首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 351 毫秒
1.
Changes in lipid bilayer elastic properties have been proposed to underlie the modulation of voltage-gated Na+ and L-type Ca2+ channels and GABAA receptors by amphiphiles. The amphiphile Triton X-100 increases the elasticity of lipid bilayers at micromolar concentrations, assessed from its effects on gramicidin channel A appearance rate and lifetime in artificial lipid bilayers. In the present study, the pharmacological action of Triton-X 100 on GABAA receptors expressed in Xenopus laevis oocytes was examined. Triton-X 100 inhibited GABAA α1β3γ2S receptor currents in a noncompetitive, time- and voltage-dependent manner and increased the apparent rate and extent of desensitization at 10 μM, which is 30 fold below the critical micelle concentration. In addition, Triton X-100 induced picrotoxin-sensitive GABAA receptor currents and suppressed allosteric modulation by flunitrazepam at α1β3γ2S receptors. All effects were independent of the presence of a γ2S subunit in the GABAA receptor complex. The present study suggests that Triton X-100 may stabilize open and desensitized states of the GABAA receptor through changes in lipid bilayer elasticity.  相似文献   

2.
Amphiphilic molecules supposed to affect membrane protein activity could strongly interact also with the lipid component of the membrane itself. Neurosteroids are amphiphilic molecules that bind to plasma membrane receptors of cells in the central nervous system but their effect on membrane is still under debate. For this reason it is interesting to investigate their effects on pure lipid bilayers as model systems. Using the micropipette aspiration technique (MAT), here we studied the effects of a neurosteroid, allopregnanolone (3α,5α-tetrahydroprogesterone or Allo) and of one of its isoforms, isoallopregnanolone (3β,5α-tetrahydroprogesterone or isoAllo), on the physical properties of pure lipid bilayers composed by DOPC/bSM/chol. Allo is a well-known positive allosteric modulator of GABAA receptor activity while isoAllo acts as a non-competitive functional antagonist of Allo modulation. We found that Allo, when applied at nanomolar concentrations (50–200 nM) to a lipid bilayer model system including cholesterol, induces an increase of the lipid bilayer area and a decrease of the mechanical parameters. Conversely, isoAllo, decreases the lipid bilayer area and, when applied, at the same nanomolar concentrations, it does not affect significantly its mechanical parameters. We characterized the kinetics of Allo uptake by the lipid bilayer and we also discussed its aspects in relation to the slow kinetics of Allo gating effects on GABAA receptors. The overall results presented here show that a correlation exists between the modulation of Allo and isoAllo of GABAA receptor activity and their effects on a lipid bilayer model system containing cholesterol.  相似文献   

3.
In the olfactory pathway of Drosophila, a GABAB receptor mediated presynaptic gain control mechanism at the first synapse between olfactory sensory neurons (OSNs) and projection neurons has been suggested to play a critical role in setting the sensitivity and detection range of the sensory system. To approach the question if such a mechanism may be realized in the pheromone recognition system of male moths in this study attempts were made to explore if moth''s pheromone-responsive cells express a GABAB- receptor. Employing a combination of genome analysis, RT-PCR experiments and screening of an antennal cDNA library we have identified a cDNA which encodes the GABAB-R1 receptor of Heliothis virescens. Moreover, based on the HvirGABAB-R1 sequence we could predict a GABAB-R1 protein from genome sequences of the silkmoth Bombyx mori. To assess whether HvirGABAB-R1 is expressed in OSNs of male antenna we performed whole-mount in situ hybridization (WM-ISH) experiments. Several HvirGABAB-R1 positive cells were visualized under long sensilla trichodea, known to contain pheromone-responsive OSNs. In parallel it was shown that cells under long trichoid hairs were labelled with pheromone receptor specific probes. In addition, the HvirGABAB-R1 specific probe also labelled several cells under shorter olfactory sensilla, but never stained cells under mechanosensory/gustatory sensilla chaetica. Together, the results indicate that a GABAB receptor is expressed in pheromone-responsive OSNs of H. virescens and suggest a presynaptic gain control mechanism in the axon terminals of these cells.  相似文献   

4.

Background

Magnolia bark preparations from Magnolia officinalis of Asian medicinal systems are known for their muscle relaxant effect and anticonvulsant activity. These CNS related effects are ascribed to the presence of the biphenyl-type neolignans honokiol and magnolol that exert a potentiating effect on GABAA receptors. 4-O-methylhonokiol isolated from seeds of the North-American M. grandiflora was compared to honokiol for its activity to potentiate GABAA receptors and its GABAA receptor subtype-specificity was established.

