首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although many putative heme transporters have been discovered, it has been challenging to prove that these proteins are directly involved with heme trafficking in vivo and to identify their heme binding domains. The prokaryotic pathways for cytochrome c biogenesis, Systems I and II, transport heme from inside the cell to outside for stereochemical attachment to cytochrome c, making them excellent models to study heme trafficking. System I is composed of eight integral membrane proteins (CcmA–H) and is proposed to transport heme via CcmC to an external “WWD” domain for presentation to the membrane-tethered heme chaperone, CcmE. Herein, we develop a new cysteine/heme crosslinking approach to trap and map endogenous heme in CcmC (WWD domain) and CcmE (defining “2-vinyl” and “4-vinyl” pockets for heme). Crosslinking occurs when either of the two vinyl groups of heme localize near a thiol of an engineered cysteine residue. Double crosslinking, whereby both vinyls crosslink to two engineered cysteines, facilitated a more detailed structural mapping of the heme binding sites, including stereospecificity. Using heme crosslinking results, heme ligand identification, and genomic coevolution data, we model the structure of the CcmCDE complex, including the WWD heme binding domain. We conclude that CcmC trafficks heme via its WWD domain and propose the structural basis for stereochemical attachment of heme.  相似文献   

2.
Cytochrome c is a multifunctional hemoprotein in the mitochondrial intermembrane space whereby its participation in electron shuttling between respiratory complexes III and IV is alternative to its role in apoptosis as a peroxidase activated by interaction with cardiolipin (CL), and resulting in selective CL peroxidation. The switch from electron transfer to peroxidase function requires partial unfolding of the protein upon binding of CL, whose specific features combine negative charges of the two phosphate groups with four hydrophobic fatty acid residues. Assuming that other endogenous small molecule ligands with a hydrophobic chain and a negatively charged functionality may activate cytochrome c into a peroxidase, we investigated two hydrophobic anionic analogues of vitamin E, α-tocopherol succinate (α-TOS) and α-tocopherol phosphate (α-TOP), as potential inducers of peroxidase activity of cytochrome c. NMR studies and computational modeling indicate that they interact with cytochrome c at similar sites previously proposed for CL. Absorption spectroscopy showed that both analogues effectively disrupt the Fe-S(Met80) bond associated with unfolding of cytochrome c. We found that α-TOS and α-TOP stimulate peroxidase activity of cytochrome c. Enhanced peroxidase activity was also observed in isolated rat liver mitochondria incubated with α-TOS and tBOOH. A mitochondria-targeted derivative of TOS, triphenylphosphonium-TOS (mito-VES), was more efficient in inducing H2O2-dependent apoptosis in mouse embryonic cytochrome c+/+ cells than in cytochrome c−/− cells. Essential for execution of the apoptotic program peroxidase activation of cytochrome c by α-TOS may contribute to its known anti-cancer pharmacological activity.  相似文献   

3.
A model is presented for the lactose-proton co-transporter of E. coli. Either proton translocation inwards or galactoside translocation outwards brings about the exposure of galactoside binding sites externally. This alternation in the exposure of the galactoside binding site to either side of the membrane is viewed as the fundamental event in coupled uptake, rather than affinity changes for galactoside.The transporter is proposed to function as a dimer, exhibiting two forms corresponding to the “cis” and the “trans” orientation of the two galactosyl binding sites. A galactoside or a proton gradient brings about conversion of the sites from the “trans” to the “cis” configuration. The two forms can be experimentally differentiated by the accessibility of non-transportable substrate analogs to the galactosyl binding sites.  相似文献   

4.
H.J. Harmon  M. Sharrock 《BBA》1978,503(1):56-66
The kinetics of CO binding by the cytochrome c oxidase of pigeon heart mitochondria were studied as a function of membrane energization at temperatures from 180 to 280°K in an ethylene glycol/water medium. Samples energized by ATP showed acceleration of CO binding compared to those untreated or uncoupled by carbonylcyanide p-trifluoromethoxyphenylhydrazone but only at relatively low temperatures and high CO concentrations. Experiments using samples in a “mixed valency” (partially oxidized) state showed that the acceleration of ligand binding is not due to the formation of a partially oxidized state via reverse electron transport.It is concluded that in the deenergized state one CO molecule can be closely associated with the cytochrome a3 heme site without actually being bound to the heme iron; in the energized state, two or more ligand molecules can occupy this intermediate position.The change in the apparent ligand capacity of a region near the heme iron in response to energization is evidence for an interaction between cytochrome oxidase and the ATPase system. Furthermore, these results suggest a control mechanism for O2 binding.  相似文献   

