共查询到20条相似文献,搜索用时 15 毫秒
1.
人乳头瘤病毒16型湖北株E7基因的克隆和高效表达 总被引:2,自引:1,他引:2
利用基因克隆技术,将HPV16湖北株完整的E7基因克隆到含乳糖操纵子的表达载体pWR5901上,经限制性酶切分析获得重组质粒pWHBE7。pWHBE7转化大肠杆菌后表达产生分子量为70kD的融合蛋白lacE7,该蛋白在免疫印迹实验中可被标准E7单抗识别。经IPTG诱导后,E7融合蛋白产量可达细菌总蛋白含量的30%以上。利用lacE7蛋白在细菌胞浆中形成包含体的性质,简便地提取并纯化了该蛋白质。结果为从免疫学角度探讨HPV16与宫颈癌的关系以及HPV疫苗的研制打下基础。 相似文献
2.
目的:在大肠杆菌中表达经密码子优化的人乳头瘤病毒6型(HPV6)L1的融合蛋白。方法:PCR方法扩增HPV6 L1,基因,测序及序列比对后,对基因进行密码子优化并合成优化后的基因HPV6mLI,将其克隆入原核表达载体pGEX4T-1,IPTG诱导融合蛋白在大肠杆菌BL21(DE3)中表达,SDS-PAGE鉴定表达产物。结果:酶切和测序结果证实HPV6 mL1基因的原核表达载体构建正确;以1mmol/L IPTG于37℃诱导4h,蛋白以包涵体形式表达;表达产物的相对分子质量与预期值一致,为80000。结论:获得大肠杆菌表达的HPV6L1蛋白,为其结构功能研究和疫苗研发提供了基础。 相似文献
3.
目的:提高16型人乳头瘤病毒(HPV16)L1基因在杆状病毒昆虫细胞中的表达水平,为研制预防性HPV疫苗奠定基础。方法:根据昆虫细胞密码子偏性对野生型HPV16L1基因进行改造,利用Bac-to-Bac表达系统获得重组杆状病毒,感染昆虫细胞Sf9和High Five。Western blot鉴定表达产物;电镜下观察病毒样颗粒形成。利用ELISA法评价HPV16L1基因的优化效果,探讨L1蛋白表达的最佳条件。结果:在相对分子质量56kDa处出现HPV16L1的特异性条带;电镜下可见病毒样颗粒在昆虫细胞的核内形成;优化型HPV16L1基因的表达水平显著高于野生型。High Five细胞表达的最佳条件为MOI=10,表达时相72h,其L1蛋白表达量至少比Sf9细胞高3倍。结论:密码子优化技术确实能够促进HPV16L1蛋白的高效表达,而High Five细胞表现出的显著优势尤其值得关注。 相似文献
4.
人乳头瘤病毒16型(HPV16)含有两个晚期开放读码框(L_1ORF和L_2ORF),L_1ORF编码主要衣壳蛋白,我们用质粒pHPV16、p16L_2BX_5和pATH,采用基因重组技术,制备了含有HPV16个长L_1ORF序列的基因克隆p16L_1BN(5071—253),它能在大肠杆菌中有效表达,产生分子量约90KD的含有E. coli trpE的融合蛋白。Western blot检测,该蛋白可被抗牛乳头瘤病毒的抗体识别,这说明克隆p16L_1BN能有效表达,基因产物具有乳头瘤病毒型的共同抗原的性质。 相似文献
5.
6.
采用PCR扩增、pGEM T载体克隆和核苷酸序列分析的方法对一例武汉地区及两例五峰县高发区宫颈癌患者体内HPV16型的E7基因编码区进行序列分析并与野生型 (德国标准株 )及已发表的HPV16湖北株 (HPVHB)进行了比较。结果发现武汉地区HPV16型E7基因仅第 5 4位出现一个同义突变 ,而高发区HPV16型E7基因存在差异 ,第 77位氨基酸由精氨酸 (Arg)变为半胱氨酸 (Cys) ,第 96位由谷氨酰氨酸 (Gln)变为精氨酸 (Arg) ,E7蛋白的二级结构及亲、疏水性也相应改变 ,与野生型有较大差异 相似文献
7.
目的:克隆分析人乳头瘤病毒16型(HPV16)新疆株的研基因;并对E7基因进行突变改造,以比较野生型与突变型HPV16E7基因的功能。方法:根据从中国新疆维吾尔族妇女宫颈癌活检组织标本中提取的DNA,进行PCR扩增获得HPV16E7基因,然后分别将其克隆到pMD18-T载体上进行DNA序列分析。根据HPV16E7基因的特点,分别设计点突变引物,用PCR的方法进行HPV16E7基因的点突变。结果:PCR检测显示扩增出HPV16(新疆株)E8基因;测序结果表明HPV16-XJ的研基因全长297bp,与德国标准株一致;利用设计突变位点的引物经PCR扩增,经序列测定后,分别得到了第70、172、271位碱基突变的HPV16E7基因;分别构建了野生型与单、双、三点突变的重组质粒pMD18-T-HPV16E7。结论:人乳头瘤病毒16型(新疆株)E7基因结构与德国标准株相同。HPV16E7基因多点突变的改造,为探索HPV16E7基因功能的变化和开展疫苗研究奠定了理论基础。 相似文献
8.
