共查询到20条相似文献,搜索用时 20 毫秒
1.
Pep-1 is an amphiphatic peptide that can form noncovalent complexes with a cargo protein with subsequent delivery into a live cell. In this study, the behavior of Pep-1 was directly visualized by fluorescent imaging techniques at the single-molecule level of sensitivity. The interactions of Pep-1 and two of its labeled fluorescent analogues with large and cell-sized giant unilamellar vesicles and supported bilayers are reported. The role of the bilayer charge and ionic strength of the medium were examined. Pep-1 caused fusion and association of vesicles, and it perturbed the vesicle's membrane. The association of the peptide with neutral bilayers was promoted by anchoring of the cysteamine moiety. The association of the peptide with the structural defects of the neutral membrane was very efficient. The electrostatic forces were shown to be important for the association of the peptide only in low ionic strength solutions and were completely diminished at physiological ionic strength. Pep-1 did not induce the association to the model membrane of a number of proteins chosen to exhibit a range of properties. The results suggest that Pep-1 assisted delivery of cargo in living cells may result from cooperative effects. 相似文献
2.
Zhu WL Lan H Park IS Kim JI Jin HZ Hahm KS Shin SY 《Biochemical and biophysical research communications》2006,349(2):769-774
Here, we report the successful design of a novel bacteria-selective antimicrobial peptide, Pep-1-K (KKTWWKTWWTKWSQPKKKRKV). Pep-1-K was designed by replacing Glu-2, Glu-6, and Glu-11 in the cell-penetrating peptide Pep-1 with Lys. Pep-1-K showed strong antibacterial activity against reference strains (MIC = 1-2 microM) of Gram-positive and Gram-negative bacteria as well as against clinical isolates (MIC = 1-8 microM) of methicillin-resistant Staphylococcus aureus and multidrug-resistant Pseudomonas aeruginosa. In contrast, Pep-1-K did not cause hemolysis of human erythrocytes even at 200 microM. These results indicate that Pep-1-K may be a good candidate for antimicrobial drug development, especially as a topical agent against antibiotic-resistant microorganisms. Tryptophan fluorescence studies indicated that the lack of hemolytic activity of Pep-1-K correlated with its weak ability to penetrate zwitterionic phosphatidylcholine/cholesterol (10:1, w/w) vesicles, which mimic eukaryotic membranes. Furthermore, Pep-1-K caused little or no dye leakage from negatively charged phosphatidylethanolamine/phosphatidylglycerol (7:3, w/w) vesicles, which mimic bacterial membranes but had a potent ability to cause depolarization of the cytoplasmic membrane potential of intact S. aureus cells. These results suggested that Pep-1-K kills microorganisms by not the membrane-disrupting mode but the formation of small channels that permit transit of ions or protons but not molecules as large as calcein. 相似文献
3.
Insight into the mechanism of internalization of the cell-penetrating carrier peptide Pep-1 through conformational analysis 总被引:3,自引:0,他引:3
Recently, we described a new strategy for the delivery of proteins and peptides into mammalian cells, based on an amphipathic peptide of 21 residues, Pep-1, which was designed on the basis of a protein-interacting domain associated with a nuclear localization sequence and separated by a linker. This peptide carrier constitutes a powerful tool for the delivery of active proteins or peptides both in cultured cells and in vivo, without requiring any covalent coupling. We have examined the conformational states of Pep-1 in its free form and complexed with a cargo peptide and have investigated their ability to interact with phospholipids and the structural consequences of these interactions. From the conformational point of view, Pep-1 behaves significantly differently from other similarly designed cell-penetrating peptides. CD analysis revealed a transition from a nonstructured to a helical conformation upon increase of the concentration. Determination of the structure by NMR showed that in water, its alpha-helical domain extends from residues 4-13. CD and FTIR indicate that Pep-1 adopts a helical conformation in the presence of phospholipids. Adsorption measurements performed at the air-water interface are consistent with the helical form. Pep-1 does not undergo conformational changes upon formation of a particle with a cargo peptide. In contrast, we observe a partial conformational transition when the complex encounters phospholipids. We propose that the membrane crossing process involves formation of a transient transmembrane pore-like structure. Conformational change of Pep-1 is not associated with complexation with its cargo but is induced upon association with the cell membrane. 相似文献
4.
