首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

Soluble Alzheimer's Aβ oligomers autoinsert into neuronal cell membranes, contributing to the pathology of Alzheimer's Disease (AD), and elevated serum cholesterol is a risk factor for AD, but the reason is unknown. We investigated potential connections between these two observations at the membrane level by testing the hypothesis that Aβ(1–42) relocates membrane cholesterol.  相似文献   

2.
Abstract

The Aβ(1–42) peptide of Alzheimer's disease was studied by molecular modeling. The coordinates of the peptide were experimentally generated from solution-NMR spectroscopy, and the conformations were energy minimized using a combination of connectivity-based iterative partial equalization of orbital electronegativity with the MM + force field.

There is a central folded domain in the Aβ peptide. This part is an apolar α-helix. The remaining residues form β-sheets. Aggregation requires that β-sheets interact by noncovalent bonding forces. The unsoluble, aggregated complexes are energetically stable and have ordered structures.

A perspective in drug research is to design compounds that inhibit the hydrophobic cores of the individual Aβ peptides, blocking so the associations between the β-strains.  相似文献   

3.
4.
Amyloid fibril formation is associated with a number of debilitating systemic and neurodegenerative diseases. One of the most prominent is Alzheimer disease in which aggregation and deposition of the Aβ peptide occur. Aβ is widely considered to mediate the extensive neuronal loss observed in this disease through the formation of soluble oligomeric species, with the final fibrillar end product of the aggregation process being relatively inert. Factors that influence the aggregation of these amyloid-forming proteins are therefore very important. We have screened a library of 96 amphipathic molecules for effects on Aβ(1-42) aggregation and self-association. We find, using thioflavin T fluorescence and electron microscopy assays, that 30 of the molecules inhibit the aggregation process, whereas 36 activate fibril formation. Several activators and inhibitors were subjected to further analysis using analytical ultracentrifugation and circular dichroism. Activators typically display a 1:10 peptide:detergent stoichiometry for maximal activation, whereas the inhibitors are effective at a 1:1 stoichiometry. Analytical ultracentrifugation and circular dichroism experiments show that activators promote a mixture of unfolded and β-sheet structures and rapidly form large aggregates, whereas inhibitors induce α-helical structures that form stable dimeric/trimeric oligomers. The results suggest that Aβ(1-42) contains at least one small molecule binding site, which modulates the secondary structure and aggregation processes. Further studies of the binding of these compounds to Aβ may provide insight for developing therapeutic strategies aimed at stabilizing Aβ in a favorable conformation.  相似文献   

5.
A non-peptide inhibitor that is metabolically stable, orally active and capable of crossing the blood–brain barrier has been a popular option for treating Alzheimer's disease (AD). To identify novel non-peptide inhibitors for AD drug development, a structure-based pharmacophore model (SBPM) was developed using the representative docked conformation of the recently discovered peptide inhibitor PGKLVYA in the potential binding site on the Aβ(17–42) protofibril. The best SBPM, consisting of two hydrophobic, one hydrogen bond donor, and one positive ionisable feature, was further validated using ligand pharmacophore mapping studies. The well-validated SBPM was then used as the 3D query in virtual screening to identify potential hits from the National Cancer Institute database. These hits were subsequently filtered by toxicity prediction and molecular docking, and their binding stabilities and affinities were validated by 20-ns molecular dynamics simulations and molecular mechanics Poisson–Boltzmann surface area analysis, respectively. Finally, two Hits (NSC35984 and NSC102747) were identified as potential leads, which exhibited higher binding stability and affinity towards Aβ compared with PGKVYA. Our results also suggest that these two Hits have the ability to prevent Aβ adopting toxic β-sheet structures, and can be easily synthesised and have structural novelty, indicating that they are promising candidates for treating AD.  相似文献   

