首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
A detailed conception of intranuclear messenger ribonucleoprotein particle (mRNP) dynamics is required for the understanding of mRNP processing and gene expression outcome. We used complementary state-of-the-art fluorescence techniques to quantify native mRNP mobility at the single particle level in living salivary gland cell nuclei. Molecular beacons and fluorescent oligonucleotides were used to specifically label BR2.1 mRNPs by an in vivo fluorescence in situ hybridization approach. We characterized two major mobility components of the BR2.1 mRNPs. These components with diffusion coefficients of 0.3 ± 0.02 μm2/s and 0.73 ± 0.03 μm2/s were observed independently of the staining method and measurement technique used. The mobility analysis of inert tracer molecules revealed that the gland cell nuclei contain large molecular nonchromatin structures, which hinder the mobility of large molecules and particles. The mRNPs are not only hindered by these mobility barriers, but in addition also interact presumably with these structures, what further reduces their mobility and effectively leads to the occurrence of the two diffusion coefficients. In addition, we provide evidence that the remarkably high mobility of the large, 50 nm-sized BR2.1 mRNPs was due to the absence of retarding chromatin.  相似文献   

2.
In the last years, significant advances in microscopy techniques and the introduction of a novel technology to label living cells with genetically encoded fluorescent proteins revolutionized the field of Cell Biology. Our understanding on cell dynamics built from snapshots on fixed specimens has evolved thanks to our actual capability to monitor in real time the evolution of processes in living cells. Among these new tools, single particle tracking techniques were developed to observe and follow individual particles. Hence, we are starting to unravel the mechanisms driving the motion of a wide variety of cellular components ranging from organelles to protein molecules by following their way through the cell. In this review, we introduce the single particle tracking technology to new users. We briefly describe the instrumentation and explain some of the algorithms commonly used to locate and track particles. Also, we present some common tools used to analyze trajectories and illustrate with some examples the applications of single particle tracking to study dynamics in living cells.  相似文献   

3.
Single-molecule trajectories of molecules on the membrane of living cells have indicated the possibility that the lateral mobility of individual molecules is variable with time. Such temporal variation in mobility may indicate intrinsic kinetics of multiple molecular states. To clarify the mechanisms of signal processing on the membrane, quantitative characterizations of such temporal variations are necessary. Here we propose a method to analyze and characterize the multiple states in lateral mobility and their transition kinetics from single-molecule trajectories based on a displacement probability density function and an autocorrelation function of squared displacements. We performed our method for three cases: a molecule with a single diffusion coefficient (D), a mixture of molecules in two states with different D-values, and a molecule switching between two states with different D-values. Our analysis of numerically generated trajectories successfully distinguished the three cases and estimated the characteristic parameters for mobility and the kinetics of state transitions. This method is applicable to single-molecule tracking analysis of molecules in multiple functional states with different lateral mobility on the membrane of living cells.  相似文献   

4.
Single particle tracking is widely used to study protein movement with high spatiotemporal resolution both in vitro and in cells. Quantum dots, which are semiconductor nanoparticles, have recently been employed in single particle tracking because of their intense and stable fluorescence. Although single particles inside cells have been tracked in three spatial dimensions (X, Y, Z), measurement of the angular orientation of a molecule being tracked would significantly enhance our understanding of the molecule’s function. In this study, we synthesized highly polarized, rod-shaped quantum dots (Qrods) and developed a coating method that optimizes the Qrods for biological imaging. We describe a Qrod-based single particle tracking technique that blends optical nanometry with nanomaterial science to simultaneously measure the three-dimensional and angular movements of molecules. Using Qrods, we spatially tracked a membrane receptor in living cells in four dimensions with precision close to the single-digit range in nanometers and degrees.  相似文献   

5.
Single particle tracking is widely used to study protein movement with high spatiotemporal resolution both in vitro and in cells. Quantum dots, which are semiconductor nanoparticles, have recently been employed in single particle tracking because of their intense and stable fluorescence. Although single particles inside cells have been tracked in three spatial dimensions (X, Y, Z), measurement of the angular orientation of a molecule being tracked would significantly enhance our understanding of the molecule’s function. In this study, we synthesized highly polarized, rod-shaped quantum dots (Qrods) and developed a coating method that optimizes the Qrods for biological imaging. We describe a Qrod-based single particle tracking technique that blends optical nanometry with nanomaterial science to simultaneously measure the three-dimensional and angular movements of molecules. Using Qrods, we spatially tracked a membrane receptor in living cells in four dimensions with precision close to the single-digit range in nanometers and degrees.  相似文献   