Extracellular matrix (ECM) has specific effects on cell behavior that influence many aspects of early development. In the early postimplantation mouse embryo the ECM component laminin promotes polarization and survival of the embryonic ectoderm and formation of Reichert's membrane. In addition, dynamic patterns of laminins 1 and 10/11 expression in the embryo and the uterus correlate with the progression of implantation. In the implanting blastocyst, laminin 1 is strongly expressed in the trophectoderm basement membrane, whereas laminin 10/11 is expressed only in the inner cell mass and polar trophectoderm. In the uterus, laminin 10/11 is strongly expressed in the decidualizing matrix of the stroma. We show here that laminins 1 and 10/11 have distinct effects on trophoblast cell behavior that influence the process of implantation. Laminin 1 promotes random migration and decreases spreading, whereas laminin 10/11 promotes both spreading and persistent migration. When presented as adjacent substrates, cells stop at the boundary and do not enter the region containing laminin 1. Laminin 1 also affects cell-cell adhesion through changes in the localization of vascular endothelial (VE) cadherin. Cultured cells and primary trophoblast explants become single cells or very small groups on laminin 1 and VE-cadherin localization at regions of cell-cell contact decreases dramatically. In contrast, trophoblast cells maintain strong cell-cell contacts on substrates of laminins 10/11, and exhibit strong staining of VE-cadherin in all regions of cell-cell contact. These effects, and the localization of laminin 1 in Reichert's membrane and laminin 10/11 in the surrounding decidual matrix, suggest that these laminin isoforms influence the direction and quality of invasion of trophoblast cells during implantation, and provide epigenetic cues that drive the morphogenesis of the yolk sac placenta. 相似文献
5.
Cell membranes bearing the appropriate antigen are known to stimulate a variety of cell-mediated immune responses. This report confirms that tumor cell membranes at doses of 2-5 micrograms protein/ml will stimulate in vitro generation of allogeneic cytotoxic T lymphocytes (CTL). However, higher doses (50-100 micrograms protein/ml) of the same membranes completely abrogate the generation of lytic activity. Responding lymphocytes are inhibited by membranes from either syngeneic or allogeneic cells. The inhibition appears to act at a proliferative or differentiation step in the generation of the CTL response, since membranes are known to have little direct effect on the lytic phase of CTL activity. Similar doses of membranes also inhibit LPS-induced B-cell proliferation. B-Cell proliferation is inhibited equally well by allogeneic and syngeneic membranes, and membranes from normal spleen cells are as inhibitory as tumor cell membranes. The inhibitory activity copurifies with the plasma membrane. The results raise important considerations regarding the use of subcellular forms of antigen in studies of lymphocyte recognition. In addition, these data suggest that cell-cell contacts might provide signals regulating the proliferation of lymphocytes. 相似文献
6.
Cell-penetrating peptides (CPPs) are able to translocate across biological membranes and deliver bioactive proteins. Cellular uptake and intracellular distribution of CPPs is commonly evaluated with fluorescent labels, which can alter peptide properties. The effect of carboxyfluorescein label in the Lys-rich domain of the amphipathic CPP pep-1, was evaluated and compared with non-labelled pep-1 in vitro and in vivo. A reduced membrane affinity and an endosomal-dependent translocation mechanism, at variance with non-labelled pep-1, were detected. Therefore, the charged domain is not a mere enabler of peptide adsorption but has a crucial role in the translocation pathway of non-labelled pep-1. 相似文献
7.
