共查询到20条相似文献,搜索用时 15 毫秒
1.
Junqiu Yang Huanghe Yang Xiaohui Sun Kelli Delaloye Xiao Yang Alyssa Moller Jingyi Shi Jianmin Cui 《The Journal of general physiology》2013,141(2):217-228
As a unique member of the voltage-gated potassium channel family, a large conductance, voltage- and Ca2+-activated K+ (BK) channel has a large cytosolic domain that serves as the Ca2+ sensor, in addition to a membrane-spanning domain that contains the voltage-sensing (VSD) and pore-gate domains. The conformational changes of the cytosolic domain induced by Ca2+ binding and the conformational changes of the VSD induced by membrane voltage changes trigger the opening of the pore-gate domain. Although some structural information of these individual functional domains is available, how the interactions among these domains, especially the noncovalent interactions, control the dynamic gating process of BK channels is still not clear. Previous studies discovered that intracellular Mg2+ binds to an interdomain binding site consisting of D99 and N172 from the membrane-spanning domain and E374 and E399 from the cytosolic domain. The bound Mg2+ at this narrow interdomain interface activates the BK channel through an electrostatic interaction with a positively charged residue in the VSD. In this study, we investigated the potential interdomain interactions between the Mg2+-coordination residues and their effects on channel gating. By introducing different charges to these residues, we discovered a native interdomain interaction between D99 and E374 that can affect BK channel activation. To understand the underlying mechanism of the interdomain interactions between the Mg2+-coordination residues, we introduced artificial electrostatic interactions between residues 172 and 399 from two different domains. We found that the interdomain interactions between these two positions not only alter the local conformations near the Mg2+-binding site but also change distant conformations including the pore-gate domain, thereby affecting the voltage- and Ca2+-dependent activation of the BK channel. These results illustrate the importance of interdomain interactions to the allosteric gating mechanisms of BK channels. 相似文献
2.
3.
Zhang H Wang G Ding Y Wang Z Barraclough R Rudland PS Fernig DG Rao Z 《Journal of molecular biology》2003,325(4):785-794
S100P is a small calcium-binding protein of the S100 EF-hand-containing family of proteins. Elevated levels of its mRNA are reported to be associated with the progression to hormone independence and metastasis of prostate cancer and to be associated with loss of senescence in human breast epithelial cells in vitro. The first structure of human recombinant S100P in calcium-bound form is now reported at 2.0A resolution by X-ray diffraction. A flexible linker connects the two EF-hand motifs. The protein exists as a homodimer formed by non-covalent interactions between large hydrophobic areas on monomeric S100P. Experiments with an optical biosensor to study binding parameters of the S100P monomer interaction showed that the association rate constant was faster in the presence of calcium than in their absence, whereas the dissociation rate constant was independent of calcium. The K(d) values were 64(+/-24)nM and 2.5(+/-0.8) microM in the presence and in the absence of calcium ions, respectively. Dimerization of S100P is demonstrated in vivo using the yeast two-hybrid system. The effect of mutation of specific amino acids suggests that dimerization in vivo can be affected by amino acids on the dimer interface and in the hydrophobic core. 相似文献
4.
Ca2+ release from sarcoplasmic reticulum membranes, activated by alkaline pH occurs only when EGTA is present in the release medium. Addition of very low concentrations of Ca2+ to the medium inhibits Ca2+ release. The concentration of free Ca2+ required for 50% inhibition ranges from between 5 and 20 nM in different experiments and/or membrane preparations, irrespective of whether the free Ca2+ concentration is controlled by EGTA or CDTA. Other divalent cations such as Mn2+, Ba2+, Cu2+, Cd2+ and Mg2+ also exert an inhibitory effect on Ca2+ release, with higher or lower potency than that of Ca2+. The inactivation of Ca2+ release by Ca2+ is reversible. We suggest the involvement of high-affinity Ca2+-binding sites in the control of Ca2+ release. 相似文献
5.
