首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The largest single class of drug targets is the G protein-coupled receptor (GPCR) family. Modern high-throughput methods for drug discovery require working with pure protein, but this has been a challenge for GPCRs, and thus the success of screening campaigns targeting soluble, catalytic protein domains has not yet been realized for GPCRs. Therefore, most GPCR drug screening has been cell-based, whereas the strategy of choice for drug discovery against soluble proteins is HTS using purified proteins coupled to structure-based drug design. While recent developments are increasing the chances of obtaining GPCR crystal structures, the feasibility of screening directly against purified GPCRs in the unbound state (apo-state) remains low. GPCRs exhibit low stability in detergent micelles, especially in the apo-state, over the time periods required for performing large screens. Recent methods for generating detergent-stable GPCRs, however, offer the potential for researchers to manipulate GPCRs almost like soluble enzymes, opening up new avenues for drug discovery. Here we apply cellular high-throughput encapsulation, solubilization and screening (CHESS) to the neurotensin receptor 1 (NTS1) to generate a variant that is stable in the apo-state when solubilized in detergents. This high stability facilitated the crystal structure determination of this receptor and also allowed us to probe the pharmacology of detergent-solubilized, apo-state NTS1 using robotic ligand binding assays. NTS1 is a target for the development of novel antipsychotics, and thus CHESS-stabilized receptors represent exciting tools for drug discovery.  相似文献   

2.
To investigate the structural role played by isostructural unbranched alkyl‐chains on the conformational ensemble and stability of β‐turn structures, the conformational properties of a designed model peptide: Plm‐Pro‐Gly‐Pda ( 1 , Plm: H3C—(CH2)14—CONH—; Pda: —CONH— (CH2)14—CH3) have been examined and compared with the parent peptide: Boc‐Pro‐Gly‐NHMe ( 2 , Boc: tert‐butoxycarbonyl; NHMe: N‐methylamide). The characteristic 13C NMR chemical‐shifts of the Pro Cβ and Cγ resonances ascertained the incidence of an all‐trans peptide‐bond in low polarity deuterochloroform solution. Using FTIR and 1H NMR spectroscopy, we establish that apolar alkyl‐chains flanking a β‐turn promoting Pro‐Gly sequence impart definite incremental stability to the well‐defined hydrogen‐bonded structure. The assessment of 1H NMR derived thermodynamic parameters of the hydrogen‐bonded amide‐NHs via variable temperature indicate that much weaker hydrophobic interactions do contribute to the stability of folded reverse turn structures. The far‐UV CD spectral patterns of 1 and 2 in 2,2,2‐trifluoroethanol are consistent with Pro‐Gly specific type II β‐turn structure, concomitantly substantiate that the flanking alkyl‐chains induce substantial bias in enhanced β‐turn populations. In view of structural as well as functional importance of the Pro‐Gly mediated secondary structures, besides biochemical and biological significance of proteins lipidation via myristoylation or palmytoilation, we highlight potential convenience of the unbranched Plm and Pda moieities not only as main‐chain N‐ and C‐terminal protecting groups but also to mimic and stabilize specific isolated secondary and supersecondary structural components frequently observed in proteins and polypeptides. © 2013 Wiley Periodicals, Inc. Biopolymers 99: 419–426, 2013.  相似文献   

3.
Abstract: Transfected Chinese hamster ovary cells were used as a model for the study of the desensitization of the neurotensin receptor at the second messenger level. Stimulation with nanomolar concentrations of neurotensin elicited rapid rises in the cytosolic calcium concentration ([Ca2+]i), which remained elevated throughout the peptide application. A significant response was already detected with neurotensin concentrations as low as 0.01 nM. This high efficiency of neurotensin in mediating this calcium response contrasts with the nanomolar affinity of the peptide for its receptor measured in binding experiments. Evidence indicated that the initial elevation of the [Ca2+]i resulted from release of Ca2+ from intracellular stores, whereas the sustained response involved an influx of extracellular origin. Return to the basal level was only reached after extensive washing of the peptide or its displacement with the neurotensin receptor antagonist SR48692. After washing, further stimulations were still able to mediate an increase in the [Ca2+]i, indicating an apparent absence of rapid desensitization of the intracellular signaling pathway that mediates calcium mobilization. In contrast with this absence of response desensitization, the neurotensin receptors were found to internalize after stimulation with the peptide. This internalization was maximal after 30 min and accounted for ~70% of the number of neurotensin binding sites located at the cell surface. These results indicate that despite the functional properties of the rat neurotensin receptor present in Chinese hamster ovary cells after transfection, the intracellular signaling pathway triggered by stimulation with neurotensin seems to be resistant to desensitization. This might be related to the high efficiency of the intracellular signaling pathway coupled to the neurotensin receptor observed in these cells. A possible absence of desensitization of the neurotensin receptor itself is also discussed.  相似文献   

