首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sporangiophores of Phycomyces blakesleeanus that are gravitropically stimulated by inclining them relative to the earth's gravitational vector obey the sine law for inclination angles between 0 degrees and 150 degrees. The quantitative relation between gravitropism and phototropism was analyzed for sporangiophores that were kept in balance between opposing gravitational and phototropic stimuli. The gravitropism of inclined sporangiophores was compensated with unilateral light impinging at right angles relative to the axis of the sporangiophore. The fluence rate of unilateral blue light (466 nm) that was required to counteract the negative gravitropism increased exponentially with the sine of the inclination angle of the sporangiophore. The establishment of photogravitropic equilibrium during continuous unilateral irradiation is thus determined by two different laws: the well-known sine law for gravitropism and a novel exponential law of phototropism described in this work. Furthermore, the specific form of the exponential relationship depends on the presence of statoliths (vacuolar protein crystals) and on wavelength.  相似文献   

2.
Galland P 《Planta》2002,215(5):779-784
The quantitative relation between gravitropism and phototropism was analyzed for light-grown coleoptiles of Avena sativa (L.). With respect to gravitropism the coleoptiles obeyed the sine law. To study the interaction between light and gravity, coleoptiles were inclined at variable angles and irradiated for 7 h with unilateral blue light (466 nm) impinging at right angles relative to the axis of the coleoptile. The phototropic stimulus was applied from the side opposite to the direction of gravitropic bending. The fluence rate that was required to counteract the negative gravitropism increased exponentially with the sine of the inclination angle. To achieve balance, a linear increase in the gravitropic stimulus required compensation by an exponential increase in the counteracting phototropic stimulus. The establishment of photogravitropic equilibrium during continuous unilateral irradiation is thus determined by two different laws: the well-known sine law for gravitropism and a novel exponential law for phototropism described in this work.  相似文献   

3.
The interaction between gravitropism and phototropism was analyzed for sporangiophores of Phycomyces blakesleeanus. Fluence rate-response curves for phototropism were generated under three different conditions: (a) for stationary sporangiophores, which reached photogravitropic equilibrium; (b) for sporangiophores, which were clinostated head-over during phototropic stimulation; and (c) for sporangiophores, which were subjected to centrifugal accelerations of 2.3g to 8.4g. For blue light (454 nm), clinostating caused an increase of the slope of the fluence rate-response curves and an increase of the maximal bending angles at saturating fluence rates. The absolute threshold remained, however, practically unaffected. In contrast to the results obtained with blue light, no increase of the slope of the fluence rate-response curves was obtained with near-ultraviolet light at 369 nm. Bilateral irradiation with near-ultraviolet or blue light enhanced gravitropism, whereas symmetric gravitropic stimulation caused a partial suppression of phototropism. Gravitropism and phototropism appear to be tightly linked by a tonic feedback loop that allows the respective transduction chains a mutual influence over each other. The use of tropism mutants allowed conclusions to be drawn about the tonic feedback loop with the gravitropic and phototropic transduction chains. The results from clinostating mutants that lack octahedral crystals (implicated as statoliths) showed that these crystals are not involved in the tonic feedback loop. At elevated centrifugal accelerations, the fluence-rate-response curves for photogravitropic equilibrium were displaced to higher fluence rates and the slope decreased. The results indicate that light transduction possesses a logarithmic transducer, whereas gravi-transduction uses a linear one.  相似文献   

4.
Phototropism of Avena coleoptiles was measured in response to blue-light irradiation lasting between 2 and 24 h. During this time the coleoptiles established a bending angle of photogravitropic equilibrium that was dependent on the time of irradiation and also on the pretreatment in light or darkness prior to stimulation. The absolute threshold for the photogravitropic equilibrium in response to blue light was 10(-8) micromol m(-2) s(-1). Photon fluence rate-response curves, which were generated after several hours of dark adaptation, had a characteristic shape with a prominent optimum in the middle of the dynamic range. Curves which were generated without prior dark adaptation displayed no such optimum. Clinostating dark-adapted coleoptiles caused an increase of sensitivity and responsiveness during a 2-h period of unilateral irradiation. The advantages and the drawbacks of long-term irradiation experiments for the investigation of phototropism and the generation of action spectra are discussed.  相似文献   