Methods

Different recombinant GABAA receptors were functionally expressed in Xenopus oocytes and electrophysiological techniques were used determine to their modulation by 4-O-methylhonokiol.

Results

3 μM 4-O-methylhonokiol is shown here to potentiate responses of the α1β2γ2 GABAA receptor about 20-fold stronger than the same concentration of honokiol. In the present study potentiation by 4-O-methylhonokiol is also detailed for 12 GABAA receptor subtypes to assess GABAA receptor subunits that are responsible for the potentiating effect.

Conclusion

The much higher potentiation of GABAA receptors at identical concentrations of 4-O-methylhonokiol as compared to honokiol parallels previous observations made in other systems of potentiated pharmacological activity of 4-O-methylhonokiol over honokiol.

General significance

The results point to the use of 4-O-methylhonokiol as a lead for GABAA receptor potentiation and corroborate the use of M. grandiflora seeds against convulsions in Mexican folk medicine.  相似文献   

5.
Previous research indicates that the GABAAergic system is involved in the pathophysiology of the fragile X syndrome, a frequent form of inherited intellectual disability and associated with autism spectrum disorder. However, the molecular mechanism underlying GABAAergic deficits has remained largely unknown. Here, we demonstrate reduced mRNA expression of GABAA receptor subunits in the cortex and cerebellum of young Fmr1 knockout mice. In addition, we show that the previously reported underexpression of specific subunits of the GABAA receptor can be corrected in YAC transgenic rescue mice, containing the full-length human FMR1 gene in an Fmr1 knockout background. Moreover, we demonstrate that FMRP directly binds several GABAA receptor mRNAs. Finally, positive allosteric modulation of GABAA receptors with the neurosteroid ganaxolone can modulate specific behaviors in Fmr1 knockout mice, emphasizing the therapeutic potential of the receptor.  相似文献   

6.
To explore the initial stages of amyloid β peptide (Aβ42) deposition on membranes, we have studied the interaction of Aβ42 in the monomeric form with lipid monolayers and with bilayers in either the liquid-disordered or the liquid-ordered (Lo) state, containing negatively charged phospholipids. Molecular dynamics (MD) simulations of the system have been performed, as well as experimental measurements. For bilayers in the Lo state, in the absence of the negatively charged lipids, interaction is weak and it cannot be detected by isothermal calorimetry. However, in the presence of phosphatidic acid, or of cardiolipin, interaction is detected by different methods and in all cases interaction is strongest with lower (2.5–5 mol %) than higher (10–20 mol %) proportions of negatively charged phospholipids. Liquid-disordered bilayers consistently allowed a higher Aβ42 binding than Lo ones. Thioflavin T assays and infrared spectroscopy confirmed a higher proportion of β-sheet formation under conditions when higher peptide binding was measured. The experimental results were supported by MD simulations. We used 100 ns MD to examine interactions between Aβ42 and three different 512 lipid bilayers consisting of palmitoylsphingomyelin, dimyristoyl phosphatidic acid, and cholesterol in three different proportions. MD pictures are different for the low- and high-charge bilayers, in the former case the peptide is bound through many contact points to the bilayer, whereas for the bilayer containing 20 mol % anionic phospholipid only a small fragment of the peptide appears to be bound. The MD results indicate that the binding and fibril formation on the membrane surface depends on the composition of the bilayer, and is the result of a subtle balance of many inter- and intramolecular interactions between the Aβ42 and membrane.  相似文献   

7.
Previous work has shown that the GABAA-receptor (GABAA-R) could be phosphorylated by cAMP-dependent protein kinase (PKA), protein kinase C (PKC), and a receptor associated kinase. However, no clear picture has yet emerged concerning the particular subunit subtypes of the GABAA-R that were phosphorylated by PKA and PKC. In the present report we show that an antibody raised against a 23 amino acid polypeptide corresponding to a sequence in the putative intracellular loop of the 1 subunit of the receptor blocks the in vitro phosphorylation of the purified receptor by PKA and PKC. Moreover, N-terminal sequence analysis of the principal phosphopeptide fragment obtained after proteolysis of the receptor yielded a sequence that corresponds to the 3 subunit of the receptor. Such data provide additional support for our hypothesis (Browning et al., 1990, Proc. Natl. Acad. Sci. USA 87:1315–1317) that both PKA and PKC phosphorylate the -subunit of the GABAA-R.Special issue dedicated to Dr. Paul Greengard.  相似文献   