Large conductance Ca2+-activated K+ (BK) channels belong to the S4 superfamily of K+ channels that include voltage-dependent K+ (Kv) channels characterized by having six (S1-S6) transmembrane domains and a positively charged S4 domain. As Kv channels, BK channels contain a S4 domain, but they have an extra (S0) transmembrane domain that leads to an external NH2-terminus. The BK channel is activated by internal Ca2+, and using chimeric channels and mutagenesis, three distinct Ca2+-dependent regulatory mechanisms with different divalent cation selectivity have been identified in its large COOH-terminus. Two of these putative Ca2+-binding domains activate the BK channel when cytoplasmic Ca2+ reaches micromolar concentrations, and a low Ca2+ affinity mechanism may be involved in the physiological regulation by Mg2+. The presence in the BK channel of multiple Ca2+-binding sites explains the huge Ca2+ concentration range (0.1 microM-100 microM) in which the divalent cation influences channel gating. BK channels are also voltage-dependent, and all the experimental evidence points toward the S4 domain as the domain in charge of sensing the voltage. Calcium can open BK channels when all the voltage sensors are in their resting configuration, and voltage is able to activate channels in the complete absence of Ca2+. Therefore, Ca2+ and voltage act independently to enhance channel opening, and this behavior can be explained using a two-tiered allosteric gating mechanism. 相似文献
6.
7.
Hu-cheng Zhao Hasi Agula Wei Zhang Fa Wang Masahiro Sokabe Lu-ming Li 《Journal of biomechanics》2010,43(15):3015-3019
Large conductance Ca2+-activated K+ (BK) channels are responsible for changes in chemical and physical signals such as Ca2+, Mg2+ and membrane potentials. Previously, we reported that a BK channel cloned from chick heart (SAKCaC) is activated by membrane stretch. Molecular cloning and subsequent functional characterization of SAKCaC have shown that both the membrane stretch and intracellular Ca2+ signal allosterically regulate the channel activity via the linker of the gating ring complex. Here we investigate how these two gating principles interact with each other. We found that stretch force activated SAKCaC in the absence of cytoplasmic Ca2+. Lack of Ca2+ bowl (a calcium binding motif) in SAKCaC diminished the Ca2+-dependent activation, but the mechanosensitivity of channel was intact. We also found that the abrogation of STREX (a proposed mechanosensing apparatus) in SAKCaC abolished the mechanosensitivity without altering the Ca2+ sensitivity of channels. These observations indicate that membrane stretch and intracellular Ca2+ could independently modulate SAKCaC activity. 相似文献
8.
A family of Ca(2+)-binding proteins (CaBPs) was shown to bind to the inositol 1,4,5-trisphosphate receptor (InsP(3)R) Ca(2+) release channel and gate it in the absence of InsP(3), establishing them as protein ligands (Yang, J., McBride, S., Mak, D.-O. D., Vardi, N., Palczewski, K., Haeseleer, F., and Foskett, J. K. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 7711-7716). However, the neuronally restricted expression of CaBP and its inhibition of InsP(3)R-mediated Ca(2+) signaling when overexpressed (Kasri, N. N., Holmes, A. M., Bultynck, G., Parys, J. B., Bootman, M. D., Rietdorf, K., Missiaen, L., McDonald, F., De Smedt, H., Conway, S. J., Holmes, A. B., Berridge, M. J., and Roderick, H. L. (2004) EMBO J. 23, 312-321; Haynes, L. P., Tepikin, A. V., and Burgoyne, R. D. (2004) J. Biol. Chem. 279, 547-555) have raised questions regarding the functional implications of this regulation. We have discovered the Ca(2+)-binding protein CIB1 (calmyrin) as a ubiquitously expressed ligand of the InsP(3)R. CIB1 binds to all mammalian InsP(3)R isoforms in a Ca(2+)-sensitive manner dependent on its two functional EF-hands and activates InsP(3)R channel gating in the absence of InsP(3). In contrast, overexpression of CIB1 or CaBP1 attenuated InsP(3)R-dependent Ca(2+) signaling, and in vitro pre-exposure to CIB1 reduced the number of channels available for subsequent stimulation by InsP(3). These results establish CIB1 as a ubiquitously expressed activating and inhibiting protein ligand of the InsP(3)R. 相似文献
9.