Although cell-penetrating peptides (CPP) facilitate endocytic uptake of proteins, little is known regarding the extent to which CPPs facilitate protein cargo exit from endocytic vesicles for targeting to other intracellular sites. Since the plasma membrane and less so intracellular membranes contain cholesterol, the fluorescent sterol analogues dansyl-cholestanol (DChol) and dehydroergosterol (DHE) were used to monitor the uptake and intracellular distribution of fluorescent-tagged acyl coenzyme A binding protein (ACBP) into COS-7 cells and rat hepatoma cells. Confocal microscopy colocalized DChol and Texas Red-ACBP (TR-ACBP) with markers for the major endocytosis pathways, especially fluorescent-labeled cholera toxin (marker of ganglioside GM1 in plasma membrane lipid rafts) and dextran (macropinocytosis marker), but less so with transferrin (clathrin-mediated endocytosis marker). These findings were confirmed by multiphoton laser scanning microscopy colocalization of TR-ACBP with DHE (naturally-fluorescent sterol) and by double immunofluorescence labeling of native endogenous ACBP. Serum greatly and Pep-1 further 2.4-fold facilitated uptake of TR-ACBP, but neither altered the relative proportion of TR-ACBP colocalized with membranes/organelles (nearly 80%) vs cytoplasm and/or nucleoplasm (20%). Interestingly, Pep-1 selectively increased TR-ACBP associated with mitochondria while concomitantly decreasing that in endoplasmic reticulum. In summary, fluorescent sterols (DChol, DHE) were useful markers for comparing the distributions of both transported and endogenous proteins. Pep-1 modestly enhanced the translocation and altered the intracellular targeting of exogenous-delivered (TR-ACBP) in living cells. 相似文献
8.
During cellular uptake of fluorescently labeled cell-penetrating peptides (CPPs), intense fluorescent signals are commonly observed in the nucleus of the cell, suggesting intracellular CPP relocation and potential binding to the genome of the host. We therefore investigated the interaction of the CPP HIV-1 Tat(47-57) with double-stranded DNA, and we also tested whether the fluorescence intensity of the labeled CPP allows for linear predictions of its intracellular concentration. Using isothermal titration calorimetry, we observe that the CPP has a high affinity for salmon sperm DNA as characterized by a microscopic dissociation constant of 126 nM. The binding is exothermic, with a reaction enthalpy of -4.63 kcal/mol CPP (28 degrees C). The dissociation constant and reaction enthalpy decrease further at higher temperatures. The affinity of the CPP for DNA is thus 1-2 magnitudes higher than for extracellular heparan sulfate, the likely mediator of the CPP uptake. Accordingly, the high affinity for DNA confers stability to extracellular transport complexes of CPP and DNA but potentially affects the regulation and molecular organization of the host's genome after nuclear uptake. Moreover, the CPP leads to the condensation of DNA as evidenced by the pronounced increase in light-scattering intensity. The fluorescence quantum yield of the FITC-labeled CPP decreases considerably at concentrations > 5 micromol/L, at pH < 7, and upon binding to DNA and glycosaminoglycans. This change in fluorescence quantum yield impedes the microscopic identification of uptake routes and the comparison of uptake efficiency of different CPPs, especially if the accumulation in subcellular compartments (self-quenching and pH difference) and transitory binding partners (quenching and condensation) is unknown. 相似文献
9.
10.
