhancement mechanisms of these electrochemical energy systems.  相似文献   

14.
Membrane proteins are known to be solvated and functionally activated by a fixed number of lipid molecules whose multiple binding can be described by Adair-type binding equations. Lipophilic xenobiotics such as general anesthetics may act by competitive displacement of protein-bound lipids. A kinetic equation is now presented for various binding stoichiometries of lipid and xenobiotic, and microscopic binding constants of anesthetics and organic solvents are derived from two independent assay systems for the enhancement of agonist binding to the nicotinic acetylcholine receptor. These constants lead to the first available free energy estimate (-6.4 kcal/mol) for the binding of membrane lipid to an integral membrane protein.  相似文献   

15.
To provide a basis for studying the molecular mechanism of pharmacological action of local anesthetics, we carried out a study of the membrane actions of tetracaine, bupivacaine, lidocaine, prilocaine and procaine. Fluorescence polarization of 12-(9-anthroyloxy)stearic acid (12-AS) and 2-(9-anthroyloxy)stearic acid (2-AS) were used to examine the effects of local anesthetics on differential rotational mobility between polar region and hydrocarbon interior of synaptosomal plasma membrane vesicles (SPMV) isolated from bovine cerebral cortex, and liposomes of total lipids (SPMVTL) and phospholipids (SPMVPL) extracted from the SPMV. The two membrane components differed with respect to 2 and 12 anthroyloxy stearate (2-AS, 12-AS) probes, indicating that a difference in the membrane fluidity may be present. In a dose-dependent manner, tetracaine, bupivacaine, lidocaine, prilocaine and procaine decreased anisotropy of 12-AS in the hydrocarbon interior of the SPMV, SPMVTL and SPMVPL, but tetracaine, bupivacaine, lidocaine and prilocaine increased anisotropy of 2-AS in the membrane interface. These results indicate that local anesthetics have significant disordering effects on hydrocarbon interior of the SPMV, SPMVTL and SPMVPL, but have significant ordering effects on the membrane interface, and thus they could affect the transport of Na+ and K+ in nerve membranes, leading to anesthetic action.  相似文献   

16.
It is a common observation that cis-unsaturated and branched chain fatty acids, which are usually liquid, affect membrane function differently from saturated and trans-unsaturated fatty acids, which are usually solid. We also found that the former are much more potent than the latter in inhibiting viral hemolytic activity. A search for the origin of this difference revealed a correlation between inhibition and equilibrium surface pressure (the surface pressure at the air/water interface of a solution of the substance in question). Using a simple but rigorous thermodynamic analysis, we show that penetration of a lipid bilayer is correlated with equilibrium surface pressure of the penetrating molecule. We therefore conclude that an important reason for the difference in effects of liquid and solid fatty acids on membranes is the greater penetrability of the former relative to the latter. We suggest that attributing such effects to fluidity changes in the membrane should await demonstration of actual intramonolayer residence of the fatty acid in the membrane. The thermodynamic analysis is readily generalized and, in the absence of specific interactions between penetration and bilayer molecules, provides a convenient method for predicting membrane penetration by virtually any type of exogenous molecule.  相似文献   

17.
Computer simulations of four lipid membranes of different compositions, namely neat DPPC and PSM, and equimolar DPPC-cholesterol and PSM-cholesterol mixtures, are performed in the presence and absence of the general anesthetics diethylether and sevoflurane both at 1 and 600 bar. The results are analyzed in order to identify membrane properties that are potentially related to the molecular mechanism of anesthesia, namely that change in the same way in any membrane with any anesthetics, and change oppositely with increasing pressure. We find that the lateral lipid density satisfies both criteria: it is decreased by anesthetics and increased by pressure. This anesthetic-induced swelling is attributed to only those anesthetic molecules that are located close to the boundary of the apolar phase. This lateral expansion is found to lead to increased lateral mobility of the lipids, an effect often thought to be related to general anesthesia; to an increased fraction of the free volume around the outer preferred position of anesthetics; and to the decrease of the lateral pressure in the nearby range of the ester and amide groups, a region into which anesthetic molecules already cannot penetrate. All these changes are reverted by the increase of pressure. Another important finding of this study is that cholesterol has an opposite effect on the membrane properties than anesthetics, and, correspondingly, these changes are less marked in the presence of cholesterol. Therefore, changes in the membrane that can lead to general anesthesia are expected to occur in the membrane domains of low cholesterol content.  相似文献   

18.
We present the results of free energy perturbation calculations on binding and catalysis of a tetrapeptide substrate, acetyl-Phe-Ala-Ala-Phe-NMe, by native subtilisin BPN' and a subtilisin BPN' mutant (Thr220----Ala220). The calculated difference in the free energy of binding was 0.70 +/- 0.72 kcal/mol. The calculated difference in the free energy of catalysis was 1.48 +/- 0.89 kcal/mol. These calculated values compare well with the experimental values in which another substrate, succinyl-Ala-Ala-Pro-Phe-p-nitroanilide, was used. These findings suggest that Thr220 is more important for catalysis than substrate binding.  相似文献   

19.
The effects of local anesthetics (tetracaine, procaine and lidocaine) on self-sustained electrical oscillations were studied for a lipid membrane comprising dioleyl phosphate (DOPH). This model membrane exhibits oscillation of the membrane potential in a manner similar to that of nerve membranes, i.e., repetitive firing, in the presence of an ion-concentration gradient, on the application of d.c. electric current. Relatively weak anesthetics such as procaine and lidocaine increased the frequency of self-sustained oscillation, and finally induced aperiodic, rapid oscillation. The strong anesthetic tetracaine inhibited oscillation.  相似文献   

20.
R R Rando 《Biochemistry》1991,30(3):595-602
Biology depends on the coupling of the free energy of hydrolysis of phosphate esters, such as ATP, to drive processes which would otherwise be thermodynamically unfavorable. Carboxyl esters are like phosphate esters in their ability to hydrolyze with substantial negative free energies, enabling them to participate in group transfer processes as well. In particular, membrane phospholipids constitute an enormous store of potential energy that could be used to fuel energetically unfavorable processes. One such process involves the biosynthesis of 11-cis-retinal, the chromophore of rhodopsin, from all-trans-retinol (vitamin A). The difference in free energy between an all-trans retinoid and its corresponding 11-cis retinoid is approximately 4 kcal/mol. This energy is provided for in a minimally two-step process involving membrane phospholipids as the energy source. First, all-trans-retinol is esterified in the retinal pigment epithelium by lecithin retinol acyl transferase (LRAT) to produce an all-trans-retinyl ester. Second, this ester is transformed into 11-cis-retinol by an isomerohydrolase in a process that couples the negative free energy of hydrolysis of the acyl ester to the formation of the strained 11-cis-retinol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号