5.
How developing seedlings integrate gravitropic and phototropic stimuli to determine their direction of growth is poorly understood. In this study we tested whether blue light influences hypocotyl gravitropism in Arabidopsis. Phototropin1 (phot1) triggers phototropism under low fluence rates of blue light but, at least in the dark, has no effect on gravitropism. By analyzing the growth orientation of phototropism-deficient seedlings in response to gravitropic and phototropic stimulations we show that blue light not only triggers phototropism but also represses hypocotyl gravitropism. At low fluence rates of blue light phot1 mutants were agravitropic. In contrast, phyAphot1 double mutants grew exclusively according to gravity demonstrating that phytochrome A (phyA) is necessary to inhibit gravitropism. Analyses of phot1cry1cry2 triple mutants indicate that cryptochromes play a minor role in this response. Thus the optimal growth orientation of hypocotyls is determined by the action of phyA-suppressing gravitropism and the phototropin-triggering phototropism. It has long been known that phytochromes promote phototropism but the mechanism involved is still unknown. Our data show that by inhibiting gravitropism phyA acts as a positive regulator of phototropism.  相似文献   

6.
Vitha S  Zhao L  Sack FD 《Plant physiology》2000,122(2):453-462
Root gravitropism in wild-type Arabidopsis and in two starchless mutants, pgm1-1 and adg1-1, was evaluated as a function of light position to determine the relative strengths of negative phototropism and of gravitropism and how much phototropism affects gravitropic measurements. Gravitropism was stronger than phototropism in some but not all light positions in wild-type roots grown for an extended period, indicating that the relationship between the two tropisms is more complex than previously reported. Root phototropism significantly influenced the time course of gravitropic curvature and the two measures of sensitivity. Light from above during horizontal exposure overestimated all three parameters for all three genotypes except the wild-type perception time. At the irradiance used (80 micromol m(-2) s(-1)), the shortest periods of illumination found to exaggerate gravitropism were 45 min of continuous illumination and 2-min doses of intermittent illumination. By growing roots in circumlateral light or by gravistimulating in the dark, corrected values were obtained for each gravitropic parameter. Roots of both starchless mutants were determined to be about three times less sensitive than prior estimates. This study demonstrates the importance of accounting for phototropism in the design of root gravitropism experiments in Arabidopsis.  相似文献   

7.
Light promotes the expression of PHYTOCHROME KINASE SUBSTRATE1 (PKS1) in the root of Arabidopsis thaliana, but the function of PKS1 in this organ is unknown. Unilateral blue light induced a negative root phototropic response mediated by phototropin 1 in wild-type seedlings. This response was absent in pks1 mutants. In the wild type, unilateral blue light enhanced PKS1 expression in the subapical region of the root several hours before bending was detectable. The negative phototropism and the enhanced PKS1 expression in response to blue light required phytochrome A (phyA). In addition, the pks1 mutation enhanced the root gravitropic response when vertically oriented seedlings were placed horizontally. The negative regulation of gravitropism by PKS1 occurred even in dark-grown seedlings and did not require phyA. Blue light also failed to induce negative phototropism in pks1 under reduced gravitational stimulation, indicating that the effect of pks1 on phototropism is not simply the consequence of the counteracting effect of enhanced gravitropism. We propose a model where the background level of PKS1 reduces gravitropism. After a phyA-dependent increase in its expression, PKS1 positively affects root phototropism and both effects contribute to negative curvature in response to unilateral blue light.  相似文献   

8.
Phytochromes are a family of photoreceptor molecules, absorbing primarily in red and far-red, that are important in many aspects of plant development. These studies investigated the role of phytochromes in phototropism and gravitropism of seedlings of Arabidopsis thaliana. We used two transgenic lines, one which lacked phytochromes specifically in the roots (M0062/UASBVR) and the other lacked phytochromes in the shoots (CAB3::pBVR). These transgenic plants are deficient in the phytochrome chromophore in specific tissues due the expression of biliverdin IXa reductase (BVR), which binds to precursors of the chromophore. Experiments were performed in both light and dark conditions to determine whether roots directly perceive light signals or if the signal is perceived in the shoot and then transmitted to the root during tropistic curvature. Kinetics of tropisms and growth were assayed by standard methods or with a computer-based feedback system. We found that the perception of red light occurs directly in the root during phototropism in this organ and that signaling also may occur from root to shoot in gravitropism.  相似文献   

