首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
DNA double strand breaks (DSBs) trigger a variety of cellular signaling processes, collectively termed the DNA-damage response (DDR), that are primarily regulated by protein kinase ataxia-telangiectasia mutated (ATM). Among DDR activated processes, the repair of DSBs by non-homologous end joining (NHEJ) is essential. The proper coordination of NHEJ factors is mainly achieved through phosphorylation by an ATM-related kinase, the DNA-dependent protein kinase catalytic subunit (DNA-PKcs), although the molecular basis for this regulation has yet to be fully elucidated. In this study we identify the major NHEJ DNA polymerase, DNA polymerase lambda (Polλ), as a target for both ATM and DNA-PKcs in human cells. We show that Polλ is efficiently phosphorylated by DNA-PKcs in vitro and predominantly by ATM after DSB induction with ionizing radiation (IR) in vivo. We identify threonine 204 (T204) as a main target for ATM/DNA-PKcs phosphorylation on human Polλ, and establish that its phosphorylation may facilitate the repair of a subset of IR-induced DSBs and the efficient Polλ-mediated gap-filling during NHEJ. Molecular evidence suggests that Polλ phosphorylation might favor Polλ interaction with the DNA-PK complex at DSBs. Altogether, our work provides the first demonstration of how Polλ is regulated by phosphorylation to connect with the NHEJ core machinery during DSB repair in human cells.  相似文献   

4.
5.
Notch signalling is critical to help direct T-cell lineage commitment in early T-cell progenitors and in the development of αβ T-cells. Epithelial and stromal cell populations in the thymus express the Notch DSL (Delta, Serrate and Lag2)ligands Delta-like 1 (Dll1), Delta-like 4 (Dll4), Jagged 1 and Jagged 2, and induce Notch signalling in thymocytes that express the Notch receptor. At present there is nothing known about the role of the Delta-like 3 (Dll3) ligand in the immune system. Here we describe a novel cell autonomous role for Dll3 in αβ T-cell development. We show that Dll3 cannot activate Notch when expressed in trans but like other Notch ligands it can inhibit Notch signalling when expressed in cis with the receptor. The loss of Dll3 leads to an increase in Hes5 expression in double positive thymocytes and their increased production of mature CD4(+) and CD8(+) T cells. Studies using competitive irradiation chimeras proved that Dll3 acts in a cell autonomous manner to regulate positive selection but not negative selection of autoreactive T cells. Our results indicate that Dll3 has a unique function during T-cell development that is distinct from the role played by the other DSL ligands of Notch and is in keeping with other recent studies indicating that Dll1 and Dll3 ligands have non-overlapping roles during embryonic development.  相似文献   

6.
7.
Physiology and Molecular Biology of Plants - The fruit is the most important economical organ in the grape; accordingly, to investigate the grapevine genomic methylation landscape and examine its...  相似文献   

8.
Lagging strand DNA replication requires the concerted actions of DNA polymerase δ, Fen1 and DNA ligase I for the removal of the RNA/DNA primers before ligation of Okazaki fragments. To better understand this process in human cells, we have reconstituted Okazaki fragment processing by the short flap pathway in vitro with purified human proteins and oligonucleotide substrates. We systematically characterized the key events in Okazaki fragment processing: the strand displacement, Pol δ/Fen1 combined reactions for removal of the RNA/DNA primer, and the complete reaction with DNA ligase I. Two forms of human DNA polymerase δ were studied: Pol δ4 and Pol δ3, which represent the heterotetramer and the heterotrimer lacking the p12 subunit, respectively. Pol δ3 exhibits very limited strand displacement activity in contrast to Pol δ4, and stalls on encounter with a 5′-blocking oligonucleotide. Pol δ4 and Pol δ3 exhibit different characteristics in the Pol δ/Fen1 reactions. While Pol δ3 produces predominantly 1 and 2 nt cleavage products irrespective of Fen1 concentrations, Pol δ4 produces cleavage fragments of 1–10 nts at low Fen1 concentrations. Pol δ3 and Pol δ4 exhibit comparable formation of ligated products in the complete system. While both are capable of Okazaki fragment processing in vitro, Pol δ3 exhibits ideal characteristics for a role in Okazaki fragment processing. Pol δ3 readily idles and in combination with Fen1 produces primarily 1 nt cleavage products, so that nick translation predominates in the removal of the blocking strand, avoiding the production of longer flaps that require additional processing. These studies represent the first analysis of the two forms of human Pol δ in Okazaki fragment processing. The findings provide evidence for the novel concept that Pol δ3 has a role in lagging strand synthesis, and that both forms of Pol δ may participate in DNA replication in higher eukaryotic cells.  相似文献   

9.
A contribution of allelic variation of T-cell receptor (Tcr) genes to the immune response has not been studied. Here we report that the presence of insertion-deletion-related polymorphisms (IDRP) of the Tcr chain (Tcrb) can be utilized to distinguish the parental origin of the gene complex that undergoes rearrangement in individual T-cell clones. Phytohemagglutinin stimulated clones from an individual heterozygous for an IDRP located between the variable(V) and diversity (D)-joining (J) region genes were studied for the presence of V to DJ rearrangements in each of the two parental chromosomes. Results indicate that single rearrangements were present in the majority of clones. in contrast to the double rearrangements of D to J genes that were generally present. In this individual, V to DJ rearrangements also occured with different frequencies on each of the two germline genes. IDRP clonotyping of the Tcrb complex should prove generally applicable to the study of the influence of allelic variation of Tcrb genes in selection of the expressed T-cell repetoire.  相似文献   

10.
11.