4.
5.
Dimerization of G protein‐coupled receptors (GPCRs) is crucial for receptor function including agonist affinity, efficacy, trafficking and specificity of signal transduction, including G protein coupling. Emerging data suggest that the cardiovascular system is the main target of apelin, which exerts an overall neuroprotective role, and is a positive regulator of angiotensin‐converting enzyme 2 (ACE2) in heart failure. Moreover, ACE2 cleaves off C‐terminal residues of vasoactive peptides including apelin‐13, and neurotensin that activate the apelin receptor (APJ) and neurotensin receptor 1 (NTSR1) respectively, that belong to the A class of GPCRs. Therefore, based on the similar mode of modification by ACE2 at peptide level, the homology at amino acid level and the capability of forming dimers with other GPCRs, we have been suggested that APJ and NTSR1 can form a functional heterodimer. Using co‐immunoprecipitation, BRET and FRET, we provided conclusive evidence of heterodimerization between APJ and NTSR1 in a constitutive and induced form. Upon agonist stimulation, hetrodimerization enhanced ERK1/2 activation and increased proliferation via activation of Gq α‐subunits. These novel data provide evidence for a physiological role of APJ/NTSR1 heterodimers in terms of ERK1/2 activation and increased intracellular calcium and induced cell proliferation and provide potential new pharmaceutical targets for cardiovascular disease.  相似文献   

6.
We have previously shown that peptide neurotensin inhibits cerebral cortex synaptosomal membrane Na+, K+-ATPase, an effect fully prevented by blockade of neurotensin NT1 receptor by antagonist SR 48692. The work was extended to analyze neurotensin effect on Na+, K+-ATPase activity present in other synaptosomal membranes and in CNS myelin and mitochondrial fractions. Results indicated that, besides inhibiting cerebral cortex synaptosomal membrane Na+, K+-ATPase, neurotensin likewise decreased enzyme activity in homologous striatal membranes as well as in a commercial preparation obtained from porcine cerebral cortex. However, the peptide failed to alter either Na+, K+-ATPase activity in cerebellar synaptosomal and myelin membranes or ATPase activity in mitochondrial preparations. Whenever an effect was recorded with the peptide, it was blocked by antagonist SR 48692, indicating the involvement of the high affinity neurotensin receptor (NT1), as well as supporting the contention that, through inhibition of ion transport at synaptic membrane level, neurotensin plays a regulatory role in neurotransmission.  相似文献   

7.
Abstract

Neurotensin (NTS) is a 13-amino acid neuropeptide with neuroendocrine and vasoactive functions that is widely expressed in the central nervous system and gastrointestinal tract. NTS is sensed by a multiple cell surface proteins including two G protein-coupling receptors (GPCRs): NTS receptors 1 and 2 (NTSR1 and NTSR2). Crystal structures of NTSR1 have successfully elucidated agonist binding within the orthosteric pocket of receptor but have not revealed the full activation state of the receptor. Recent studies have attempted to address this challenge by improving NTSR1 crystal formation via thermostable mutants; unfortunately, these mutations exhibit functional defects in the G protein coupling of NTSR1. Here, we have used molecular dynamics simulations to gain greater insights into how the amino acid substitutions used in these thermostable mutants (E166A, L310A and F358A) impact receptor activation. Our simulations indicate that wild-type NTSR1 in complex with NTS8-13 shows more active-like features including a 17.7?Å shift in TM6, reflecting a network of polar and aromatic interactions orchestrating agonist-induced receptor conformational changes. We also provide evidence indicating that F358 is a precursor to the rotamer change observed in W321, and our collective analysis also suggests that mutations E166A and F358A are less impactful to G protein coupling than L310A. Furthermore, we believe that our findings can be used to design future NTSR1 mutants that do not interfere with agonist-induced conformational changes and downstream G protein coupling and thus produce structures that will allow visualization of the fully activated receptor conformation.  相似文献   