Ca2+-dependent gating mechanisms for dSlo, a large-conductance Ca2+-activated K+ (BK) channel. 下载免费PDF全文
The Ca2+-dependent gating mechanism of cloned BK channels from Drosophila (dSlo) was studied. Both a natural variant (A1/C2/E1/G3/IO) and a mutant (S942A) were expressed in Xenopus oocytes, and single-channel currents were recorded from excised patches of membrane. Stability plots were used to define stable segments of data. Unlike native BK channels from rat skeletal muscle in which increasing internal Ca2+ concentration (Cai2+) in the range of 5 to 30 microM increases mean open time, increasing Cai2+ in this range for dSlo had little effect on mean open time. However, further increases in Cai2+ to 300 or 3000 microM then typically increased dSlo mean open time. Kinetic schemes for the observed Ca2+-dependent gating kinetics of dSlo were evaluated by fitting two-dimensional dwell-time distributions using maximum likelihood techniques and by comparing observed dependency plots with those predicted by the models. Previously described kinetic schemes that largely account for the Ca2+-dependent kinetics of native BK channels from rat skeletal muscle did not adequately describe the Ca2+ dependence of dSlo. An expanded version of these schemes which, in addition to the Ca2+-activation steps, permitted a Ca2+-facilitated transition from each open state to a closed state, could approximate the Ca2+-dependent kinetics of dSlo, suggesting that Ca2+ may exert dual effects on gating. 相似文献
10.
ECaC is the first member of a new subfamily of Ca2+ channels embedded in the large TRPC family that includes numerous channel proteins. The channel has been proposed as the main gatekeeper of transcellular Ca2+ transport in kidney and intestine. The functional characterization of this channel is evolving rapidly and may have far reaching consequences for other channels of the TRPC family. The goal of this mini-review is to summarize the major functional and structural characteristics of ECaC, including (i) its proposed functional role, (ii) its channel structure and expression pattern, (iii) its main electrophysiological characteristics and (iv) its regulation. 相似文献
11.
Large conductance, voltage- and Ca2+-activated K+ (BK(Ca)) channels regulate blood vessel tone, synaptic transmission, and hearing owing to dual activation by membrane depolarization and intracellular Ca2+. Similar to an archeon Ca2+-activated K+ channel, MthK, each of four alpha subunits of BK(Ca) may contain two cytosolic RCK domains and eight of which may form a gating ring. The structure of the MthK channel suggests that the RCK domains reorient with one another upon Ca2+ binding to change the gating ring conformation and open the activation gate. Here we report that the conformational changes of the NH2 terminus of RCK1 (AC region) modulate BK(Ca) gating. Such modulation depends on Ca2+ occupancy and activation states, but is not directly related to the Ca2+ binding sites. These results demonstrate that AC region is important in the allosteric coupling between Ca2+ binding and channel opening. Thus, the conformational changes of the AC region within each RCK domain is likely to be an important step in addition to the reorientation of RCK domains leading to the opening of the BK(Ca) activation gate. Our observations are consistent with a mechanism for Ca2+-dependent activation of BK(Ca) channels such that the AC region inhibits channel activation when the channel is at the closed state in the absence of Ca2+; Ca2+ binding and depolarization relieve this inhibition. 相似文献
12.
Wang YJ Yu JN Chen T Zhang ZG Hao YJ Zhang JS Chen SY 《Journal of experimental botany》2005,56(422):3051-3060
The cytosolic free-calcium concentration [Ca2+](cyt) transiently increases under abiotic stresses and the proteins that control this process are gradually disclosed. The Ca2+-permeable channel is one type of these proteins in plants. In the present study, a novel Ca2+-permeable channel gene TaTPC1 encoding a putative membrane protein was cloned from wheat. It was induced under high salinity, polyethylene glycol, low temperature (4 degrees C), and abscisic acid. Expression of TaTPC1 in the yeast mutant lacking CCH1 can recover its growth under lithium stress through functional complementation. TaTPC1 transgenic plants exhibited more stomatal closing in the presence of Ca2+ than the control, supporting a role for the calcium channel in regulating plant responses to environmental change. 相似文献
13.
14.