Cardoso AM Trabulo S Cardoso AL Lorents A Morais CM Gomes P Nunes C Lúcio M Reis S Padari K Pooga M Pedroso de Lima MC Jurado AS 《Biochimica et biophysica acta》2012,1818(3):877-888
The present work aims to gain insights into the role of peptide-lipid interactions in the mechanisms of cellular internalization and endosomal escape of the S4(13)-PV cell-penetrating peptide, which has been successfully used in our laboratory as a nucleic acid delivery system. A S4(13)-PV analogue, S4(13)-PVscr, displaying a scrambled amino acid sequence, deficient cell internalization and drug delivery inability, was used in this study for comparative purposes. Differential scanning calorimetry, fluorescence polarization and X-ray diffraction at small and wide angles techniques showed that both peptides interacted with anionic membranes composed of phosphatidylglycerol or a mixture of this lipid with phosphatidylethanolamine, increasing the lipid order, shifting the phase transition to higher temperatures and raising the correlation length between the bilayers. However, S4(13)-PVscr, in contrast to the wild-type peptide, did not promote lipid domain segregation and induced the formation of an inverted hexagonal lipid phase instead of a cubic phase in the lipid systems assayed. Electron microscopy showed that, as opposed to S4(13)-PVscr, the wild-type peptide induced the formation of a non-lamellar organization in membranes of HeLa cells. We concluded that lateral phase separation and destabilization of membrane lamellar structure without compromising membrane integrity are on the basis of the lipid-driven and receptor-independent mechanism of cell entry of S4(13)-PV peptide. Overall, our results can contribute to a better understanding of the role of peptide-lipid interactions in the mechanisms of cell-penetrating peptide membrane translocation, helping in the future design of more efficient cell-penetrating peptide-based drug delivery systems. 相似文献
11.
Noubade R Saligrama N Spach K Del Rio R Blankenhorn EP Kantidakis T Milligan G Rincon M Teuscher C 《Journal of immunology (Baltimore, Md. : 1950)》2008,180(11):7471-7479
Structural polymorphisms (L263P, M313V, and S331P) in the third intracellular loop of the murine histamine receptor H(1) (H(1)R) are candidates for Bphs, a shared autoimmune disease locus in experimental allergic encephalomyelitis and experimental allergic orchitis. The P-V-P haplotype is associated with increased disease susceptibility (H(1)R(S)) whereas the L-M-S haplotype is associated with less severe disease (H(1)R(R)). In this study, we show that selective re-expression of the H(1)R(S) allele in T cells fully complements experimental allergic encephalomyelitis susceptibility and the production of disease-associated cytokines while selective re-expression of the H(1)R(R) allele does not. Mechanistically, we show that the two H(1)R alleles exhibit differential cell surface expression and altered intracellular trafficking, with the H(1)R(R) allele being retained within the endoplasmic reticulum. Moreover, we show that all three residues (L-M-S) comprising the H(1)R(R) haplotype are required for altered expression. These data are the first to demonstrate that structural polymorphisms influencing cell surface expression of a G protein-coupled receptor in T cells regulates immune functions and autoimmune disease susceptibility. 相似文献
12.
Conjugation to the cell-penetrating peptide TAT potentiates the photodynamic effect of carboxytetramethylrhodamine 总被引:1,自引:0,他引:1
Srinivasan D Muthukrishnan N Johnson GA Erazo-Oliveras A Lim J Simanek EE Pellois JP 《PloS one》2011,6(3):e17732
Background
Cell-penetrating peptides (CPPs) can transport macromolecular cargos into live cells. However, the cellular delivery efficiency of these reagents is often suboptimal because CPP-cargo conjugates typically remain trapped inside endosomes. Interestingly, irradiation of fluorescently labeled CPPs with light increases the release of the peptide and its cargos into the cytosol. However, the mechanism of this phenomenon is not clear. Here we investigate the molecular basis of the photo-induced endosomolytic activity of the prototypical CPPs TAT labeled to the fluorophore 5(6)-carboxytetramethylrhodamine (TMR).Methodology/Principal Findings
We report that TMR-TAT acts as a photosensitizer that can destroy membranes. TMR-TAT escapes from endosomes after exposure to moderate light doses. However, this is also accompanied by loss of plasma membrane integrity, membrane blebbing, and cell-death. In addition, the peptide causes the destruction of cells when applied extracellularly and also triggers the photohemolysis of red blood cells. These photolytic and photocytotoxic effects were inhibited by hydrophobic singlet oxygen quenchers but not by hydrophilic quenchers.Conclusions/Significance
Together, these results suggest that TAT can convert an innocuous fluorophore such as TMR into a potent photolytic agent. This effect involves the targeting of the fluorophore to cellular membranes and the production of singlet oxygen within the hydrophobic environment of the membranes. Our findings may be relevant for the design of reagents with photo-induced endosomolytic activity. The photocytotoxicity exhibited by TMR-TAT also suggests that CPP-chromophore conjugates could aid the development of novel Photodynamic Therapy agents. 相似文献13.