6.
Specific premessenger ribonucleoprotein (RNP) particles, the Balbiani ring (BR) granules from Chironomus tentans salivary glands, were treated with RNase A to study the effect of RNA strand breaks on the higher order structure of the particles. Isolated, radioactively labeled BR granules, known to sediment at 300 S, were digested with RNase A and centrifuged in sucrose gradients. The fractionated particles were subsequently analyzed using electron microscopy and caesium chloride centrifugation. At a low RNase concentration, most of the 300 S particles disintegrated completely, and no metastable degradation products were observed. At intermediate RNase concentrations, no 300 S particles were left, but a minor fraction of the BR granules had unfolded and sedimented at 160 S. These granules could represent particles modified during the RNase treatment or represent a more slowly degrading subfraction of the particles. At a high RNase concentration, no RNP particles at all remained in the gradient. The rapid disintegration of the majority of the BR granules was investigated further by electrophoretic analysis of RNA in the remaining particles. During the RNase treatment BR granules, still sedimenting at 300 S, accumulated strand breaks; in fact, as many as 50 to 100 nicks in the 37 kb RNA could be tolerated. It was concluded from RNA analyses that the disintegration of the BR granules was not dependent on any single nick in the RNA, nor on the accumulation of a certain number of nicks, but rather on one or a few critical strand breaks. We propose that there are organizing sequences essential for particle integrity; once these sequences are nicked, the premessenger RNP particles are rapidly and completely degraded.  相似文献   

7.
Analysis of the trajectories of small particles at high spatial and temporal resolution using video enhanced contrast microscopy provides a powerful approach to characterizing the mechanisms of particle motion in living cells and in other systems. We present here the theoretical basis for the analysis of these trajectories for particles undergoing random diffusion and/or systematic transport at uniform velocity in two-dimensional systems. The single particle tracking method, based on observations of the trajectories of individual particles, is compared with methods that characterize the motions of a large collection of particles such as fluorescence photobleaching recovery. Determination of diffusion coefficients or transport velocities either from correlation of positions or of velocities of the particles is discussed. A result of practical importance is an analysis of the dependence of the expected statistical uncertainty of these determinations on the number of position measurements. This provides a way of judging the accuracy of the diffusion coefficients and transport velocities obtained using this approach.  相似文献   

8.
9.
10.
Mitochondria are cellular organelles with multifaceted tasks and thus composed of different sub-compartments. The inner mitochondrial membrane especially has a complex nano-architecture with cristae protruding into the matrix. Related to their function, the localization of mitochondrial membrane proteins is more or less restricted to specific sub-compartments. In contrast, it can be assumed that membrane proteins per se diffuse unimpeded through continuous membranes. Fluorescence recovery after photobleaching is a versatile technology used in mobility analyses to determine the mobile fraction of proteins, but it cannot provide data on subpopulations or on confined diffusion behavior. Fluorescence correlation spectroscopy is used to analyze single molecule diffusion, but no trajectory maps are obtained. Single particle tracking (SPT) technologies in live cells, such as tracking and localization microscopy (TALM), do provide nanotopic localization and mobility maps of mitochondrial proteins in situ. Molecules can be localized with a precision of between 10 and 20 nm, and single trajectories can be recorded and analyzed; this is sufficient to reveal significant differences in the spatio-temporal behavior of diverse mitochondrial proteins. Here, we compare diffusion coefficients obtained by these different technologies and discuss trajectory maps of diverse mitochondrial membrane proteins obtained by SPT/TALM. We show that membrane proteins in the outer membrane generally display unhindered diffusion, while the mobility of inner membrane proteins is restricted by the inner membrane architecture, resulting in significantly lower diffusion coefficients. Moreover, tracking analysis could discern proteins in the inner boundary membrane from proteins preferentially diffusing in cristae membranes, two sub-compartments of the inner mitochondrial membrane. Thus, by evaluating trajectory maps it is possible to assign proteins to different sub-compartments of the same membrane.  相似文献   

11.
Using optical tweezers and single particle tracking, we have revealed the motion of a single protein, the lambda-receptor, in the outer membrane of living Escherichia coli bacteria. We genetically modified the lambda-receptor placing a biotin on an extracellular site of the receptor in vivo. The efficiency of this in vivo biotinylation is very low, thus enabling the attachment of a streptavidin-coated bead binding specifically to a single biotinylated lambda-receptor. The bead was used as a handle for the optical tweezers and as a marker for the single particle tracking routine. We propose a model that allows extraction of the motion of the protein from measurements of the mobility of the bead-molecule complex; these results are equally applicable to analyze bead-protein complexes in other membrane systems. Within a domain of radius approximately 25 nm, the receptor diffuses with a diffusion constant of (1.5 +/- 1.0) x 10(-9) cm(2)/s and sits in a harmonic potential as if it were tethered by an elastic spring of spring constant of ~1.0 x 10(-2) pN/nm to the bacterial membrane. The purpose of the protein motion might be to facilitate transport of maltodextrins through the outer bacterial membrane.  相似文献   