Meredith AL Thorneloe KS Werner ME Nelson MT Aldrich RW 《The Journal of biological chemistry》2004,279(35):36746-36752
BK large conductance voltage- and calcium-activated potassium channels respond to elevations in intracellular calcium and membrane potential depolarization, braking excitability of smooth muscle. BK channels are thought to have a particularly prominent role in urinary bladder smooth muscle function and therefore are candidate targets for overactive bladder therapy. To address the role of the BK channel in urinary bladder function, the gene mSlo1 for the pore-forming subunit of the BK channel was deleted. Slo(-/-) mice were viable but exhibited moderate ataxia. Urinary bladder smooth muscle cells of Slo(-/-) mice lacked calcium- and voltage-activated BK currents, whereas local calcium transients ("calcium sparks") and voltage-dependent potassium currents were unaffected. In the absence of BK channels, urinary bladder spontaneous and nerve-evoked contractions were greatly enhanced. Consistent with increased urinary bladder contractility caused by the absence of BK currents, Slo(-/-) mice demonstrate a marked elevation in urination frequency. These results reveal a central role for BK channels in urinary bladder function and indicate that BK channel dysfunction leads to overactive bladder and urinary incontinence. 相似文献
15.
Single Ca2+-activated K+ channels from rat skeletal muscle plasma membranes were studied in neutral phospholipid bilayers. Channels were chemically modified by briefly exposing the external side to the carboxyl group modifying reagent trimethyloxonium (TMO). TMO modification, in a "multi-hit" fashion, reduces the single-channel conductance without affecting ion selectivity. Modification also shifts the voltage activation curve toward more depolarized voltages and reduces the affinity of the channel blocker charybdotoxin (CTX). CTX, bound to the channel during the TMO exposure, prevents the TMO-induced reduction of the single-channel conductance. These data suggest that the high-conductance Ca2+-activated K+ channel has carboxyl groups on its external surface. These groups influence ion conduction, gating, and the binding of CTX. 相似文献
16.
Discrete Ba2+ block as a probe of ion occupancy and pore structure in the high-conductance Ca2+ -activated K+ channel 总被引:4,自引:8,他引:4 下载免费PDF全文
In this study, high-conductance Ca2+-activated K+ channels from rat skeletal muscle were incorporated into planar phospholipid bilayers, and discrete blockade of single channels by Ba2+ was studied. With 150 mM K+ held constant in the internal solution, increasing external K+ over the range 100-1,000 mM raises the rate of Ba2+ dissociation. This "enhancement effect," which operates at K+ concentrations 3-4 orders of magnitude higher than those required for the "lockin" effect described previously, depends on applied voltage, saturates with K+ concentration, and is not observed with Na+. The voltage dependence of the Ba2+ off-rate varies with external K+ in a way suggesting that K+, entering the channel from the external side, forces Ba2+ dissociation to the internal solution. With K+ held fixed in the external solution, the Ba2+ off-rate decreases as internal K+ is raised over the range 0-50 mM. This "lock-in" effect is similar to that seen on the external side (Neyton and Miller, 1988), except that the internal lock-in site is of lower affinity and shows only a fivefold preference for K+ over Na+. All the results taken together argue strongly that this channel's conduction pathway contains four sites of very high affinity for K+, all of which may be simultaneously occupied under normal conducting conditions. According to this view, the mutual destabilization resulting from this high ionic occupancy leads to the unusually high conductance of this K+-specific channel. 相似文献
17.