8.
The γ-amino butyric acid type A receptors (GABAA-Rs) are the key players in the mammalian brain that meditate fast inhibitory neurotransmission events. The structural integrity of these ligand-gated ion channel controls chloride ion permeability, which in turn monitors important pharmacological functions. Despite ample studies on GABAA-Rs, there was a need for a study on full-length receptor structures, devoted to track structure–function correlations based on their dynamic behavior consideration. We have employed molecular dynamics simulations accompanied by other biophysical methods to shed light on sequential and unaddressed questions like How GABAA-R structure facilitates the entry of GABA molecules at its two orthosteric binding sites? After entry, what structural features and changes monitor site-wise GABA binding differences? In the same context, what are the roles and responsibilities of loops such as C and F? On physiologically relevant time scales, how open to close state transition occurs? How salt bridges such as E155-R207 and E153-R207 maintain state-dependent C-loop structures? In an attempt, our simulation study unravels the complete course of GABA binding-unbinding pathway. This provides us with the relevant understanding of state-dependent dynamic events of GABAA-Rs.  相似文献   

9.
Correlations between GABAA receptor (GABAA-R) activity and molecular organization of synaptosomal membranes (SM) were studied along the protocol for cholesterol (Cho) extraction with β-cyclodextrin (β-CD). The mere pre-incubation (PI) at 37°C accompanying the β-CD treatment was an underlying source of perturbations increasing [3H]-FNZ maximal binding (70%) and K d (38%), plus a stiffening of SMs’ hydrocarbon core region. The latter was inferred from an increased compressibility modulus (K) of SM-derived Langmuir films, a blue-shifted DPH fluorescence emission spectrum and the hysteresis in DPH fluorescence anisotropy (A DPH) in SMs submitted to a heating–cooling cycle (4–37–4°C) with A DPH,heating < A DPH,cooling. Compared with PI samples, the β-CD treatment reduced B max by 5% which correlated with a 45%-decrement in the relative Cho content of SM, a decrease in K and in the order parameter in the EPR spectrum of a lipid spin probe labeled at C5 (5-SASL), and significantly increased A TMA-DPH. PI, but not β-CD treatment, could affect the binding affinity. EPR spectra of 5-SASL complexes with β-CD-, SM-partitioned, and free in solution showed that, contrary to what is usually assumed, β-CD is not completely eliminated from the system through centrifugation washings. It was concluded that β-CD treatment involves effects of at least three different types of events affecting membrane organization: (a) effect of PI on membrane annealing, (b) effect of residual β-CD on SM organization, and (c) Cho depletion. Consequently, molecular stiffness increases within the membrane core and decreases near the polar head groups, leading to a net increase in GABAA-R density, relative to untreated samples.  相似文献   

10.
The GABAA receptors are the major inhibitory neurotransmitter receptors in mammalian brain. Each isoform consists of five homologous or identical subunits surrounding a central chloride ion-selective channel gated by GABA. How many isoforms of the receptor exist is far from clear. GABAA receptors located in the postsynaptic membrane mediate neuronal inhibition that occurs in the millisecond time range; those located in the extrasynaptic membrane respond to ambient GABA and confer long-term inhibition. GABAA receptors are responsive to a wide variety of drugs, e.g. benzodiazepines, which are often used for their sedative/hypnotic and anxiolytic effects.  相似文献   

11.
Due to the increasing development of anthelmintic resistance in nematodes worldwide, it is important to search for anthelmintic compounds with new modes of action and also to investigate the possibility to combine compounds with possible synergistic effects. There might also be the chance to take advantage of the fact that nematode populations which have developed resistance against one anthelmintic class might respond hypersusceptibly to another drug class. The aim of this study was to investigate responses of Caenorhabditis elegans populations with mutations in neuro-muscular ion channels to different anthelmintic classes. Furthermore, potential synergistic effects between two anthelmintic compounds from different classes, i.e. emodepside and tribendimidine, were studied. Although there was neither a synergistic nor an antagonistic effect between emodepside and tribendimidine, other types of interactions could be identified. The C. elegans GABAA-receptor (GABAA-R) unc-49 mutants, showing decreased emodepside susceptibility, were more susceptible to tribendimidine than wild-type C. elegans. In contrast, the reverse phenomenon – hypersusceptibility to emodepside in tribendimidine resistant acetylcholine-receptor (AChR) loss of function mutants – was not observed. Moreover, the slo-1 mutant strain (completely emodepside resistant) also showed hypersusceptibility to piperazine. Interestingly, neither the GABAA-R unc-49 mutants nor the AChR mutants showed decreased susceptibility against piperazine, although there were some studies that indicated an involvement of GABAA-R or AChR in the piperazine mode of action. In conclusion, the present study provides evidence suggesting that interactions between commercially available anthelmintic drugs with different modes of action might be a relatively common phenomenon but this has to be carefully worked out for each anthelmintic and each anthelmintic drug combination. Moreover, results obtained in C. elegans will have to be confirmed using parasitic nematodes in the future.  相似文献   