12.
Single-molecule detection and tracking is important for observing biomolecule interactions in the microenvironment. Here we report selective plane illumination microscopy (SPIM) with single-molecule detection in living organisms, which enables fast imaging and single-molecule tracking and optical penetration beyond 300 μm. We detected single nanocrystals in Drosophila larvae and zebrafish embryo. We also report our first tracking of single quantum dots during zebrafish development, which displays a transition from flow to confined motion prior to the blastula stage. The new SPIM setup represents a new technique, which enables fast single-molecule imaging and tracking in living systems.  相似文献   

13.
Single-particle tracking (SPT) is often the rate-limiting step in live-cell imaging studies of subcellular dynamics. Here we present a tracking algorithm that addresses the principal challenges of SPT, namely high particle density, particle motion heterogeneity, temporary particle disappearance, and particle merging and splitting. The algorithm first links particles between consecutive frames and then links the resulting track segments into complete trajectories. Both steps are formulated as global combinatorial optimization problems whose solution identifies the overall most likely set of particle trajectories throughout a movie. Using this approach, we show that the GTPase dynamin differentially affects the kinetics of long- and short-lived endocytic structures and that the motion of CD36 receptors along cytoskeleton-mediated linear tracks increases their aggregation probability. Both applications indicate the requirement for robust and complete tracking of dense particle fields to dissect the mechanisms of receptor organization at the level of the plasma membrane.  相似文献   

14.
Directed and Brownian movement of class I major histocompatibility complex (MHC) molecules on cell membranes is implicated in antigen presentation. Previous studies indicated that the class I MHC cytoplasmic tail imposes constraints on the molecule's diffusion. Here we used single particle tracking to study the mobility of the wild-type mouse H-2L(d) class I MHC molecule and of seven cytoplasmic tail variants. Six of the variants have cytoplasmic tails of four or seven residues (differing in net charge), and one is tailless, yet all are susceptible to confinement in membrane domains. However, truncation of the cytoplasmic tail to 0-4 residues decreases the proportion of particles exhibiting confined diffusion and increases the proportion exhibiting simple diffusion. Particularly for the truncated mutants (tail length of 0-7 residues), many of the particles have complex trajectories and do not move at a constant speed or in the same mode of diffusion throughout the observation period. Several particles of the tailless H-2L(d) mutant display a type of directed diffusion that is rarely observed for other H-2L(d) mutants. Taken together, these data show that even short cytoplasmic tails can influence markedly class I MHC mobility and that cytoplasmic tail length and sequence affect the molecule's diffusion in the membrane.  相似文献   

15.
The molecular processes of particle binding and endocytosis are influenced by the locally changing mobility of the particle nearby the plasma membrane of a living cell. However, it is unclear how the particle’s hydrodynamic drag and momentum vary locally and how they are mechanically transferred to the cell. We have measured the thermal fluctuations of a 1 μm-sized polystyrene sphere, which was placed in defined distances to plasma membranes of various cell types by using an optical trap and fast three-dimensional (3D) interferometric particle tracking. From the particle position fluctuations on a 30 μs timescale, we determined the distance-dependent change of the viscous drag in directions perpendicular and parallel to the cell membrane. Measurements on macrophages, adenocarcinoma cells, and epithelial cells revealed a significantly longer hydrodynamic coupling length of the particle to the membrane than those measured at giant unilamellar vesicles (GUVs) or a plane glass interface. In contrast to GUVs, there is also a strong increase in friction and in mean first passage time normal to the cell membrane. This hydrodynamic coupling transfers a different amount of momentum to the interior of living cells and might serve as an ultra-soft stimulus triggering further reactions.  相似文献   

16.
Wang SW  Aldovini A 《Journal of virology》2002,76(23):11853-11865
The nucleocapsid (NC) domain of retroviruses plays a critical role in specific viral RNA packaging and virus assembly. RNA is thought to facilitate viral particle assembly, but the results described here with NC mutants indicate that it also plays a critical role in particle integrity. We investigated the assembly and integrity of particles produced by the human immunodeficiency virus type 1 M1-2/BR mutant virus, in which 10 of the 13 positive residues of NC have been replaced with alanines and incorporation of viral genomic RNA is virtually abolished. We found that the mutations in the basic residues of NC did not disrupt Gag assembly at the cell membrane. The mutant Gag protein can assemble efficiently at the cell membrane, and viral proteins are detected outside the cell as efficiently as they are for the wild type. However, only approximately 10% of the Gag molecules present in the supernatant of this mutant sediment at the correct density for a retroviral particle. The reduction of positive charge in the NC basic domain of the M1-2/BR virus adversely affects both the specific and nonspecific RNA binding properties of NC, and thus the assembled Gag polyprotein does not bind significant amounts of viral or cellular RNA. We found a direct correlation between the percentage of Gag associated with sedimented particles and the amount of incorporated RNA. We conclude that RNA binding by Gag, whether the RNA is viral or not, is critical to retroviral particle integrity after cell membrane assembly and is less important for Gag-Gag interactions during particle assembly and release.  相似文献   