Following attachment to primary receptor heparan sulfate proteoglycans (HSPG), human papillomavirus type 16 (HPV16) particles undergo conformational changes affecting the major and minor capsid proteins, L1 and L2, respectively. This results in exposure of the L2 N-terminus, transfer to uptake receptors, and infectious internalization. Here, we report that target cell cyclophilins, peptidyl-prolyl cis/trans isomerases, are required for efficient HPV16 infection. Cell surface cyclophilin B (CyPB) facilitates conformational changes in capsid proteins, resulting in exposure of the L2 N-terminus. Inhibition of CyPB blocked HPV16 infection by inducing noninfectious internalization. Mutation of a putative CyP binding site present in HPV16 L2 yielded exposed L2 N-terminus in the absence of active CyP and bypassed the need for cell surface CyPB. However, this mutant was still sensitive to CyP inhibition and required CyP for completion of infection, probably after internalization. Taken together, these data suggest that CyP is required during two distinct steps of HPV16 infection. Identification of cell surface CyPB will facilitate the study of the complex events preceding internalization and adds a putative drug target for prevention of HPV–induced diseases. 相似文献
9.
10.
11.
Highly Efficient and Economical Baculovirus Expression System for Preparing Human Papillomavirus Type16 Virus-like Particle 总被引:2,自引:0,他引:2
Jin ZHENG Jun MA Xiao-Feng YANG Hong-Li LIU Hong-Wei CHENG Lu-Sheng SI and Yi-Li WANGThe Key Laboratory of Biomedical Information Engineering of Ministry of Education Institute of Cancer Research School of Life Science Technology Xi’an Jiaotong University Xi’an China 《Acta biochimica et biophysica Sinica》2004,(8)
Human papillomavirus (HPV) is the most importantagent of human primary cervical cancer, and the list ofmalignancies caused by or associated with HPV is stillgrowing. HPV has been detected in carcinomas of larynx,esophagus, oral cavity, nasal sinus, skin, … 相似文献
12.
Mohammad Hadi Karbalaie Niya Hossein Keyvani Fahimeh Safarnezhad Tameshkel Mostafa Salehi-Vaziri Sedigheh Teaghinezhad-S Farah Bokharaei Salim Seyed Hamid Reza Monavari Davod Javanmard 《Translational oncology》2018,11(3):593-598
Human papillomavirus (HPV) is a common viral infection worldwide associated with a variety of cancers. The integration of the HPV genome in these patients causes chromosomal instability and triggers carcinogenesis. The aim of this study was to investigate the HPV-16 genome physical status in four major cancers related to HPV infection. Formalin-fixed paraffin-embedded blocks from our previous projects on head and neck, colorectal, penile, and cervical cancers were collected, and HPV-16–positive specimens were used for further analysis. The DNA extraction copy number of E2 and E7 genes was calculated by qualitative real-time PCR method. Serially diluted standards that were cloned in PUC57 plasmid were used. Standard curve and melting curve analysis was used for quantification. Of the 672 specimens studied, 76 (11.3%) were HPV-16 positive. We found that 35.6% (16/45) were integrated. Statistical analysis showed that there were significant correlations between integration of HPV-16 and cervical cancer end-stage carcinogenesis (P < .0001), episomal form, and ASCUS lesions (P = .045). Significant correlation in penile cancer patients was seen between the episomal form and high-grade cancer stage (P = .037). Integration is a major factor in the carcinogenesis mechanism of HPV and has different prevalence in various cancers with a higher rate in progression except in penile cancer. 相似文献
13.
Done Bogdan Khatri Purvesh Done Arina Draghici Sorin 《IEEE/ACM transactions on computational biology and bioinformatics / IEEE, ACM》2010,7(1):91-99
The correct interpretation of many molecular biology experiments depends in an essential way on the accuracy and consistency of the existing annotation databases. Such databases are meant to act as repositories for our biological knowledge as we acquire and refine it. Hence, by definition, they are incomplete at any given time. In this paper, we describe a technique that improves our previous method for predicting novel GO annotations by extracting implicit semantic relationships between genes and functions. In this work, we use a vector space model and a number of weighting schemes in addition to our previous latent semantic indexing approach. The technique described here is able to take into consideration the hierarchical structure of the Gene Ontology (GO) and can weight differently GO terms situated at different depths. The prediction abilities of 15 different weighting schemes are compared and evaluated. Nine such schemes were previously used in other problem domains, while six of them are introduced in this paper. The best weighting scheme was a novel scheme, n2tn. Out of the top 50 functional annotations predicted using this weighting scheme, we found support in the literature for 84 percent of them, while 6 percent of the predictions were contradicted by the existing literature. For the remaining 10 percent, we did not find any relevant publications to confirm or contradict the predictions. The n2tn weighting scheme also outperformed the simple binary scheme used in our previous approach. 相似文献
14.