8.
Flexible ligands pose challenges to standard structure-activity studies since they frequently reorganize their conformations upon protein binding and catalysis. Here, we demonstrate the utility of side chain 13C relaxation dispersion measurements to identify and quantify the conformational dynamics that drive this reorganization. The dispersion measurements probe methylene 13CH2 and methyl 13CH3 groups; the latter are highly prevalent side chain moieties in known drugs. Combining these side chain studies with existing backbone dispersion studies enables a comprehensive investigation of μs–ms conformational dynamics related to binding and catalysis. We perform these measurements at natural 13C abundance, in congruence with common pharmaceutical research settings. We illustrate these methods through a study of the interaction of a phosphopeptide ligand with the peptidyl-prolyl isomerase, Pin1. The results illuminate the side-chain moieties that undergo conformational readjustments upon complex formation. In particular, we find evidence that multiple exchange processes influence the side chain dispersion profiles. Collectively, our studies illustrate how side-chain relaxation dispersion can shed light on ligand conformational transitions required for activity, and thereby suggest strategies for its optimization.  相似文献   

9.
In contrast to the static snapshots provided by protein crystallography, G protein-coupled receptors constitute a group of proteins with highly dynamic properties, which are required in the receptors’ function as signaling molecule. Here, the human neuropeptide Y2 receptor was reconstituted into a model membrane composed of monounsaturated phospholipids and solid-state NMR was used to characterize its dynamics. Qualitative static 15N NMR spectra and quantitative determination of 1H–13C order parameters through measurement of the 1H–13C dipolar couplings of the CH, CH2 and CH3 groups revealed axially symmetric motions of the whole molecule in the membrane and molecular fluctuations of varying amplitude from all molecular segments. The molecular order parameters (Sbackbone = 0.59–0.67, SCH2 = 0.41–0.51 and SCH3 = 0.22) obtained in directly polarized 13C NMR experiments demonstrate that the Y2 receptor is highly mobile in the native-like membrane. Interestingly, according to these results the receptor was found to be slightly more rigid in the membranes formed by the monounsaturated phospholipids than by saturated phospholipids as investigated previously. This could be caused by an increased chain length of the monounsaturated lipids, which may result in a higher helical content of the receptor. Furthermore, the incorporation of cholesterol, phosphatidylethanolamine, or negatively charged phosphatidylserine into the membrane did not have a significant influence on the molecular mobility of the Y2 receptor.  相似文献   

10.
Stimulation of the NTS2 neurotensin receptor causes antipsychotic effects and leads to a promotion of the μ-opioid-independent antinociception, which is important in the modulation of tonic pain sensitivity. We report the synthesis and properties of a small library of peptidic agonists based on the active neurotensin fragment NT(8–13). Two tetrahydrofuran amino acid derivatives were synthesized to replace Tyr11 in NT(8–13). Additionally, Arg8, Arg9, and Ile12 of the lead peptide were exchanged by Lys, Lys, and Gly, respectively. The new compounds showed substantial NTS2 binding affinity and up to 1000-fold selectivity over NTS1. The highest selectivity (Ki(NTS2): 29 nM, Ki(NTS1): 35,000 nM) was observed for the peptide analog 17Rtrans.  相似文献   

11.
Modified internucleotide linkage featuring the C3′‐O‐P‐CH2‐O‐C4″ phosphonate grouping as an isosteric alternative to the phosphodiester C3′‐O‐P‐O‐CH2‐C4″ bond was studied in order to learn more on its stereochemical arrangement, which we showed earlier to be of prime importance for the properties of the respective oligonucleotide analogues. Two approaches were pursued: First, the attempt to prepare the model dinucleoside phosphonate with 13C‐labeled CH2 group present in the modified internucleotide linkage that would allow for a more detailed evaluation of the linkage conformation by NMR spectroscopy. Second, the use of ab initio calculations along with molecular dynamics (MD) simulations in order to observe the most populated conformations and specify main structural elements governing the conformational preferences. To deal with the former aim, a novel synthesis of key labeled reagent (CH3O)2P(O)13CH2OH for dimer preparation had to be elaborated using aqueous 13C‐formaldehyde. The results from both approaches were compared and found consistent. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 514–529, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