5.
Soluble guanylate cyclase (sGC), the main target of nitric oxide (NO), has been proven to have a significant role in coronary artery disease, pulmonary hypertension, erectile dysfunction, and myocardial infarction. One of its agonists, BAY 41‐2272 (Riociguat), has been recently approved for treatment of pulmonary arterial hypertension (PHA), while some others are in clinical phases of development. However, the location of the binding sites for the two known types of agonists, heme‐dependent stimulators and heme‐independent activators, is a matter of debate, particularly for the first group where both a location on the regulatory (H‐NOX) and on the catalytic domain have been suggested by different authors. Here, we address its potential location on the catalytic domain, the unique well characterized at the structural level, by an “in silico” approach. Homology models of the catalytic domain of sGC in “inactive” or “active” conformations were constructed using the structure of previously described crystals of the catalytic domains of “inactive” sGCs (2WZ1, 3ET6) and of “active” adenylate cyclase (1CJU). Each model was submitted to six independent molecular dynamics simulations of about 1 μs. Docking of YC‐1, a classic heme‐dependent stimulator, to all frames of representative trajectories of “inactive” and “active” conformations, followed by calculation of absolute binding free energies with the linear interaction energy (LIE) method, revealed a potential high‐affinity binding site on the “active” structure. The site, located between the pseudo‐symmetric and the catalytic site just over the loop β2–β3, does not overlap with the forskolin binding site on adenylate cyclases. Proteins 2016; 84:1534–1548. © 2016 Wiley Periodicals, Inc.  相似文献   

6.
Periplasmic heme‐binding proteins (PBPs) in Gram‐negative bacteria are components of the heme acquisition system. These proteins shuttle heme across the periplasmic space from outer membrane receptors to ATP‐binding cassette (ABC) heme importers located in the inner‐membrane. In the present study, we characterized the structures of PBPs found in the pathogen Burkholderia cenocepacia (BhuT) and in the thermophile Roseiflexus sp. RS‐1 (RhuT) in the heme‐free and heme‐bound forms. The conserved motif, in which a well‐conserved Tyr interacts with the nearby Arg coordinates on heme iron, was observed in both PBPs. The heme was recognized by its surroundings in a variety of manners including hydrophobic interactions and hydrogen bonds, which was confirmed by isothermal titration calorimetry. Furthermore, this study of 3 forms of BhuT allowed the first structural comparison and showed that the heme‐binding cleft of BhuT adopts an “open” state in the heme‐free and 2‐heme‐bound forms, and a “closed” state in the one‐heme‐bound form with unique conformational changes. Such a conformational change might adjust the interaction of the heme(s) with the residues in PBP and facilitate the transfer of the heme into the translocation channel of the importer.  相似文献   

7.
Treatment of mouse cortical brain membranes with dioleoylphosphatidylcholine produced a large (50%) decrease in serotonin binding sites. The time course for this effect paralleled an increase in oleic acid in membrane phosphatidycholine and an increase in membrane fluidity. “Active Lipid” produced a similar decrease in serotonin binding sites, while fluidizing the membranes even more strongly. Distearoylphosphatidylcholine had no effect on serotonin binding sites or membrane fluidity by itself, but was capable of counteracting both the reduction in binding sites and membrane fluidity produced by “Active Lipid”. The data indicate that specific phosphatidylcholines can have profound effects on serotonin receptors, but a clear picture of the relative importance of membrane fluidity per se versus more specific phospholipid effects will require further investigation.  相似文献   

8.
Interaction of pig muscle lactate dehydrogenase (LDH) with acidic phospholipids is strongly dependent on pH and is most efficient at pH values <6.5. The interaction is ionic strength sensitive and is not observed when bilayer structures are disrupted by detergents. Bilayers made of phosphatidylcholine (PC) do not bind the enzyme. The LDH interaction with mixed composition bilayers phosphatidylserine/phosphatidylcholine (PS/PC) and cardiolipin/phosphatidylcholine (CL/PC) leads to dramatic changes in the specific activity of the enzyme above a threshold of acidic phospholipid concentration likely when a necessary surface charge density is achieved. The threshold is dependent on the kind of phospholipid. Cardiolipin (CL) is much more effective compared to phosphatidylserine, which is explained as an effect of availability of both phosphate groups in a CL molecule for interaction with the enzyme. A requirement of more than one binding point on the enzyme molecule for the modification of the specific activity is postulated and discussed. Changes in CD spectra induced by the presence of CL and PS vesicles evidence modification of the conformational state of the protein molecules. In vivo qualitative as well as quantitative phospholipid composition of membrane binding sites for LDH molecules would be crucial for the yield of the binding and its consequences for the enzyme activity in the conditions of lowered pH.  相似文献   