12.
G protein-coupled receptors (GPCRs) transduce extracellular signals to the interior of the cell by activating membrane-bound guanine nucleotide-binding regulatory proteins (G proteins). An increasing number of proteins have been reported to bind to and regulate GPCRs. We report a novel regulation of the alpha2A adrenergic receptor (α2A-R) by the ubiquitous stress-inducible 70 kDa heat shock protein, hsp70. Hsp70, but not hsp90, attenuated G protein-dependent high affinity agonist binding to the α2A-R in Sf9 membranes. Antagonist binding was unchanged, suggesting that hsp70 uncouples G proteins from the receptor. As hsp70 did not bind G proteins but complexed with the α2A-R in intact cells, a direct interaction with the receptor seems likely. In the presence of hsp70, α2A-R-catalyzed [35S]GTPγS binding was reduced by approximately 70%. In contrast, approximately 50-fold higher concentrations of hsp70 were required to reduce agonist binding to the stress-inducible 5-hydroxytryptamine1A receptor (5-HT1A-R). In heat-stressed CHO cells, the α2A-R was significantly uncoupled from G proteins, coincident with an increased localization of hsp70 at the membrane. The contrasting effect of hsp70 on the α2A-R compared to the 5-HT1A-R suggests that during stress, upregulation of hsp70 may attenuate signaling from specific GPCRs as part of the stress response to foster survival.  相似文献   

13.
The intracellular blockade of GABAA-receptor-mediated currents is a useful approach to suppress the GABAergic conductance in a single cell and to isolate the glutamatergic component of network-driven activities. Previously an approach has been described allowing intracellular blockade of GABAA receptors by means of intracellular dialysis of a neuron with the pipette-filling solution, in which fluoride ions that hardly pass through the GABAA receptor channels substitute for Cl? and in which Mg2+ and ATP are omitted to induce rundown of the GABAA receptors during whole-cell patch-clamp recordings. However, the kinetics of suppression of GABAergic conductance and the effect on the currents mediated by glutamate receptors remain unknown. Here, using whole-cell recordings with fluoride-based, Mg2+- and ATP-free solution on CA3 hippocampal neurons of neonatal rats, we show that after 1 h of such dialysis, both spontaneous and evoked GABAA-receptor-mediated synaptic currents and responses induced by the GABAA receptor agonist isoguvacine were completely suppressed. Inward GABAergic postsynaptic currents were suppressed prior to outward currents. Synaptic responses mediated by AMPA receptors were not affected by the dialysis, whereas the NMDA-receptor-mediated postsynaptic currents were reduced by approximately 20%. Dialysis with fluoride-based Mg2+, ATP-free solution either fully blocked giant depolarizing potentials (GDPs) in CA3 pyramidal cells (n = 2) or reduced the charge crossing the membrane during GDPs and shifted the GDP reversal potential to more positive values (n = 5). The dialysis-resistant component of GDPs was mediated by glutamate receptors, since: (i) it reversed around 0 mV; (ii) it demonstrated a negative slope conductance at negative membrane voltages, which is characteristic of NMDA receptor-mediated responses; (iii) kinetics of the individual events composing the dialysis-resistant component of GDPs at negative voltages were very similar to those of AMPA receptor-mediated synaptic currents. Thus, this procedure can be useful to isolate the glutamate receptor-mediated component of neuronal network-driven activities.  相似文献   