6.
A wide variety of human diseases are associated with the formation of highly organized protein aggregates termed amyloid fibrils, whose growth (elongation) is due to the assembly of the basic molecular units (monomers) in a sequential polymerization process. Surface plasmon resonance (SPR) technology has been proposed as a powerful approach to study in detail the fibril elongation of some amyloidogenic peptides. In particular, the injection of monomers over immobilized fibrils allows to follow in real time, and on a very short time-scale, the kinetics of fibril growth. In the present study we confirmed and extended this application of SPR to Aβ(1-42), hampered till now by the very pronounced aggregation propensity of this peptide, involved in Alzheimer disease. We took advantage of a new synthetic strategy ("depsi-peptide" technique) which allows to obtain reliable seed-free solutions (monomers) as well as fibrils of Aβ(1-42). SPR data were consistent with a "dock-and-lock" mechanism underlying Aβ(1-42) elongation process. The setup of an assay monitoring the elongation kinetics is very useful for investigating potential anti-amyloidogenic compounds. Moreover, the possibility to reliably immobilize both Aβ(1-42) monomers and fibrils allows to measure the binding affinities of putative ligands for these different species. The approach applied here to Aβ(1-42) might well be also applied to the study of other fibrillogenic peptides/proteins or to the study of polymerization reactions in general.  相似文献   

7.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of unknown cause, characterized by the selective and progressive death of both upper and lower motoneurons, leading to a progressive paralysis. Experimental animal models of the disease may provide knowledge of the pathophysiological mechanisms and allow the design and testing of therapeutic strategies, provided that they mimic as close as possible the symptoms and temporal progression of the human disease. The principal hypotheses proposed to explain the mechanisms of motoneuron degeneration have been studied mostly in models in vitro, such as primary cultures of fetal motoneurons, organotypic cultures of spinal cord sections from postnatal rodents and the motoneuron-like hybridoma cell line NSC-34. However, these models are flawed in the sense that they do not allow a direct correlation between motoneuron death and its physical consequences like paralysis. In vivo, the most widely used model is the transgenic mouse that bears a human mutant superoxide dismutase 1, the only known cause of ALS. The major disadvantage of this model is that it represents about 2%–3% of human ALS. In addition, there is a growing concern on the accuracy of these transgenic models and the extrapolations of the findings made in these animals to the clinics. Models of spontaneous motoneuron disease, like the wobbler and pmn mice, have been used aiming to understand the basic cellular mechanisms of motoneuron diseases, but these abnormalities are probably different from those occurring in ALS. Therefore, the design and testing of in vivo models of sporadic ALS, which accounts for >90% of the disease, is necessary. The main models of this type are based on the excitotoxic death of spinal motoneurons and might be useful even when there is no definitive demonstration that excitotoxicity is a cause of human ALS. Despite their difficulties, these models offer the best possibility to establish valid correlations between cellular alterations and motor behavior, although improvements are still necessary in order to produce a reliable and integrative model that accurately reproduces the cellular mechanisms of motoneuron degeneration in ALS.  相似文献   