15.
Ewa Krawczyk Frank A. Suprynowicz Sawali R. Sudarshan Richard Schlegel 《Journal of virology》2010,84(4):1696-1703
The E5 protein of human papillomavirus type 16 is a small, hydrophobic protein that localizes predominantly to membranes of the endoplasmic reticulum (ER). To define the orientation of E5 in these membranes, we employed a differential, detergent permeabilization technique that makes use of the ability of low concentrations of digitonin to selectively permeabilize the plasma membrane and saponin to permeabilize all cellular membranes. We then generated a biologically active E5 protein that was epitope tagged at both its N and C termini and determined the accessibility of these termini to antibodies in the presence and absence of detergents. In both COS cells and human ectocervical cells, the C terminus of E5 was exposed to the cytoplasm, whereas the N terminus was restricted to the lumen of the ER. Finally, the deletion of the E5 third transmembrane domain (and terminal hydrophilic amino acids) resulted in a protein with its C terminus in the ER lumen. Taken together, these topology findings are compatible with a model of E5 being a 3-pass transmembrane protein and with studies demonstrating its C terminus interacting with cytoplasmic proteins.Human papillomaviruses (HPVs) are small, nonenveloped, double-stranded DNA viruses (25) that are the causative agents of benign and malignant tumors in humans (43). Most cancers of the cervix, vagina, and anus are caused by HPVs, as are a fraction of oropharyngeal cancers (29, 44). HPV type 16 (HPV-16) is the type most frequently found in anogenital cancers (15, 29), including cervical cancer, the most common cancer of women worldwide (44).Some of the biological activities of the HPV-16 E5 protein (16E5) include the augmentation of epidermal growth factor (EGF) signaling pathways (8), stimulation of anchorage-independent growth (38), alkalinization of endosomal pH (11), and alteration of membrane lipid composition (39). 16E5 also exhibits weak transforming activity in vitro (12), induces epithelial tumors in transgenic mice (13), and plays an important role in koilocytosis (20). There are multiple documented intracellular binding targets for 16E5 such as the 16-kDa subunit of the vacuolar H+-ATPase (7, 36), the heavy chain of HLA type I (1), EGF receptor family member ErbB4 (6), calnexin (16), the zinc transporter ZnT-1 (21), the EVER1 and EVER2 transmembrane channel-like proteins that modulate zinc homeostasis (21, 31), the nuclear import receptor family member karyopherin β3 (KNβ3) (19), and BAP31, which was previously reported to contribute to B-cell receptor activation (35).16E5 is a small, hydrophobic protein that localizes to intracellular membranes. When overexpressed in COS cells, it is present in the endoplasmic reticulum (ER) and, to a lesser extent, in the Golgi apparatus (7). At a lower level of expression in human foreskin keratinocytes and human ectocervical cells (HECs), 16E5 is present predominantly in the ER (10, 39). 16E5 contains three hydrophobic regions (14, 16, 22, 30, 41), and it was reported previously that the first hydrophobic region determines various biological properties of the protein (16, 22). It was also shown previously that the 16E5 C terminus plays a role in binding to karyopherin β3 (19) and in the formation of koilocytes (20). While theoretical predictions have been made for the topology of E5 in membranes (16), no experimental data exist. However, a recent study suggested that some highly expressed 16E5 localizes to the plasma membrane, with its C terminus exposed externally (18).The aim of the present study was to establish the orientation of 16E5 in the ER membrane. By using immunofluorescence microscopy coupled with differential membrane permeabilization (24, 34), we demonstrate the membrane orientation of an N- and C-terminally tagged, biologically active 16E5 protein. Our results indicate that the N terminus is intralumenal and that the C terminus is cytoplasmic, consistent with a model of E5 being a three-pass transmembrane protein and with current data on the interaction of its C terminus with cytoplasmic proteins. 相似文献
16.