12.
Abstract

With a view to understanding the structural requirement for tyrosine phosphorylation, we have examined the free and Ca2+-bound conformations of the synthetic peptide tBoc-Leu-Pro-Tyr-Ala-NHCH3, a substrate for a protein tyrosine kinase, using circular dichroism (CD), 1H and 13C nuclear magnetic resonance (NMR) and molecular modeling methods. CD spectrum of the free peptide in water showed a random coil structure, while the spectrum in acetonitrile was indicative of a folded structure containing a type III β-turn. Dihedral angle data derived from JNH-CH coupling constants, as well as two-dimensional 1H-COSY and NOESY spectral analyses, showed that the peptide adopts a conformation close to the 310- helix. Ca2+ binding by the peptide, as monitored by CD spectral changes, was quite weak in water. However, substantial CD spectral changes were observed in the peptide on addition of Ca2+ in acetonitrile suggestive of major conformational alterations due to Ca2+ binding. Analysis of the binding isotherms at 25°C obtained from CD data in acetonitrile indicated a 2:1 peptide:Ca2+ (“sandwich”) complex to be the dominant species with a Kd of about 30μM. A. 1:1 complex was also present and became significant at Ca2+:peptide ratios above 1. By comparison, the peptide formed a predominantly 1:1 complex with Mg2+ with a Kd of about 40μM. 13C-NMR data showed that a mixture of cis and trans conformers (arising from rotation around the Leu-Pro bond) in the free peptide changes over to the all-trans form on coordination of the peptide carbonyl groups to the Ca2+ ion. 1H-NOESY data of the Ca2+ complex revealed several interactions involving the sidechains of two peptide molecules in the sandwich. Molecular modeling and energy minimization with and without the input of NOESY-derived distance constraints showed the sandwich complex to be an energetically very favourable conformation. Besides its relevance in terms of the possible involvement of divalent cations in substrate-tyrosine kinase interaction, the conformational characterization of tBoc-Leu-Pro-Tyr-Ala-NHCH3 and its Ca2+ complex should help understand the conformational determinants for Ca2+-binding by linear peptides.  相似文献   

13.
The reaction of 8-thioguanosine (8-thioGuoH2 with methylmercury(II) has been shown to give rise to 1:1 (neutral and cationic), 1:2 (neutral and cationic), and 1:3 (cationic) complexes of the type [CH3Hg(8-thioGuoH)], [(CH3Hg(8-thioGuoH2)]NO3, [(CH3Hg)2(8-thioGuo)], [(CH3Hg)2(8-thioGuoH)]NO3 and [(CH3Hg)3(8-thioGuo)]NO3, depending upon the reactant stoichiometry and pH. 1H NMR, 13C NMR, and IR, as well as analytical data were used to characterize the complexes. Coupling of methylmercury(II)-protons to mercury-199 has been observed in all compounds. The magnitude of the coupling, 2J(1H-199Hg), is strongly dependent on the nature of the ligand bonded to the methylmercury(II) group and correlates with the 13C chemical shifts of coordinated CH3Hg(II) at the different binding sites.  相似文献   

14.
The sequence of methylation between uro'gen III and cobyrinic acid has been defined by applying 13C pulse-labeling methods to a cell-free system from Propionibacterium shermanii. Feeding experiments using unenriched S-adenosyl methionine (12CH3-SAM) followed by 13C-enriched SAM (13CH3-SAM) (or vice versa) at various intervals caused differentiation in the 13C NMR signals of the SAM-derived methyl groups in cobyrinic acid (isolated as cobester). Unenriched uro'gen III and sirohydrochlorin as substrates led to cobyrinic acid containing seven and five enriched methyl groups, respectively, which on NMR analysis gave as a sequence of methylation C-2 > C-7 > C-20 > C-17 > C-12α > C-1 > C-5 C-15.  相似文献   

15.

Background  

The molecular basis for neutrophil recognition of chemotactic peptides is their binding to specific G-protein-coupled cell surface receptors (GPCRs). Human neutrophils express two pattern recognition GPCRs, FPR1 and FPR2, which belong to the family of formyl peptide receptors. The high degree of homology between these two receptors suggests that they share many functional and signal transduction properties, although they exhibit some differences with respect to signaling. The aims of this study were to determine whether FPR2 triggers a unique signal that allows direct influx of extracellular calcium without the emptying of intracellular calcium stores, and whether the gelsolin-derived PIP2-binding peptide, PBP10, selectively inhibits FPR2-mediated transient rise in intracellular Ca2+.  相似文献   

16.
The synthesis of two novel carbasugar analogues of α-l-iduronic acid is described in which the ring-oxygen is replaced by a methylene group. In analogy with the conformational equilibrium described for α-l-IdopA, the conformation of the carbasugars was investigated by 1H and 13C NMR spectroscopy. Hadamard transform NMR experiments were utilised for rapid acquisition of 1H,13C-HSQC spectra and efficient measurements of heteronuclear long-range coupling constants. Analysis of 1H NMR chemical shifts and JH,H coupling constants extracted by a total-lineshape fitting procedure in conjunction with JH,C coupling constants obtained by three different 2D NMR experiments, viz., 1H,13C-HSQC-HECADE, J-HMBC and IPAP-HSQC-TOCSY-HT, as well as effective proton-proton distances from 1D 1H,1H T-ROE and NOE experiments showed that the conformational equilibrium 4C1?2S5a?1C4 is shifted towards 4C1 as the predominant or exclusive conformation. These carbasugar bioisosteres of α-l-iduronic acid do not as monomers show the inherent flexibility that is anticipated to be necessary for biological activity.  相似文献   