We report a first test of the hypothesis that the mechanism of antimicrobial, cytolytic, and amphipathic cell-penetrating peptides in model membranes is determined by the thermodynamics of insertion of the peptide into the lipid bilayer from the surface-associated state. Three peptides were designed with minimal mutations relative to the sequence of TP10W, the Y3W variant of transportan 10, which is a helical, amphipathic cell-penetrating peptide previously studied. Binding to 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) membranes and release of dye from those vesicles were assessed by stopped-flow fluorescence, and the secondary structure of the peptides on the membrane was determined by circular dichroism. The Gibbs energy of binding determined experimentally was in excellent agreement with that calculated using the Wimley-White interfacial hydrophobicity scale, taking into account the helical content of the membrane-associated peptide. Release of dye from POPC vesicles remained graded, as predicted by the hypothesis. More significantly, as the Gibbs energy of insertion into the bilayer became more unfavorable, which was estimated using the Wimley-White octanol hydrophobicity scale, dye release became slower, in quantitative agreement with the prediction. 相似文献
14.
Gerbal-Chaloin S Gondeau C Aldrian-Herrada G Heitz F Gauthier-Rouvière C Divita G 《Biology of the cell / under the auspices of the European Cell Biology Organization》2007,99(4):223-238
BACKGROUND INFORMATION: Application of CPPs (cell-penetrating peptides) constitutes a promising strategy for the intracellular delivery of therapeutic molecules. The non-covalent approach based on the amphipathic peptide MPG has been successfully used to improve the delivery of biologically active macromolecules, both in cellulo and in vivo, through a mechanism independent of the endosomal pathway and mediated by the membrane potential. RESULTS: In the present study, we have investigated the first step of the cellular uptake mechanism of MPG and shown that both MPG and MPG-cargo complexes interact with the extracellular matrix through the negatively charged heparan sulfate proteoglycans. We demonstrated that initiation of cellular uptake constitutes a highly dynamic mechanism where the binding of MPG or the MPG-cargo to the extracellular matrix is rapidly followed by a remodelling of the actin network associated with the activation of the GTPase Rac1. We suggest that MPG-induced clustering of the glycosaminoglycan platform constitutes the 'onset' of the cellular uptake mechanism, thereby increasing membrane dynamics and membrane fusion processes. This process favours cell entry of MPG or MPG-DNA complexes, which is further controlled by the ability of MPG to induce a local membrane destabilization. CONCLUSIONS: Although CPPs are taken up through different pathways and mechanisms, the initial step involves electrostatic interactions with the glycosaminoglycan platform, and the dynamics of associated membrane microdomains can be generalized to most non-viral delivery systems. 相似文献
15.
Lissauer D Piper K Goodyear O Kilby MD Moss PA 《Journal of immunology (Baltimore, Md. : 1950)》2012,189(2):1072-1080
Tolerance of the semiallogeneic fetus presents a significant challenge to the maternal immune system during human pregnancy. T cells with specificity for fetal epitopes have been detected in women with a history of previous pregnancy, but it has been thought that such fetal-specific cells were generally deleted during pregnancy as a mechanism to maintain maternal tolerance of the fetus. We used MHC-peptide dextramer multimers containing an immunodominant peptide derived from HY to identify fetal-specific T cells in women who were pregnant with a male fetus. Fetal-specific CD8(+) T lymphocytes were observed in half of all pregnancies and often became detectable from the first trimester. The fetal-specific immune response increased during pregnancy and persisted in the postnatal period. Fetal-specific cells demonstrated an effector memory phenotype and were broadly functional. They retained their ability to proliferate, secrete IFN-γ, and lyse target cells following recognition of naturally processed peptide on male cells. These data show that the development of a fetal-specific adaptive cellular immune response is a normal consequence of human pregnancy and that unlike reports from some murine models, fetal-specific T cells are not deleted during human pregnancy. This has broad implications for study of the natural physiology of pregnancy and for the understanding of pregnancy-related complications. 相似文献
16.