8.
NMR spectroscopy combined with paramagnetic relaxation agents was used to study the positioning of the 40-residue Alzheimer Amyloid β-peptide Aβ(1–40) in SDS micelles. 5-Doxyl stearic acid incorporated into the micelle or Mn2+ ions in the aqueous solvent were used to determine the position of the peptide relative to the micelle geometry. In SDS solvent, the two α-helices induced in Aβ(1–40), comprising residues 15–24, and 29–35, respectively, are surrounded by flexible unstructured regions. NMR signals from these unstructured regions are strongly attenuated in the presence of Mn2+ showing that these regions are positioned mostly outside the micelle. The central helix (residues 15–24) is significantly affected by 5-doxyl stearic acid however somewhat less for residues 16, 20, 22 and 23. This α-helix therefore resides in the SDS headgroup region with the face with residues 16, 20, 22 and 23 directed away from the hydrophobic interior of the micelle. The C-terminal helix is protected both from 5-doxyl stearic acid and Mn2+, and should be buried in the hydrophobic interior of the micelle. The SDS micelles were characterized by diffusion and 15N-relaxation measurements. Comparison of experimentally determined translational diffusion coefficients for SDS and Aβ(1–40) show that the size of SDS micelle is not significantly changed by interaction with Aβ(1–40). Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
Wang F  Zhou XL  Yang QG  Xu WH  Wang F  Chen YP  Chen GH 《PloS one》2011,6(11):e27649
The accumulation of the amyloid-β peptide (Aβ) into amyloid plaques, an essential event in Alzheimer''s disease (AD) pathogenesis, has caused researchers to seek compounds that physiologically bind Aβ and modulate its aggregation and neurotoxicity. In order to develop new Aβ-specific peptides for AD, a randomized 12-mer peptide library with Aβ1-10 as the target was used to identify peptides in the present study. After three rounds of selection, specific phages were screened, and their binding affinities to Aβ1-10 were found to be highly specific. Finally, a special peptide was synthesized according to the sequences of the selected phages. In addition, the effects of the special peptide on Aβ aggregation and Aβ-mediated neurotoxicity in vitro and in vivo were assessed. The results show that the special peptide not only inhibited the aggregation of Aβ into plaques, but it also alleviated Aβ-induced PC12 cell viability and apoptosis at appropriate concentrations as assessed by the cell counting kit-8 assay and propidium iodide staining. Moreover, the special peptide exhibited a protective effect against Aβ-induced learning and memory deficits in rats, as determined by the Morris water maze task. In conclusion, we selected a peptide that specifically binds Aβ1-10 and can modulate Aβ aggregation and Aβ-induced neuronal damage. This opens up possibilities for the development of a novel therapeutic approach for the treatment of AD.  相似文献   

10.
Minor species of amyloid β-peptide (Aβ), such as Aβ-(1–43) and pyroglutaminated Aβ-(3–42) (Aβ-(3pE–42)), have been suggested to be involved in the initiation of the Aβ aggregation process, which is closely associated with the etiology of Alzheimer's disease. They can play important roles in aggregation not only in the aqueous phase but also on neuroral membranes; however, the latter behaviors remain mostly unexplored. Here, initial aggregation processes of Aβ on living cells were monitored at physiological nanomolar concentrations by fluorescence correlation spectroscopy. Membrane-bound Aβ-(1–42) and Aβ-(1–40) formed oligomers composed of ~4 Aβ molecules during 48-h incubation, whereas the peptides remained monomeric in the culture medium, indicating that the membranes facilitated Aβ aggregation. The presence of 5 mol% Aβ-(3pE–42), but not Aβ-(1–43), significantly enhanced the aggregation of Aβ-(1–42) up to ~10-mers. On the other hand, neither trace amounts of Aβ-(1–42) nor Aβ-(3pE–42) enhanced the aggregation of Aβ-(1–40). The observed small Aβ oligomers are expected to act as pathogenic seeds for amyloid fibrils responsible for neurotoxicity. This article is part of a Special Issue entitled: Protein Aggregation and Misfolding at the Cell Membrane Interface edited by Ayyalusamy Ramamoorthy.  相似文献   

11.
We have investigated the influence of the neurotoxic Alzheimer's disease peptide amyloid-β (25-35) on the dynamics of phospholipid membranes by means of quasi-elastic neutron scattering in the picosecond time-scale. Samples of pure phospholipids (DMPC/DMPS) and samples with amyloid-β (25-35) peptide included have been compared. With two different orientations of the samples the directional dependence of the dynamics was probed. The sample temperature was varied between 290 K and 320 K to cover both the gel phase and the liquid-crystalline phase of the lipid membranes. The model for describing the dynamics combines a long-range translational diffusion of the lipid molecules and a spatially restricted diffusive motion. Amyloid-β (25-35) peptide affects significantly the ps-dynamics of oriented lipid membranes in different ways. It accelerates the lateral diffusion especially in the liquid-crystalline phase. This is very important for all kinds of protein-protein interactions which are enabled and strongly influenced by the lateral diffusion such as signal and energy transducing cascades. Amyloid-β (25-35) peptide also increases the local lipid mobility as probed by variations of the vibrational motions with a larger effect in the out-of-plane direction. Thus, the insertion of amyloid-β (25-35) peptide changes not only the structure of phospholipid membranes as previously demonstrated by us employing neutron diffraction (disordering effect on the mosaicity of the lipid bilayer system) but also the dynamics inside the membranes. The amyloid-β (25-35) peptide induced membrane alteration even at only 3 mol% might be involved in the pathology of Alzheimer's disease as well as be a clue in early diagnosis and therapy.  相似文献   