Michael J. Conway Samina Alam Eric J. Ryndock Linda Cruz Neil D. Christensen Richard B. S. Roden Craig Meyers 《Journal of virology》2009,83(20):10515-10526
Papillomavirus capsids are composed of 72 pentamers reinforced through inter- and intrapentameric disulfide bonds. Recent research suggests that virus-like particles and pseudovirions (PsV) can undergo a redox-dependent conformational change involving disulfide interactions. We present here evidence that native virions exploit a tissue-spanning redox gradient that facilitates assembly events in the context of the complete papillomavirus life cycle. DNA encapsidation and infectivity titers are redox dependent in that they can be temporally modulated via treatment of organotypic cultures with oxidized glutathione. These data provide evidence that papillomavirus assembly and maturation is redox-dependent, utilizing multiple steps within both suprabasal and cornified layers.Human papillomaviruses (HPVs) exclusively infect cutaneous or mucosal epithelial tissues (14, 15, 30). HPV types that infect the mucosal epithelia can lead to the development of benign or malignant neoplasms, thus allowing for their categorization into low-risk or high-risk HPV types, respectively (14, 15, 30). A small subset of the more than 200 HPV types now identified are the causative agents of over 75% of all cervical cancers. HPV16 is the most prevalent type worldwide, found in ca. 50 to 62% of squamous cell carcinomas (14, 50).HPV16 virions contain a single, circular double-stranded DNA genome of ∼8 kb which associates with histones to form a chromatin-like structure. This minichromosome is packaged within a nonenveloped, icosahedral capsid composed of the major capsid protein L1 and the minor capsid protein L2. Similar to polyomaviruses, 72 capsomeres of L1 are geometrically arranged on a T=7 icosahedral lattice (2, 9, 17, 19, 36, 42). Recent cryoelectron microscopy images of HPV16 pseudovirions (PsV) suggest that L2 is arranged near the inner conical hollow of each L1 pentamer, although it is not known whether each L1 pentamer is occupied with a single L2 protein (5, 42).Due to technical constraints in the production of native HPV virions in organotypic culture, assembly studies of HPV particles have largely been restricted to the utilization of in vitro-derived particles such as virus-like particles (VLPs), PsV, and quasivirions (QV) (6, 12, 25, 40, 43). Recent research suggests that HPV and bovine papillomavirus PsV can undergo a redox-dependent conformational change that takes place over the course of many hours. This conformational change is characterized by resistance to proteolysis and chemical reduction and the appearance of a more orderly capsid structure via transmission electron microscopy (TEM) (7, 20).We present evidence that native virions, in the context of the complete papillomavirus life cycle, utilize a tissue-spanning redox gradient that facilitates multiple redox-dependent assembly and maturation events over the course of many days. We show that stability and specific infectivity of 20-day virions increases over 10-day virions, 20-day virions are more susceptible to neutralization than 10-day virions, and both viral DNA encapsidation and infectivity of HPV-infected tissues are redox dependent in that they can be manipulated via the treatment of organotypic tissues with oxidized glutathione (GSSG), which is concentration and temporally dependent. 相似文献
17.
人乳头瘤病毒16型假病毒中和实验的建立和初步应用 总被引:4,自引:0,他引:4
探讨了应用多质粒磷酸钙共转染方法在293FT细胞中生产HPV16(human papillomavirus type 16)假病毒。蛋白印迹检测显示在转染后细胞的裂解上清中具有很好的L1蛋白活性,通过透射电镜可观察到形态与天然病毒粒子相似的假病毒颗粒。对293FT细胞的感染实验显示,该假病毒可有效将EGFP报告质粒导入靶细胞中进行表达,经测定其滴度约为2×107TU/mL。通过与4株HPV16对照单抗的中和实验证明该假病毒可有效应用于中和实验。应用该方法从18株抗HPV16L1的单克隆抗体中鉴定获得了2株中和单抗3D10、PD1。所建立的HPV16假病毒生产和中和实验方法具有快速高效、低成本和易于检测的优点,适于进行较大规模应用,为快速准确鉴定HPV16中和单抗和候选疫苗的免疫保护效果提供了有效手段。 相似文献
18.
19.
人乳头瘤病毒16型病毒样颗粒的制备及其免疫原性研究 总被引:1,自引:0,他引:1
利用PCR技术从HPV16阳性阴道分泌物标本中获得HPV16 L1基因片段,并将其插入表达载体pTO-T7中,构建重组表达质粒pTO-T7-HPV16-L1;以该重组质粒转化大肠杆菌ER2566并表达HPV16 L1蛋白;所表达的HPV16 L1蛋白经过硫酸铵沉淀、离子交换层析和疏水相互作用层析等纯化步骤后,HPV16 L1纯度达到98%以上,并可在体外装配为直径50nm的病毒样颗粒;动物免疫原性研究结果显示,该病毒样颗粒可诱导高滴度的针对HPV16的中和抗体。上述研究结果表明通过大肠杆菌表达系统制备的HPV16病毒样颗粒具有纯度高,与天然病毒颗粒形态高度相似的特点,并具有高度免疫原性,可以应用于HPV16病毒样颗粒的结构功能研究及HPV16疫苗研发等领域。 相似文献