17.
Functionalized submicroscopic particles are currently used to label proteins or lipids at the surface of living cells for single particle tracking experiments. In many cases, it can be of crucial importance for the particle to be anchored to a single molecule. We have addressed this question for the labeling at the plasma membrane of NRK cells of the mu-opioid receptor bearing a T7 epitope at the N-terminus. Using biophysical methods we were able to prepare quasi-monovalent anti-T7 antibody conjugated gold colloids (40 nm diameter) leading to stable and specific binding to the receptor. The rational method, we report here, can be extended to design customized probes for the labeling of various tagged molecules.  相似文献   

18.
Resolving distinct biochemical interaction states when analyzing the trajectories of diffusing proteins in live cells on an individual basis remains challenging because of the limited statistics provided by the relatively short trajectories available experimentally. Here, we introduce a novel, machine-learning based classification methodology, which we call perturbation expectation-maximization (pEM), that simultaneously analyzes a population of protein trajectories to uncover the system of diffusive behaviors which collectively result from distinct biochemical interactions. We validate the performance of pEM in silico and demonstrate that pEM is capable of uncovering the proper number of underlying diffusive states with an accurate characterization of their diffusion properties. We then apply pEM to experimental protein trajectories of Rho GTPases, an integral regulator of cytoskeletal dynamics and cellular homeostasis, in vivo via single particle tracking photo-activated localization microcopy. Remarkably, pEM uncovers 6 distinct diffusive states conserved across various Rho GTPase family members. The variability across family members in the propensities for each diffusive state reveals non-redundant roles in the activation states of RhoA and RhoC. In a resting cell, our results support a model where RhoA is constantly cycling between activation states, with an imbalance of rates favoring an inactive state. RhoC, on the other hand, remains predominantly inactive.  相似文献   

19.
We present a novel optical technique for three-dimensional tracking of single fluorescent particles using a modified epifluorescence microscope containing a weak cylindrical lens in the detection optics and a microstepper-controlled fine focus. Images of small, fluorescent particles were circular in focus but ellipsoidal above and below focus; the major axis of the ellipsoid shifted by 90 degrees in going through focus. Particle z position was determined from the image shape and orientation by applying a peak detection algorithm to image projections along the x and y axes; x, y position was determined from the centroid of the particle image. Typical spatial resolution was 12 nm along the optical axis and 5 nm in the image plane with a maximum sampling rate of 3-4 Hz. The method was applied to track fluorescent particles in artificial solutions and living cells. In a solution of viscosity 30 cP, the mean squared distance (MSD) traveled by a 264 nm diameter rhodamine-labeled bead was linear with time to 20 s. The measured diffusion coefficient, 0.0558 +/- 0.001 micron2/s (SE, n = 4), agreed with the theoretical value of 0.0556 micron2/s. Statistical variability of MSD curves for a freely diffusing bead was in quantitative agreement with Monte Carlo simulations of three-dimensional random walks. In a porous glass matrix, the MSD data was curvilinear and showed reduced bead diffusion. In cytoplasm of Swiss 3T3 fibroblasts, bead diffusion was restricted. The water permeability in individual Chinese Hamster Ovary cells was measured from the z movement of a fluorescent bead fixed at the cell surface in response osmotic gradients; water permeability was increased by > threefold in cells expressing CHIP28 water channels. The simplicity and precision of this tracking method may be useful to quantify the complex trajectories of fluorescent particles in living cells.  相似文献   

20.
The interactions and coordination of biomolecules are crucial for most cellular functions. The observation of protein interactions in live cells may provide a better understanding of the underlying mechanisms. After fluorescent labeling of the interacting partners and live-cell microscopy, the colocalization is generally analyzed by quantitative global methods. Recent studies have addressed questions regarding the individual colocalization of moving biomolecules, usually by using single-particle tracking (SPT) and comparing the fluorescent intensities in both color channels. Here, we introduce a new method that combines SPT and correlation methods to obtain a dynamical 3D colocalization analysis along single trajectories of dual-colored particles. After 3D tracking, the colocalization is computed at each particle’s position via the local 3D image cross correlation of the two detection channels. For every particle analyzed, the output consists of the 3D trajectory, the time-resolved 3D colocalization information, and the fluorescence intensity in both channels. In addition, the cross-correlation analysis shows the 3D relative movement of the two fluorescent labels with an accuracy of 30 nm. We apply this method to the tracking of viral fusion events in live cells and demonstrate its capacity to obtain the time-resolved colocalization status of single particles in dense and noisy environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号