17.
A peptidase inactivating neurotensin at the Pro10-Tyr11 peptidyl bond, leading to the biologically inactive fragments neurotensin1–10 and neurotensin11–13 was purified from rat brain homogenate. The peptidase was characterized as a 70 kDa monomer and could be classified as a metaliopeptidase with respect to its sensitivity to o-phenanthroline, EDTA and divalent cations. The enzyme was also strongly inhibited by dithiothreitol but appeared totally insensitive to thiol-blocking agents, acidic and serine protease inhibitors. Experiments performed with a series of highly specific peptidase inhibitors clearly indicated that the peptidase was a novel enzyme distinct from previously purified cerebral peptidases. The enzyme displayed a rather high affinity for neurotensin (Km = 2.3 itM). Studies on its specificity indicated that: (i) neurotensin9–13 was the shortest neurotensin fragment with full inhibitory potency of [3H]neurotensin degradation. Shortening the C-terminal end of the neurotensin molecule progressively led to inactive analogs; (ii) the peptidase exhibited a strong stereospecificity towards the residues in positions 8, 9 and 11. By contrast, neither introduction of a steric hindrance in position 11 nor amidation of the C-terminal end of the neurotensin molecule affected the ability of the corresponding analog to inhibit [3H]neurotensin degradation; (iii) Pro-Phe was the most potent dipeptide to compete for [3H]neurotensin degradation; (iv) the peptidase could not be described as an exclusive “neurotensinase” activity since, in addition to the neurotensin natural analogs (neuromedin N and xenopsin), non related natural peptides such as angiotensins I and II, dynorphins 1–8 and 1–13, atriopeptin III and bradykinin potently inhibited [3H]neurotensin degradation. Most of these peptides behaved as substrates for the enzyme.  相似文献   

18.
Cells express distinct G protein-coupled receptor (GPCR) subtypes on their surface, allowing them to react to a corresponding variety of extracellular stimuli. Cross-regulation between different ligand-GPCR pairs is essential to generate appropriate physiological responses. GPCRs can physically affect each other''s functioning by forming heteromeric complexes, whereas cross-regulation between activated GPCRs also occurs through integration of shared intracellular signaling networks. Human herpesviruses utilize virally encoded GPCRs to hijack cellular signaling networks for their own benefit. Previously, we demonstrated that the Epstein-Barr virus-encoded GPCR BILF1 forms heterodimeric complexes with human chemokine receptors. Using a combination of bimolecular complementation and bioluminescence resonance energy transfer approaches, we now show the formation of hetero-oligomeric complexes between this viral GPCR and human CXCR4. BILF1 impaired CXCL12 binding to CXCR4 and, consequently, also CXCL12-induced signaling. In contrast, the G protein uncoupled mutant BILF1-K3.50A affected CXCL12-induced CXCR4 signaling to a much lesser extent, indicating that BILF1-mediated CXCR4 inhibition is a consequence of its constitutive activity. Co-expression of Gαi1 with BILF1 and CXCR4 restored CXCL12-induced signaling. Likewise, BILF1 formed heteromers with the human histamine H4 receptor (H4R). BILF1 inhibited histamine-induced Gαi-mediated signaling by H4R, however, without affecting histamine binding to this receptor. These data indicate that functional cross-regulation of Gαi-coupled GPCRs by BILF1 is at the level of G proteins, even though these GPCRs are assembled in hetero-oligomeric complexes.  相似文献   

19.
The fungitoxicity of mercuric chloride to Aspergillus niger was increased in the presence of d-, l-, dl-methionine, dl-ethionine, dl-S-methylcysteine or sodium methylmercaptide. The same effect was observed with methionine for two other fungi investigated: Cladosporium cucumerinum and Scopulariopsis brevicaulis. It is suggested that this effect can be ascribed to the formation of CH3SHg+ or (CH3S)2Hg, or the corresponding ethyl compounds. CH3SHgCl and (CH3S)2Hg were synthetically prepared and proved indeed far more fungitoxic than HgCl2. The hypothesis was further substantiated by the observation that A. niger rapidly converts dl-methionine into CH3SH, which undoubtedly reacts with Hg2+ to give the above mentioned methylthiomercury compounds.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号