9.
Interaction of pig muscle lactate dehydrogenase (LDH) with acidic phospholipids is strongly dependent on pH and is most efficient at pH values<6.5. The interaction is ionic strength sensitive and is not observed when bilayer structures are disrupted by detergents. Bilayers made of phosphatidylcholine (PC) do not bind the enzyme. The LDH interaction with mixed composition bilayers phosphatidylserine/phosphatidylcholine (PS/PC) and cardiolipin/phosphatidylcholine (CL/PC) leads to dramatic changes in the specific activity of the enzyme above a threshold of acidic phospholipid concentration likely when a necessary surface charge density is achieved. The threshold is dependent on the kind of phospholipid. Cardiolipin (CL) is much more effective compared to phosphatidylserine, which is explained as an effect of availability of both phosphate groups in a CL molecule for interaction with the enzyme. A requirement of more than one binding point on the enzyme molecule for the modification of the specific activity is postulated and discussed. Changes in CD spectra induced by the presence of CL and PS vesicles evidence modification of the conformational state of the protein molecules. In vivo qualitative as well as quantitative phospholipid composition of membrane binding sites for LDH molecules would be crucial for the yield of the binding and its consequences for the enzyme activity in the conditions of lowered pH.  相似文献   

10.
Amyloid-β (Aβ) peptides are implicated in the neurodegeneration of Alzheimer’s disease (AD). We previously investigated the mechanism of neurotoxicity of Aβ and found that human Aβ (huAβ) binds and depletes heme, forming an Aβ-heme complex with peroxidase activity. Rodent Aβ (roAβ) is identical to huAβ, except for three amino acids within the proposed heme-binding motif (Site-H). We studied and compared heme-binding between roAβ and huAβ. Unlike roAβ, huAβ binds heme tightly (Kd = 140 ± 60 nM) and forms a peroxidase. The plot of bound (huAβ-heme) vs. unbound heme fits best to a two site binding hyperbola, suggesting huAβ possesses two heme-binding sites. Consistently, a second high affinity heme-binding site was identified in the lipophilic region (site-L) of huAβ (Kd = 210 ± 80nM). The plot of (roAβ-heme) vs. unbound heme, on the other hand, was different as it fits best to a sigmoidal binding curve, indicating different binding and lower affinity of roAβ for heme (Kd = 1 μM). The effect of heme-binding to site-H on heme-binding to site-L in roAβ and huAβ is discussed. While both roAβ and huAβ form aggregates equally, rodents lack AD-like neuropathology. High huAβ/heme ratio increases the peroxidase activity. These findings suggest that depletion of regulatory heme and formation of Aβ-heme peroxidase contribute to huAβ’s neurotoxicity in the early stages of AD. Phylogenic variations in the amino acid sequence of Aβ explain tight heme-binding to huAβ and likely contribute to the increased human susceptibility to AD.  相似文献   