9.
Phototropic response in etiolated pea (Pisum sativum L. cv Alaska) seedlings is poor. However, the curvature induced by unilateral blue light can be hastened and increased in magnitude by a previously administered red light pulse followed by several hours of darkness. Phytochrome is involved in the red light effect. Phototropic response was almost completely inhibited by removal of the apical bud and hook, but it was restored if exogenous indole-3-acetic acid was applied apically to the cut stump. Therefore, the stem contains both the phototropic photoreceptor and response mechanism. Perception of gravity and gravitropic response were also localized in the stem, but gravitropism was scarcely inhibited by decapitation. It was also observed that the kinetics and curvature pattern of gravitropism differed greatly from those of phototropism. Like phototropism, stem nutation required auxin and was promoted by red light. Unlike phototropism, photoenhanced nutational curvature required the apical hook and was propagated as a wave down the stem. Naphthylphthalamic acid inhibited, in order of decreasing effect, nutation, phototropism/gravitropism, and growth. Phototropism, gravitropism, and nutation appear to represent distinct forms of stem movement with fundamental differences in the mechanisms of curvature development.  相似文献   

10.
Phototropism of Avena coleoptiles was measured in response to blue-light irradiation lasting between 2 and 24 h. During this time the coleoptiles established a bending angle of photogravitropic equilibrium that was dependent on the time of irradiation and also on the pretreatment in light or darkness prior to stimulation. The absolute threshold for the photogravitropic equilibrium in response to blue light was 10−8 μmol m−2 s−1. Photon fluence rate–response curves, which were generated after several hours of dark adaptation, had a characteristic shape with a prominent optimum in the middle of the dynamic range. Curves which were generated without prior dark adaptation displayed no such optimum. Clinostating dark-adapted coleoptiles caused an increase of sensitivity and responsiveness during a 2-h period of unilateral irradiation. The advantages and the drawbacks of long-term irradiation experiments for the investigation of phototropism and the generation of action spectra are discussed. Received: May 14, 2001 / Accepted: December 7, 2001  相似文献   

11.
Phototropic (PT) and gravitropic (GT) bending are the two major tropic movements that determine the spatial position of potato shoots. We studied PT bending of potato plantlets grown under long-day photoperiods in several prearranged position setups providing different interactions with the GT response. Starting with the standard PT stimulation setup composed of unilateral irradiation of vertically positioned shoots, experiments were also done in antagonistic and synergistic setups and in treatments with horizontal displacement of the light source. In the standard setup, PT bending suppressed the GT bending, which could occur only if the PT stimulation was cancelled. The antagonistic position, with phototropism and gravitropism attempting to bend shoots in opposite directions, showed phototropism and gravitropism as independent bending events with the outcome varying throughout the day reflecting diurnal changes in the competence of individual tropic components. Whilst gravitropism was constant, phototropism had a marked daily fluctuation of its magnitude with a prominent morning maximum starting an hour after the dawn in the growth room and lasting for the next 6 h. When phototropism and gravitropism were aligned in a synergistic position, stimulating shoot bending in the same direction, there was little quantitative addition of their individual effects. The long period of morning PT bending maximum enabled multiple PT bending events to be conducted in succession, each one preceded by a separate lag phase. Studies of secondary PT events showed that potato plantlets can follow and adjust their shoot position in response to both vertical and horizontal movements of a light source. PT bending was reversible, since the 180° horizontal change of a blue light (BL) source position resulted in reversal of bending direction after a 20-min-long lag phase.  相似文献   

12.
Plant tropisms—their directional movement in response to stimuli—are a fundamental concept in plant science and excite students because they are the observable signs of life in plants. Unfortunately, the precollege teaching literature is full of tropism misconceptions. An inexpensive clock clinostat is invaluable for student gravitropism and phototropism experiments. It is also valuable for space biology experiments because a clinostat can mimic the microgravity of space.  相似文献   