Starch gel electrophoresis and histochemical staining with l-leucyl-l-tyrosine have revealed genetic variation for dipeptidase in Rattus norvegicus. The tissue distribution, substrate specificity, and heterozygous expression as a monmeric protein suggest homology of the variant peptidase to human PEP-C and mouse Pep-3 (Dip-1). We propose Peptidase-3 (Pep-3) as a name for this autosomal locus in the rat. The allele responsible for slower (less anodal) electrophoretic migration is designated Pep-3 a and is characteristic of strain ACI/Pit. A faster (more anodal) electrophoretic mobility is the product of the Pep-3 b allele in strain F344/Pit. Twenty-five additional inbred strains carry Pep-3 a and 16 others carry Pep-3 b . Wild rats trapped in Pittsburgh were polymorphic for this locus. Alleles at Pep-3 segregated independently of c (linkage group I), a (linkage group IV), RT2 and Es-1 (linkage group V), h (linkage group VI), and RTI (linkage group VIII). 相似文献
17.
Jacqueline M. Ho John H. Murray Gregory E. Demas James L. Goodson 《Hormones and behavior》2010,58(3):368-2474
Arginine vasopressin (AVP) and its nonmammalian homolog arginine vasotocin influence social behaviors ranging from affiliation to resident-intruder aggression. Although numerous sites of action have been established for these behavioral effects, the involvement of specific AVP cell groups in the brain is poorly understood, and socially elicited Fos responses have not been quantified for many of the AVP cell groups found in rodents. Surprisingly, this includes the AVP population in the posterior part of the medial bed nucleus of the stria terminalis (BSTMP), which has been extensively implicated, albeit indirectly, in various aspects of affiliation and other social behaviors. We examined the Fos responses of eight hypothalamic and three extra-hypothalamic AVP-immunoreactive (-ir) cell groups to copulation, nonaggressive male-male interaction, and aggressive male-male interaction in both dominant and subordinate C57BL/6J mice. The BSTMP cells exhibited a response profile that was unlike all other cell groups: from a control baseline of ∼ 5% of AVP-ir neurons colocalizing with Fos, colocalization increased significantly to ∼ 12% following nonaggressive male-male interaction, and to ∼ 70% following copulation. Aggressive interactions did not increase colocalization beyond the level observed in nonaggressive male mice. These results suggest that BSTMP neurons in mice may increase AVP-Fos colocalization selectively in response to affiliation-related stimuli, similar to findings in finches. In contrast, virtually all other cell groups were responsive to negative aspects of interaction, either through elevated AVP-Fos colocalization in subordinate animals, positive correlations of AVP-Fos colocalization with bites received, and/or negative correlations of AVP-Fos colocalization with dominance. These findings greatly expand what is known of the contributions of specific brain AVP cell groups to social behavior. 相似文献
18.