14.
Extracts from Glycyrrhiza are traditionally used for the treatment of insomnia and anxiety. Glabridin is one of the main flavonoid compounds from Glycyrrhiza glabra and displays a broad range of biological properties. In the present work, we investigated the effect of glabridin on GABAA receptors. For this purpose, we employed the two-electrode voltage-clamp technique on Xenopus laevis oocytes expressing recombinant GABAA receptors. Through this approach, we observed that glabridin presents a strong potentiating effect on GABAA α1β(1?3)γ2 receptors. The potentiation was slightly dependent on the β subunit and was most pronounced at the α1β2γ2 subunit combination, which forms the most abundant GABAA receptor in the CNS. Glabridin potentiated with an EC50 of 6.3±1.7 µM and decreased the EC50 of the receptor for GABA by approximately 12-fold. The potentiating effect of glabridin is flumazenil-insensitive and does not require the benzodiazepine binding site. Glabridin acts on the β subunit of GABAA receptors by a mechanism involving the M286 residue, which is a key amino acid at the binding site for general anesthetics, such as propofol and etomidate. Our results demonstrate that GABAA receptors are strongly potentiated by one of the main flavonoid compounds from Glycyrrhiza glabra and suggest that glabridin could contribute to the reported hypnotic effect of Glycyrrhiza extracts.  相似文献   

15.
Memory dysfunction associated with aging, neurodegenerative and psychiatric disorders represents an increasing medical need. Advances in research exploring the biological mechanisms underlying learning and memory have opened new potential approaches for development of memory-enhancing therapies addressed to selective neuronal targets. In this work, we synthesized some derivatives with a pyrazolo[5,1-c][1,2,4]benzotriazine core to identify ligands on GABAA receptors subtype (benzodiazepine site on GABAA-receptor) endowed with the potential of enhancing cognition activity without the side effects usually associated with non-selective GABAA modulators. In fact, there is much evidence that GABAA-R (γ-aminobutyric acid, type A receptor) subtype ligands have relevance in learning and memory. In vitro and in vivo tests have been performed. Pharmacological data indicate that compounds 7, 13, 14 and 22 act as dual functional modulators of GABAA-Rs (promnemonic and anxiolytic agents) while only compounds 3 and 10 stand out as selectively displaying good antiamnesic and procognitive activity (1 and 3 mg/kg, respectively).  相似文献   

16.
The γ-aminobutyric acid type A (GABAA) receptors play a pivotal role in fast synaptic inhibition in the central nervous system. One of the key factors for determining synaptic strength is the number of receptors on the postsynaptic membrane, which is maintained by the balance between cell surface insertion and endocytosis of the receptors. In this study, we investigated whether phospholipase C-related but catalytically inactive protein (PRIP) is involved in insulin-induced GABAA receptor insertion. Insulin potentiated the GABA-induced Cl current (IGABA) by about 30% in wild-type neurons, but not in PRIP1 and PRIP2 double-knock-out (DKO) neurons, suggesting that PRIP is involved in insulin-induced potentiation. The phosphorylation level of the GABAA receptor β-subunit was increased by about 30% in the wild-type neurons but not in the mutant neurons, which were similar to the changes observed in IGABA. We also revealed that PRIP recruited active Akt to the GABAA receptors by forming a ternary complex under insulin stimulation. The disruption of the binding between PRIP and the GABAA receptor β-subunit by PRIP interference peptide attenuated the insulin potentiation of IGABA. Taken together, these results suggest that PRIP is involved in insulin-induced GABAA receptor insertion by recruiting active Akt to the receptor complex.  相似文献   

17.
Amphiphilic molecules which have a biological effect on specific membrane proteins, could also affect lipid bilayer properties possibly resulting in a modulation of the overall membrane behavior. In light of this consideration, it is important to study the possible effects of amphiphilic molecule of pharmacological interest on model systems which recapitulate some of the main properties of the biological plasma membranes. In this work we studied the effect of a neurosteroid, Allopregnanolone (3α,5α-tetrahydroprogesterone or Allo), on a model bilayer composed by the ternary lipid mixture DOPC/bSM/chol. We chose ternary mixtures which present, at room temperature, a phase coexistence of liquid ordered (Lo) and liquid disordered (Ld) domains and which reside near to a critical point. We found that Allo, which is able to strongly partition in the lipid bilayer, induces a marked increase in the bilayer area and modifies the relative proportion of the two phases favoring the Ld phase. We also found that the neurosteroid shifts the miscibility temperature to higher values in a way similarly to what happens when the cholesterol concentration is decreased. Interestingly, an isoform of Allo, isoAllopregnanolone (3β,5α-tetrahydroprogesterone or isoAllo), known to inhibit the effects of Allo on GABAA receptors, has an opposite effect on the bilayer properties.  相似文献   