13.
Phototropism and gravitropism in lateral roots of Arabidopsis   总被引:4,自引:0,他引:4  
Gravitropism and, to a lesser extent, phototropism have been characterized in primary roots, but little is known about structural/functional aspects of these tropisms in lateral roots. Therefore, in this study, we report on tropistic responses in lateral roots of Arabidopsis thaliana. Lateral roots initially are plagiogravitropic, but when they reach a length of approximately 10 mm, these roots grow downward and exhibit positive orthogravitropism. Light and electron microscopic studies demonstrate a correlation between positive gravitropism and development of columella cells with large, sedimented amyloplasts in wild-type plants. Lateral roots display negative phototropism in response to white and blue light and positive phototropism in response to red light. As is the case with primary roots, the photoresponse is weak relative to the graviresponse, but phototropism is readily apparent in starchless mutant plants, which are impaired in gravitropism. To our knowledge, this is the first report of phototropism of lateral roots in any plant species.  相似文献   

14.
Two mutants of Arabidopsis thaliana have been identified with decreased phototropism to 450-nanometer light. Fluence-response relationships for these strains (ZR8 and ZR19) to single and multiple flashes of light show thresholds, curve shapes, and fluence for maximum curvature in `first positive' phototropism which are the same as those of the wild type. Similarly, there is no alteration from the wild type in the kinetics of curvature or in the optimum dark period separating sequential flashes in a multiple flash regimen. In addition, in both strains, gravitropism is decreased compared to the wild type by an amount which is comparable to the decrease in phototropism. Based on reciprocal backcrosses, it appears that the alteration is due to a recessive nuclear mutation. It is suggested that ZR8 and ZR19 represent alterations in some step analogous to an amplifier, downstream of the photoreceptor pigment, and common to both phototropism and gravitropism.  相似文献   

15.
Light is one of the most important environmental parameters for a plant and plays a critical role throughout the life cycle. Plants sense light using the red-light-absorbing phytochromes and the blue-light-absorbing cryptochromes and phototropins. In this report, we examine the role of phytochromes in phototropism and gravitropism in inflorescence stems of Arabidopsis thaliana . Tropisms and growth responses were assayed in wild-type (WT) plants, and these responses were compared with those of the mutants phyA , phyB , phyAB , phyD and phyE . After considering growth differences, we found that phototropism of the phyE mutant is significantly less ( P  < 0.05) and that gravitropism of phyB and phyE is significantly greater ( P  < 0.05) compared with the WT responses. Interestingly, while phyE plays a positive role in phototropism, this pigment (along with phyB) attenuates gravitropism in inflorescence stems. This study adds to the growing literature demonstrating that phytochromes can play a role in blue-light-mediated responses such as phototropism.  相似文献   

16.
Although the effects of gravity on root growth are well known and interactions between light and gravity have been reported, details of root phototropic responses are less documented. We used high-resolution image analysis to study phototropism in primary roots of Zea mays L. Similar to the location of perception in gravitropism, the perception of light was localized in the root cap. Phototropic curvature away from the light, on the other hand, developed in the central elongation zone, more basal than the site of initiation of gravitropic curvature. The phototropic curvature saturated at approximately 10 micromoles m-2 s-1 blue light with a peak curvature of 29 +/- 4 degrees, in part due to induction of positive gravitropism following displacement of the root tip from vertical during negative phototropism. However, at higher fluence rates, development of phototropic curvature is arrested even if gravitropism is avoided by maintaining the root cap vertically using a rotating feedback system. Thus continuous illumination can cause adaptation in the signalling pathway of the phototropic response in roots.  相似文献   

17.
Neumann R  Iino M 《Planta》1997,201(3):288-292
Phototropism of rice (Oryza sativa L.) coleoptiles induced by unilateral blue light was characterized using red-light-grown seedlings. Phototropic fluence-response relationships, investigated mainly with submerged coleoptiles, revealed three response types previously identified in oat and maize coleoptiles: two pulse-induced positive phototropisms and a phototropism that depended on stimulation time. The effective ranges of fluences and fluence rates were comparable to those reported for maize. Compared with oats and maize, however, curvature responses in rice were much smaller and coleoptiles straightened faster after establishing the maximal curvature. When stimulated continuously, submerged coleoptiles developed curvature slowly over a period of 6 h, whereas air-grown coleoptiles, which showed smaller phototropic responsiveness, established a photogravitropic equilibrium from about 4 h of stimulation. The plot of the equilibrium angle against log fluence rates yielded a bell-shaped optimum curve that spanned over a relatively wide fluence-rate range; a maximal curvature of 25° occurred at a fluence rate of 1 μmol · m−2 · s−1. This optimum curve apparently reflects the light sensitivity of the steady-state phototropic response. Received: 28 June 1996 / Accepted: 30 July 1996  相似文献   