12.
The oligomerization of the amyloid-β protein (Aβ) is an important event in Alzheimer disease (AD) pathology. Developing small molecules that disrupt formation of early oligomeric states of Aβ and thereby reduce the effective amount of toxic oligomers is a promising therapeutic strategy for AD. Here, mass spectrometry and ion mobility spectrometry were used to investigate the effects of a small molecule, Z-Phe-Ala-diazomethylketone (PADK), on the Aβ42 form of the protein. The mass spectrum of a mixture of PADK and Aβ42 clearly shows that PADK binds directly to Aβ42 monomers and small oligomers. Ion mobility results indicate that PADK not only inhibits the formation of Aβ42 dodecamers, but also removes preformed Aβ42 dodecamers from the solution. Electron microscopy images show that PADK inhibits Aβ42 fibril formation in the solution. These results are consistent with a previous study that found that PADK has protective effects in an AD transgenic mouse model. The study of PADK and Aβ42 provides an example of small molecule therapeutic development for AD and other amyloid diseases.  相似文献   

13.
Mesenchymal stem cells (MSCs) promote functional recoveries in pathological experimental models of central nervous system (CNS) and are currently being tested in clinical trials for neurological disorders, but preventive mechanisms of placenta-derived MSCs (PD-MSCs) for Alzheimer''s disease are poorly understood. Herein, we investigated the inhibitory effect of PD-MSCs on neuronal cell death and memory impairment in Aβ1–42-infused mice. After intracerebroventrical (ICV) infusion of Aβ1–42 for 14 days, the cognitive function was assessed by the Morris water maze test and passive avoidance test. Our results showed that the transplantation of PD-MSCs into Aβ1–42-infused mice significantly improved cognitive impairment, and behavioral changes attenuated the expression of APP, BACE1, and Aβ, as well as the activity of β-secretase and γ-secretase. In addition, the activation of glia cells and the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were inhibited by the transplantation of PD-MSCs. Furthermore, we also found that PD-MSCs downregulated the release of inflammatory cytokines as well as prevented neuronal cell death and promoted neuronal cell differentiation from neuronal progenitor cells in Aβ1–42-infused mice. These data indicate that PD-MSC mediates neuroprotection by regulating neuronal death, neurogenesis, glia cell activation in hippocampus, and altering cytokine expression, suggesting a close link between the therapeutic effects of MSCs and the damaged CNS in Alzheimer''s disease.  相似文献   

14.
Alzheimer's disease (AD) is thought to depend on the deleterious action of amyloid fibrils or oligomers derived from β-amyloid (Aβ) peptide. Out of various known Aβ alloforms, the 40-residue peptide Aβ(1-40) occurs at highest concentrations inside the brains of AD patients. Its aggregation properties critically depend on lipids, and it was thus proposed that lipids could play a major role in AD. To better understand their possible effects on the structure of Aβ and on the ability of this peptide to form potentially detrimental amyloid structures, we here analyze the interactions between Aβ(1-40) and 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC). DHPC has served, due to its controlled properties, as a major model system for studying general lipid properties. Here, we show that DHPC concentrations of 8 mM or higher exert dramatic effects on the conformation of soluble Aβ(1-40) peptide and induce the formation of β-sheet structure at high levels. By contrast, we find that DHPC concentrations well below the critical micelle concentration present no discernible effect on the conformation of soluble Aβ, although they substantially affect the peptide's oligomerization and fibrillation kinetics. These data imply that subtle lipid-peptide interactions suffice in controlling the overall aggregation properties and drastically accelerate, or delay, the fibrillation kinetics of Aβ peptide in near-physiological buffer solutions.  相似文献   