Zhen XG Xie C Fitzmaurice A Schoonover CE Orenstein ET Yang J 《The Journal of general physiology》2005,126(3):193-204
The inner pore of voltage-gated Ca2+ channels (VGCCs) is functionally important, but little is known about the architecture of this region. In K+ channels, this part of the pore is formed by the S6/M2 transmembrane segments from four symmetrically arranged subunits. The Ca2+ channel pore, however, is formed by four asymmetric domains of the same (alpha1) subunit. Here we investigated the architecture of the inner pore of P/Q-type Ca2+ channels using the substituted-cysteine accessibility method. Many positions in the S6 segments of all four repeats of the alpha1 subunit (Ca(v)2.1) were modified by internal methanethiosulfonate ethyltrimethylammonium (MTSET). However, the pattern of modification does not fit any known sequence alignment with K+ channels. In IIS6, five consecutive positions showed clear modification, suggesting a likely aqueous crevice and a loose packing between S6 and S5 segments, a notion further supported by the observation that some S5 positions were also accessible to internal MTSET. These results indicate that the inner pore of VGCCs is indeed formed by the S6 segments but is different from that of K+ channels. Interestingly some residues in IIIS6 and IVS6 whose mutations in L-type Ca2+ channels affect the binding of dihydropyridines and phenylalkylamines and are thought to face the pore appeared not to react with internal MTSET. Probing with qBBr, a rigid thiol-reactive agent with a dimension of 12 angstroms x 10 angstroms x 6 angstroms suggests that the inner pore can open to >10 angstroms. This work provides an impetus for future studies on ion permeation, gating, and drug binding of VGCCs. 相似文献
18.
Aequorin, which is a calcium-sensitive photoprotein and a member of the EF-hand superfamily, binds to Mg2+ under physiological conditions, which modulates its light emission. The Mg2+ binding site and its stabilizing influence were examined by NMR spectroscopy. The binding of Mg2+ to aequorin prevented the molecule from aggregating and stabilized it in the monomeric form. To determine the structural differences between Mg2+-bound and free aequorin, we have performed backbone NMR assignments of aequorin in the Mg2+-free state. Mg2+ binding induces conformational changes that are localized in the EF-hand loops. The chemical shift difference data indicated that there are two Mg2+-binding sites, EF-hands I and III. The Mg2+ titration experiment revealed that EF-hand III binds to Mg2+ with higher affinity than EF-hand I, and that only EF-hand III seems to be occupied by Mg2+ under physiological conditions. 相似文献
19.
Nicoll DA Sawaya MR Kwon S Cascio D Philipson KD Abramson J 《The Journal of biological chemistry》2006,281(31):21577-21581
The Na+/Ca2+ exchanger is a plasma membrane protein that regulates intracellular Ca2+ levels in cardiac myocytes. Transport activity is governed by Ca2+, and the primary Ca2+ sensor (CBD1) is located in a large cytoplasmic loop connecting two transmembrane helices. The binding of Ca2+ to the CBD1 sensory domain results in conformational changes that stimulate the exchanger to extrude Ca2+. Here, we present a crystal structure of CBD1 at 2.5A resolution, which reveals a novel Ca2+ binding site consisting of four Ca2+ ions arranged in a tight planar cluster. This intricate coordination pattern for a Ca2+ binding cluster is indicative of a highly sensitive Ca2+ sensor and may represent a general platform for Ca2+ sensing. 相似文献
20.
M Tanaka T Ozawa A Maurer J D Cortese S Fleischer 《Archives of biochemistry and biophysics》1986,251(1):369-378
Needle-shaped crystals of the Ca2+-binding protein (CBP) isolated from rabbit skeletal muscle sarcoplasmic reticulum were studied with regard to the influence of Ca2+, K+, and H+ on its solubility and cation binding. The solubility of CBP is sharply decreased with concentration of Ca2+, whereas K+ increased it. Aggregation of the CBP and crystal formation is correlated with the binding of Ca2+. The Ca2+ bound to the crystalline CBP is two to three times higher than that of the soluble form. A strong apparent positive cooperative behavior of Ca2+ binding by CBP was observed concomitant with the shift in equilibrium from the soluble to the crystalline form. From the steepest Hill slope we obtained Hill coefficients of 3.3 for soluble CBP and 14 for the transition between soluble and crystalline forms of CBP. A detailed treatment is presented to validate the applicability of Hill plots for the combined binding and crystallization process. Two-thirds of the Ca2+-binding sites were K+ sensitive and one-third were K+ insensitive. An increase in H+ concentration decreased the Ca2+ binding by crystalline CBP without affecting its solubility, with a pK value of 6.2 determined for this process. These results indicate that the equilibrium between the soluble and crystalline forms of CBP is determined by the amount and nature of the bound cations, Ca2+, K+, and H+. They suggest the possibility that a cycle of aggregation and solubilization of CBP attends the uptake and release of Ca2+ in the sarcoplasmic reticulum, respectively. 相似文献