11.
The cellular process of intrinsic apoptosis relies on the peroxidation of mitochondrial lipids as a critical molecular signal. Lipid peroxidation is connected to increases in mitochondrial reactive oxygen species, but there is also a required role for mitochondrial cytochrome c (cyt-c). In apoptotic mitochondria, cyt-c gains a new function as a lipid peroxidase that catalyzes the reactive oxygen species-mediated chemical modification of the mitochondrial lipid cardiolipin (CL). This peroxidase activity is caused by a conformational change in the protein, resulting from interactions between cyt-c and CL. The nature of the conformational change and how it causes this gain-of-function remain uncertain. Via a combination of functional, structural, and biophysical experiments we investigate the structure and peroxidase activity of cyt-c in its membrane-bound state. We reconstituted cyt-c with CL-containing lipid vesicles, and determined the increase in peroxidase activity resulting from membrane binding. We combined these assays of CL-induced proapoptotic activity with structural and dynamic studies of the membrane-bound protein via solid-state NMR and optical spectroscopy. Multidimensional magic angle spinning (MAS) solid-state NMR of uniformly 13C,15N-labeled protein was used to detect site-specific conformational changes in oxidized and reduced horse heart cyt-c bound to CL-containing lipid bilayers. MAS NMR and Fourier transform infrared measurements show that the peripherally membrane-bound cyt-c experiences significant dynamics, but also retains most or all of its secondary structure. Moreover, in two-dimensional and three-dimensional MAS NMR spectra the CL-bound cyt-c displays a spectral resolution, and thus structural homogeneity, that is inconsistent with extensive membrane-induced unfolding. Cyt-c is found to interact primarily with the membrane interface, without significantly disrupting the lipid bilayer. Thus, membrane binding results in cyt-c gaining the increased peroxidase activity that represents its pivotal proapoptotic function, but we do not observe evidence for large-scale unfolding or penetration into the membrane core.  相似文献   

12.
Upon interaction with anionic phospholipids, particularly mitochondria-specific cardiolipin (CL), cytochrome c (cyt c) loses its tertiary structure and its peroxidase activity dramatically increases. CL-induced peroxidase activity of cyt c has been found to be important for selective CL oxidation in cells undergoing programmed death. During apoptosis, the peroxidase activity and the fraction of CL-bound cyt c markedly increase, suggesting that CL may act as a switch to regulate cyt c's mitochondrial functions. Using cyclic voltammetry and equilibrium redox titrations, we show that the redox potential of cyt c shifts negatively by 350-400 mV upon binding to CL-containing membranes. Consequently, functions of cyt c as an electron transporter and cyt c reduction by Complex III are strongly inhibited. Further, CL/cyt c complexes are not effective in scavenging superoxide anions and are not effectively reduced by ascorbate. Thus, both redox properties and functions of cyt c change upon interaction with CL in the mitochondrial membrane, diminishing cyt c's electron donor/acceptor role and stimulating its peroxidase activity.  相似文献   

13.
Membrane-bound cytochrome c quinol dehydrogenases play a crucial role in bacterial respiration by oxidizing menaquinol and transferring electrons to various periplasmic oxidoreductases. In this work, the menaquinol oxidation site of NrfH was characterized by the determination of the X-ray structure of Desulfovibrio vulgaris NrfHA nitrite reductase complex bound to 2-heptyl-4-hydroxyquinoline-N-oxide, which is shown to act as a competitive inhibitor of NrfH quinol oxidation activity. The structure, at 2.8-Å resolution, reveals that the inhibitor binds close to NrfH heme 1, where it establishes polar contacts with two essential residues: Asp89, the residue occupying the heme distal ligand position, and Lys82, a strictly conserved residue. The menaquinol binding cavity is largely polar and has a wide opening to the protein surface. Coarse-grained molecular dynamics simulations suggest that the quinol binding site of NrfH and several other respiratory enzymes lie in the head group region of the membrane, which probably facilitates proton transfer to the periplasm. Although NrfH is not a multi-span membrane protein, its quinol binding site has several characteristics similar to those of quinone binding sites previously described. The data presented here provide the first characterization of the quinol binding site of the cytochrome c quinol dehydrogenase family.  相似文献   

14.
In cells a portion of cytochrome c (cyt c) (15–20%) is tightly bound to cardiolipin (CL), one of the phospholipids constituting the mitochondrial membrane. The CL-bound protein, which has nonnative tertiary structure, altered heme pocket, and disrupted Fe(III)-M80 axial bond, is thought to play a role in the apoptotic process. This has attracted considerable interest in order to clarify the mechanisms governing the cyt c–CL interaction. Herein we have investigated the binding reaction of CL with the c-type cytochromes from horse heart and yeast. Although the two proteins possess a similar tertiary architecture, yeast cyt c displays lower stability and, contrary to the equine protein, it does not bind ATP and lacks pro-apoptotic activity. The study has been performed in the absence and in the presence of ATP and NaCl, two compounds that influence the (horse cyt c)-CL binding process and, thus, the pro-apoptotic activity of the protein. The two proteins behave differently: while CL interaction with horse cyt c is strongly influenced by the two effectors, no effect is observed for yeast cyt c. It is noteworthy that NaCl induces dissociation of the (horse cyt c)–CL complex but has no influence on that of yeast cyt c. The differences found for the two proteins highlight that specific structural factors, such as the different local structure conformation of the regions involved in the interactions with either CL or ATP, can significantly affect the behavior of cyt c in its reaction with liposomes and the subsequent pro-apoptotic action of the protein.  相似文献   