18.
Roots display positive hydrotropism in response to a moisture gradient, which is important for plants to escape from water stress and regulate the directional growth by interacting with other growth movements such as gravitropism, phototropism and waving response. On Earth, hydrotropism is interfered by gravitropism in particular, so that microgravity conditions or agravitropic mutants have been used for the study of hydrotropism. However, we have recently established an experimental system for the study of hydrotropism in Arabidopsis roots that easily develop hydrotropism in response to moisture gradient by overcoming gravitropism. Using the Arabidopsis system, we isolated hydrotropism mutants named root hydrotropism (rhy). In the present study, we examined the hydrotropism, gravitropism, phototropism, waving response and elongation growth of rhy4 and rhy5 roots that were defective in positive hydrotropism. Interestingly, rhy4 roots curved away from the water source and showed a reduced waving response. Both rhy4 and rhy5 showed normal gravitropism and a slight reduction in phototropism. These results suggest that there is a mutual molecular mechanism underlying hydrotropism, waving response and/or phototropism. Thus, we have obtained novel hydrotropic mutants that will be used for revealing molecular mechanism of root hydrotropism and its interaction with waving response and/or phototropism.  相似文献   

19.
The relationships between the distribution of the native auxin indole-3-acetic acid (IAA) and tropisms in the epicotyl of red light-grown pea (Pisum sativum L.) seedlings have been investigated. The distribution measurement was made in a defined zone of the third internode, using (3)H-IAA applied from the plumule as a tracer. The tropisms investigated were gravitropism, pulse-induced phototropism, and time-dependent phototropism. The investigation was extended to the phase of autostraightening (autotropism) that followed gravitropic curvature. It was found that IAA is asymmetrically distributed between the two halves of the zone, with a greater IAA level occurring on the convex side, at early stages of gravitropic and phototropic curvatures. This asymmetry was found in epidermal peels and, except for one case (pulse-induced phototropism), no asymmetry was detected in whole tissues. It was concluded, in support of earlier results, that auxin asymmetry mediates gravitropism and phototropism and that the epidermis or peripheral cell layers play an important role in the establishment of auxin asymmetry in pea epicotyls. During autostraightening, which results from a reversal of growth asymmetry, the extent of IAA asymmetry was reduced, but its direction was not reversed. This result demonstrated that autostraightening is not regulated through auxin distribution. In this study, the growth on either side of the investigated zone was also measured. In some cases, the measured IAA distribution could not adequately explain the local growth rate, necessitating further detailed investigation.  相似文献   

20.
Volker D. Kern  Fred D. Sack 《Planta》1999,209(3):299-307
Apical cells of protonemata of the moss Ceratodon purpureus (Hedw.) Brid. are negatively gravitropic in the dark and positively phototropic in red light. Various fluence rates of unilateral red light were tested to determine whether both tropisms operate simultaneously. At irradiances ≥140 nmol m−2 s−1 no gravitropism could be detected and phototropism predominated, despite the presence of amyloplast sedimentation. Gravitropism occurred at irradiances lower than 140 nmol m−2 s−1 with most cells oriented above the horizontal but not upright. At these low fluence rates, phototropism was indistinct at 1 g but apparent in microgravity, indicating that gravitropism and phototropism compete at 1 g. The frequency of protonemata that were negatively phototropic varied with the fluence rate and the duration of illumination, as well as with the position of the apical cell before illumination. These data show that the fluence rate of red light regulates whether gravitropism is allowed or completely repressed, and that it influences the polarity of phototropism and the extent to which apical cells are aligned in the light path. Received: 19 January 1999 / Accepted: 19 March 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号