Background  

The development and propagation of malaria parasites in their vertebrate host is a complex process in which various host and parasite factors are involved. Sometimes the evolution of parasitaemia seems to be quelled by parasite load. In order to understand the typical dynamics of evolution of parasitaemia, various mathematical models have been developed. The basic premise ingrained in most models is that the availability of uninfected red blood cells (RBC) in which the parasite develops is a limiting factor in the propagation of the parasite population.  相似文献   

12.
In this study, we attempted to elucidate the E3 ubiquitin ligase for topo IIα. When cullins and VHL were ectopically expressed in HT1080 and HEK293T cells, topo IIα was degraded most prominently in cullin 2- and VHL-expressing cells. Cullin 2 and the β domain (aa 114-123) of VHL, a subunit of the ECV (Elongin B/C-cullin 2-VHL protein) complex, specifically interact with the ATPase domain of topo IIα. We identified that topo IIα associated with endogenous Elongin C. In HT1080 cells co-transfected with deletion mutants of topo IIα GRDD (glucose-regulated destruction domain) and VHL, topo IIα was degraded by VHL expression. These results demonstrate that ECV acts as E3 ubiquitin ligase targeting GRDD-independent topo IIα to the ubiquitin-proteasome pathway.  相似文献   

13.
14.
15.
At the end of embryonic life the chick embryonic testis possesses a low anti-Müllerian activity, as evidenced by the grafting method to female hosts. The percentage of grafted embryos presenting a Müllerian duct regression is not increased by administration of an anti-estrogenic drug (tamoxifen). This observation does not favour the hypothesis according to which the low percentage of regression could be due to a protection of Müllerian ducts by estrogens from the host ovary. It shows rather that the anti-Müllerian hormone secretion actually decreases during development.  相似文献   

16.
In recent years it has become apparent that epigenetic events are potentially equally responsible for cancer initiation and progression as genetic abnormalities. DNA methylation is the main epigenetic modification in humans. Two DNA methylation lesions coexist in human neoplasms: hypermethylation of promoter regions of specific genes within a context of genomic hypomethylation. Aberrant methylation is found at early stages of carcinogenesis and distinct types of cancer exhibit specific patterns of methylation changes. Tumor specific DNA is readily obtainable from different clinical samples and methylation status analysis often permits sensitive disease detection. Methylation markers may also serve for prognostic and predictive purposes as they often reflect the metastatic potential and sensitivity to therapy. As current findings show a great potential of recently characterised methylation markers, more studies in the field are needed in the future. Large clinical studies of newly developed markers are especially needed. The review describes the diagnostic potential of DNA methylation markers.  相似文献   

17.
18.
In this work, we examine regulation of DNA methyltransferase 1 (DNMT1) by the DNA damage inducible protein, GADD45α. We used a system to induce homologous recombination (HR) at a unique double-strand DNA break in a GFP reporter in mammalian cells. After HR, the repaired DNA is hypermethylated in recombinant clones showing low GFP expression (HR-L expressor class), while in high expressor recombinants (HR-H clones) previous methylation patterns are erased. GADD45α, which is transiently induced by double-strand breaks, binds to chromatin undergoing HR repair. Ectopic overexpression of GADD45α during repair increases the HR-H fraction of cells (hypomethylated repaired DNA), without altering the recombination frequency. Conversely, silencing of GADD45α increases methylation of the recombined segment and amplifies the HR-L expressor (hypermethylated) population. GADD45α specifically interacts with the catalytic site of DNMT1 and inhibits methylation activity in vitro. We propose that double-strand DNA damage and the resulting HR process involves precise, strand selected DNA methylation by DNMT1 that is regulated by GADD45α. Since GADD45α binds with high avidity to hemimethylated DNA intermediates, it may also provide a barrier to spreading of methylation during or after HR repair.  相似文献   

19.
We have analyzed DNA modification in the human γδβ-globin gene region at 17 cleavage sites of restriction endonucleases which are unable to cleave DNA if 5-methylcytosine is present at certain positions in their respective cleavage sites. Using this criterion, all sites tested in the globin gene region are fully modified in the germ line (sperm) DNA. In somatic tissues, however, methyl groups are absent at specific sites in the globin gene region. In tissues not expressing the genes, these losses range from one of these cleavage sites in lymphocyte DNA to essentially all of these sites in the entire region in placental DNA. In the DNA of tissues expressing the globin genes, the region surrounding and including the genes expressed shows a low level of modification, whereas the neighboring DNA regions have a high level of modification. The data suggest that a low level of DNA methylation may be a necessary, but not a sufficient, condition for gene expression in higher eucaryotes.  相似文献   

20.
Proper detection and subsequent analysis of biological evidence is crucial for crime scene reconstruction. The number of different criminal acts is increasing rapidly. Therefore, forensic geneticists are constantly on the battlefield, trying hard to find solutions how to solve them. One of the essential defensive lines in the fight against the invasion of crime is relying on DNA methylation. In this review, the role of DNA methylation in body fluid identification and other DNA methylation applications are discussed. Among other applications of DNA methylation, age determination of the donor of biological evidence, analysis of the parent-of-origin specific DNA methylation markers at imprinted loci for parentage testing and personal identification, differentiation between monozygotic twins due to their different DNA methylation patterns, artificial DNA detection and analyses of DNA methylation patterns in the promoter regions of circadian clock genes are the most important ones. Nevertheless, there are still a lot of open chapters in DNA methylation research that need to be closed before its final implementation in routine forensic casework.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号