15.
A cationic class III peroxidase from Sorghum bicolor was purified to homogeneity. The enzyme contains a high-spin heme, as evidenced by UV–visible spectroscopy and EPR. Steady state oxidation of guaiacol was demonstrated and the enzyme was shown to have higher activity in the presence of calcium ions. A FeIII/FeII reduction potential of ?266 mV vs NHE was determined. Stopped-flow experiments with H2O2 showed formation of a typical peroxidase Compound I species, which converts to Compound II in the presence of calcium. A crystal structure of the enzyme is reported, the first for a sorghum peroxidase. The structure reveals an active site that is analogous to those for other class I heme peroxidase, and a substrate binding site (assigned as arising from binding of indole-3-acetic acid) at the γ-heme edge. Metal binding sites are observed in the structure on the distal (assigned as a Na+ ion) and proximal (assigned as a Ca2+) sides of the heme, which is consistent with the Ca2+-dependence of the steady state and pre-steady state kinetics. It is probably the case that the structural integrity (and, thus, the catalytic activity) of the sorghum enzyme is dependent on metal ion incorporation at these positions.  相似文献   

16.
A superfamily of integral membrane proteins is characterized by a conserved tryptophan-rich region (called the WWD domain) in an external loop at the inner membrane surface. The three major members of this family (CcmC, CcmF, and CcsBA) are each involved in cytochrome c biosynthesis, yet the function of the WWD domain is unknown. It has been hypothesized that the WWD domain binds heme to present it to an acceptor protein (apoCcmE for CcmC or apocytochrome c for CcmF and CcsBA) such that the heme vinyl group(s) covalently attaches to the acceptors. Alternative proposals suggest that the WWD domain interacts directly with the acceptor protein (e.g., apoCcmE for CcmC). Here, it is shown that CcmC is only trapped with heme when its cognate acceptor protein CcmE is present. It is demonstrated that CcmE only interacts stably with CcmC when heme is present; thus, specific residues in each protein provide sites of interaction with heme to form this very stable complex. For the first time, evidence that the external WWD domain of CcmC interacts directly with heme is presented. Single and multiple substitutions of completely conserved residues in the WWD domain of CcmC alter the spectral properties of heme in the stable CcmC:heme:CcmE complexes. Moreover, some mutations reduce the binding of heme up to 100%. It is likely that endogenously synthesized heme enters the external WWD domain of CcmC either via a channel within this six-transmembrane-spanning protein or from the membrane. The data suggest that a specific heme channel (i.e., heme binding site within membrane spanning helices) is not present in CcmC, in contrast to the CcsBA protein. We discuss the likelihood that it is not important to protect the heme via trafficking in CcmC whereas it is critical in CcsBA.  相似文献   

17.
The 2′,3′-dialdehydes of ADP and ATP (oADP and oATP), obtained by periodate oxidation of ADP and ATP, inhibited the hydrolytic activity of the purified Ca2+.Mg2+-activated ATPase of Escherichia coli. Nonspecific labeling of amino groups by these dialdehydes was corrected by carrying out the reactions in the presence of 15 mm ATP. Two types of modification of “ATP-protectable” binding sites by oATP could be detected. The binding of 2 mol “ATP-protectable” oATP/mol ATPase was without affect on ATPase activity and still occurred in the hydrolytically inactive ATPase of an unc A mutant. The binding of a further 3 mol “ATP-protectable” oATP/mol ATPase resulted in almost complete loss of ATPase activity although much of the loss occurred during the binding of the first additional molecule of oATP. This additional ATP-protectable oATP binding did not occur in the unc A mutant and so resembled both the inhibitory effect of oADP on the ATPase activity of normal strains and its lack of binding to the unc A ATPase (P. D. Bragg and C. Hou, 1980, Biochem. Biophys. Res. Commun.95, 952–957). The “ATP-protectable” binding sites for oADP and oATP were located on the α subunit of the ATPase. Binding of oADP or oATP did not result in release of the tightly bound ADP and ATP from the enzyme. We conclude that separate binding sites for oADP and oATP occur on the α subunits of the E. coli ATPase and that the former may be the active site(s) for ATP hydrolysis while the latter are involved in regulation of the ATPase complex.  相似文献   