18.
Kang SU  Heo S  Lubec G 《Proteomics》2011,11(11):2171-2181
The brain GABAA receptor (GABAAR) is a key element of signaling and neural transmission in health and disease. Recently, complete sequence analysis of the recombinant GABAAR has been reported, separation and mass spectrometrical (MS) characterisation from tissue, however, has not been published so far. Hippocampi were homogenised, put on a sucrose gradient 10–69% and the layer from 10 to 20% was used for extraction of membrane proteins by a solution of Triton X‐100, 1.5 M aminocaproic acid in the presence of 0.3 M Bis‐Tris. This mixture was subsequently loaded onto blue native PAGE (BN‐PAGE) with subsequent analysis on denaturing gel systems. Spots from the 3‐DE electrophoretic run were stained with Colloidal Coomassie Brilliant Blue, and spots with an apparent molecular weight between 40 and 60 kDa were picked and in‐gel digested with trypsin, chymotrypsin and subtilisin. The resulting peptides were analysed by nano‐LC‐ESI‐MS/MS (ion trap) and protein identification was carried out using MASCOT searches. In addition, known GABAAR‐specific MS information taken from own previous studies was used for searches of GABAAR subunits. β‐1, β‐2 and β‐3, θ and ρ‐1 subunits were detected and six novel phosphorylation sites were observed and verified by phosphatase treatment. The method used herein enables identification of several GABAAR subunits from mouse hippocampus along with phosphorylations of β‐1 (T227, Y230), β‐2 (Y215, T439) and β‐3 (T282, S406) subunits. The procedure forms the basis for GABAAR studies at the protein chemical rather than at the immunochemical level in health and disease.  相似文献   

19.
Mitochondrial permeability transition pore (PTP) is supposed to at least in part participate in molecular mechanisms underlying the neurotoxicity seen after overactivation of N-methyl-d-aspartate (NMDA) receptor (NMDAR) in neurons. In this study, we have evaluated whether activation of GABAB receptor (GABABR), which is linked to membrane G protein-coupled inwardly-rectifying K+ ion channels (GIRKs), leads to protection of the NMDA-induced neurotoxicity in a manner relevant to mitochondrial membrane depolarization in cultured embryonic mouse cortical neurons. The cationic fluorescent dye 3,3′-dipropylthiacarbocyanine was used for determination of mitochondrial membrane potential. The PTP opener salicylic acid induced a fluorescence increase with a vitality decrease in a manner sensitive to the PTP inhibitor ciclosporin, while ciclosporin alone was effective in significantly preventing both fluorescence increase and viability decrease by NMDA as seen with an NMDAR antagonist. The NMDA-induced fluorescence increase and viability decrease were similarly prevented by pretreatment with the GABABR agonist baclofen, but not by the GABAAR agonist muscimol, in a fashion sensitive to a GABABR antagonist. Moreover, the GIRK inhibitor tertiapin canceled the inhibition by baclofen of the NMDA-induced fluorescence increase. These results suggest that GABABR rather than GABAAR is protective against the NMDA-induced neurotoxicity mediated by mitochondrial PTP through a mechanism relevant to opening of membrane GIRKs in neurons.  相似文献   

20.
Propofol, an intravenous anesthetic, is a positive modulator of the GABAA receptor, but the mechanistic details, including the relevant binding sites and alternative targets, remain disputed. Here we undertook an in-depth study of alkylphenol-based anesthetic binding to synaptic membranes. We designed, synthesized, and characterized a chemically active alkylphenol anesthetic (2-((prop-2-yn-1-yloxy)methyl)-5-(3-(trifluoromethyl)-3H-diazirin-3-yl)phenol, AziPm-click (1)), for affinity-based protein profiling (ABPP) of propofol-binding proteins in their native state within mouse synaptosomes. The ABPP strategy captured ∼4% of the synaptosomal proteome, including the unbiased capture of five α or β GABAA receptor subunits. Lack of γ2 subunit capture was not due to low abundance. Consistent with this, independent molecular dynamics simulations with alchemical free energy perturbation calculations predicted selective propofol binding to interfacial sites, with higher affinities for α/β than γ-containing interfaces. The simulations indicated hydrogen bonding is a key component leading to propofol-selective binding within GABAA receptor subunit interfaces, with stable hydrogen bonds observed between propofol and α/β cavity residues but not γ cavity residues. We confirmed this by introducing a hydrogen bond-null propofol analogue as a protecting ligand for targeted-ABPP and observed a lack of GABAA receptor subunit protection. This investigation demonstrates striking interfacial GABAA receptor subunit selectivity in the native milieu, suggesting that asymmetric occupancy of heteropentameric ion channels by alkylphenol-based anesthetics is sufficient to induce modulation of activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号