Miller LK Hou X Rodriguiz RM Gagnidze K Sweedler JV Wetsel WC Devi LA 《Journal of neurochemistry》2011,119(5):1074-1085
An increasing body of evidence suggests that endothelin-converting enzyme-2 (ECE-2) is a non-classical neuropeptide processing enzyme. Similar to other neuropeptide processing enzymes, ECE-2 exhibits restricted neuroendocrine distribution, intracellular localization, and an acidic pH optimum. However, unlike classical neuropeptide processing enzymes, ECE-2 exhibits a non-classical cleavage site preference for aliphatic and aromatic residues. We previously reported that ECE-2 cleaves a number of neuropeptides at non-classical sites in vitro; however its role in peptide processing in vivo is poorly understood. Given the recognized roles of neuropeptides in pain and opiate responses, we hypothesized that ECE-2 knockout (KO) mice might show altered pain and morphine responses compared with wild-type mice. We find that ECE-2 KO mice show decreased response to a single injection of morphine in hot-plate and tail-flick tests. ECE-2 KO mice also show more rapid development of tolerance with prolonged morphine treatment and fewer signs of naloxone-precipitated withdrawal. Peptidomic analyses revealed changes in the levels of a number of spinal cord peptides in ECE-2 KO as compared to wild-type mice. Taken together, our findings suggest a role for ECE-2 in the non-classical processing of spinal cord peptides and morphine responses; however, the precise mechanisms through which ECE-2 influences morphine tolerance and withdrawal remain unclear. 相似文献
19.
Laurence Dutot Pascaline Lécorché Fabienne Burlina Rodrigue Marquant Vanessa Point Sandrine Sagan Gérard Chassaing Jean-Maurice Mallet Solange Lavielle 《Journal of chemical biology》2010,3(2):51-65
Cell-penetrating peptides (CPPs), which are usually short basic peptides, are able to cross cell membranes and convey bioactive
cargoes inside cells. CPPs have been widely used to deliver inside cells peptides, proteins, and oligonucleotides; however,
their entry mechanisms still remain controversial. A major problem concerning CPPs remains their lack of selectivity to target
a specific type of cell and/or an intracellular component. We have previously shown that myristoylation of one of these CPPs
affected the intracellular distribution of the cargo. We report here on the synthesis of glycosylated analogs of the cell-penetrating
peptide (R6/W3): Ac-RRWWRRWRR-NH2. One, two, or three galactose(s), with or without a spacer, were introduced into the sequence of this nonapeptide via a triazole link, the Huisgen reaction being achieved on a solid support. Four of these glycosylated CPPs were coupled via a disulfide bridge to the proapoptotic KLAK peptide, (KLAKLAKKLAKLAK), which alone does not enter into cells. The effect
on cell viability and the uptake efficiency of different glycosylated conjugates were studied on CHO cells and were compared
to those of the nonglycosylated conjugates: (R6/W3)S-S-KLAK and penetratinS-S-KLAK. We show that glycosylation significantly
increases the cell viability of CHO cells compared to the nonglycosylated conjugates and concomitantly decreases the internalization
of the KLAK cargo. These results suggest that glycosylation of CPP may be a key point in targeting specific cells. 相似文献
20.
Increased evidence shows that normal stem cells may contribute to cancer development and progression by acting as cancer-initiating cells through their interactions with abnormal environmental elements.We postulate that normal stem cells and cancer stem cells (CSC) possess similar mechanisms of self-renewal and differentiation.CSC can be the key to the elaboration of anti-cancer-based therapy.In this article,we focus on a controversial new theme relating to CSC.Tumorigenesis may have a critical stage characterized as a "therapeutic window",which can be identified by asso-ciation of molecular,biochemical and biological events.Identifying such a stage can allow the production of more effective therapies (e.g.manipulated stem cells) to treat several cancers.More importantly,confirming the existence of a similar therapeutic window during the conversion of normal stem cells to malignant CSC may lead to targeted therapy specifically against CSC.This conversion information may be derived from investigating the biological behaviour of both normal stem cells and cancerous stem cells.Currently,there is little knowledge about the cellular and molecular mechanisms that govern the initiation and maintenance of CSC.Studies on co-evolution and interdependence of cancer with normal tissues may lead to a useful treatment paradigm of cancer.The crosstalk between normal stem cells and cancer formation may converge developmental stages of different types of stem cells (e.g.normal stem cells,CSC and embryonic stem cells).The differential studies of the convergence may result in novel therapies for treating cancers. 相似文献