18.
The coelomic hemoglobin of Amphitrite ornata, termed dehaloperoxidase (DHP), is the first known multifunctional catalytic globin to possess biologically-relevant peroxidase and peroxygenase activities. Although the two isoenzymes of DHP, A and B, differ in sequence by only 5 amino acids out of 137 residues, DHP B consistently exhibits a greater activity than isoenzyme A. To delineate the contributions of each amino acid substitution to the activity of either isoenzyme, the substitutions of the five amino acids were systematically investigated, individually and in combination, using 22 mutants. Biochemical assays and mechanistic studies demonstrated that the mutants that only contained the I9L substitution showed increased i) kcat values (peroxidase activity), ii) 5-Br-indole conversion and binding affinity (peroxygenase activity), and iii) rate of Compound ES formation (enzyme activation). Whereas the X-ray structures of the oxyferrous forms of DHP B (L9I) (1.96 Å), DHP A (I9L) (1.20 Å), and WT DHP B (1.81 Å) showed no significant differences, UV–visible spectroscopy (ASoret/A380 ratio) revealed that the I9L substitution increased the 5-coordinate high-spin heme population characterized by the “open” conformation (i.e., distal histidine swung out of the pocket), which likely favors substrate binding. The positioning of the distal histidine closer to the heme cofactor in the solution state also appears to facilitate activation of DHP via the Compound ES intermediate. Taken together, the studies undertaken here shed light on the structure-function relationship in dehaloperoxidase, but also help to establish the foundation for understanding how enzymatic activity can be tuned in isoenzymes of a multifunctional catalytic globin.  相似文献   

19.
Magnetic circular dichroism (MCD) spectra of Pseudomonas aeruginosa cytochrome oxidase are reported over the spectral range of 350–700 nm for the oxidized, ascorbate-reduced, dithionite-reduced and reduced carbon monoxide forms. The spectra of all forms examined can be interpreted as the simple sum of the individual heme c and heme d1 contributions without invoking “heme-heme interaction.” In particular and contrary to a recent report [Orii, Shimada, Nozawa, and Hatano, this Journal 76, 983 (1977)] no effect of ligand binding to ferrous heme d1 was observed in the MCD spectrum of the heme c component. It seems likely that the previous findings were the result of incomplete reduction of the enzyme in the absence of stabilizing ligands.  相似文献   

20.
Induction of the peroxidase activity of cytochrome c (cyt c) by cardiolipin (CL) and H(2)O(2) in mitochondria is suggested to be a key event in early apoptosis. Although electrostatic interaction between the positively charged cyt c and negatively charged CL is a predominant force behind the formation of a specific cyt c-CL complex and sequential induction of the peroxidase activity, molecular mechanisms of hydrophobic interactions involving the fatty acyl chains of CL remain to be investigated. To elucidate the function of the acyl chains, particularly the role of the double bond, we synthesized a variety of CL analogues and examined their peroxidase inducing activity. Irrespective of the number of double bonds in the acyl chains, the peroxidase activity of cyt c induced by liposomes composed of 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) and a different CL (9:1 molar ratio) was similar, except for that of 1,1',2,2'-tetrastearoylcardiolipin (TSCL, C18:0)-containing liposomes. The peroxidase inducing activity of TSCL-containing liposomes was 3-4-fold greater than that of other CL-containing liposomes. The peroxidase activity induced by all CL-containing liposomes was much lower at high ionic strengths than that at low ionic strengths because of diminution of the electrostatic interaction. The peroxidase inducing effects of various CL-containing liposomes were related well to their ability to associate with cyt c. Thus, our results revealed that at low CL levels, the saturated acyl chain of CL is favorable for the activation of peroxidase activity of CL-bound cyt c and the proposed critical role of the double bond is not a general feature of the cyt c-CL interaction. The polarity of the membrane surface of TSCL-containing liposomes was slightly, but significantly, lower than that of other CL-containing liposomes, suggesting that the higher activating ability of TSCL-containing liposomes may be due to a reduced level of hydration of the polar head region reflecting tighter packing of the fully saturated acyl chains. Moreover, using CL analogues in which a central glycerol head moiety was modified, we revealed that the natural structure of the head moiety is not critical for the formation of the active cyt c-CL complex. The effects of the CL content of the liposomal membrane on the cyt c-CL interaction are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号