15.
β-amyloid peptide (Aβ) is a primary protein component of senile plaques in Alzheimer's disease (AD) and plays an important, but not fully understood role in neurotoxicity. Model peptides with the demonstrated ability to mimic the structural and toxicity behavior of Aβ could provide a means to evaluate the contributions to toxicity that are common to self-associating peptides from many disease states. In this work, we have studied the peptide–membrane interactions of a model β-sheet peptide, P11-2 (CH3CO-Gln-Gln-Arg-Phe-Gln-Trp-Gln-Phe-Glu-Gln-Gln-NH2), by fluorescence, infrared spectroscopy, and hydrogen–deuterium exchange. Like Aβ(1–40), the peptide is toxic, and conditions which produce intermediate oligomers show higher toxicity against cells than either monomeric forms or higher aggregates of the peptide. Further, P11-2 also binds to both zwitterionic (POPC) and negatively charged (POPC:POPG) liposomes, acquires a partial β-sheet conformation in presence of lipid, and is protected against deuterium exchange in the presence of lipids. The results show that a simple rationally designed model β-sheet peptide recapitulates many important features of Aβ peptide structure and function, reinforcing the idea that toxicity arises, at least in part, from a common mode of action on membranes that is independent of specific aspects of the amino acid sequence. Further studies of such well-behaved model peptide systems will facilitate the investigation of the general principles that govern the molecular interactions of aggregation-prone disease-associated peptides with cell and/or membrane surfaces.  相似文献   

16.
Alzheimer’s disease (AD) is a progressive neurodegenerative brain disease and is the most common cause of dementia in the elderly. The main hallmark of AD is the deposition of insoluble amyloid (Aβ) outside the neuron, leading to amyloid plaques and neurofibrillary tangles in the brain. Deuterohemin-Ala-His-Thr-Val-Glu-Lys (DhHP-6), a novel porphyrin-peptide, has both microperoxidase activity and cell permeability. In the present study, DhHP-6 efficiently inhibited the aggregation of Aβ and reduced the β-sheet percentage of Aβ from 89.1% to 78.3%. DhHP-6 has a stronger affinity (KD = 100 ± 12 μM) for binding with Aβ at Phe4, Arg5, Val18, Glu11 and Glu22. In addition, DhHP-6 (100 μM) significantly prolonged lifespan, alleviated paralysis and reduced Aβ plaque formation in the Aβ1–42 transgenic Caenorhabditis elegans CL4176 model of AD. Our results demonstrate that DhHP-6 is a potential drug candidate that efficiently protects a transgenic C. elegans model of Alzheimer’s disease by inhibiting Aβ aggregation.  相似文献   

17.
There have been many reports suggesting that soluble oligomers of amyloid β (Aβ) are neurotoxins causing Alzheimer's disease (AD). Although inhibition of the soluble oligomerization of Aβ is considered to be effective in the treatment of AD, almost all peptide inhibitors have been designed from the β-sheet structure (H14-D23) of Aβ(1-42). To obtain more potent peptides than the known inhibitors of the soluble-oligomer formation of Aβ(1-42), we performed random screening by phage display. After fifth-round panning of a hepta-peptide library against soluble Aβ(1-42), novel peptides containing arginine residues were enriched. These peptides were found to suppress specifically 37/48 kDa oligomer formation and to keep the monomeric form of Aβ(1-42) even after 24 h of incubation, as disclosed by SDS-PAGE and size-exclusion chromatography. Thus we succeeded in acquiring novel efficient peptides for inhibition of soluble 37/48 kDa oligomer formation of Aβ(1-42).  相似文献   

18.
19.

Background

Alzheimer's disease (AD) is a progressive neurodegenerative disorder. There is a consensus that Aβ is a pathologic agent and that its toxic effects, which are at present incompletely understood, may occur through several potential mechanisms. Polyphenols are known to have wide-ranging properties with regard to health and for helping to prevent various diseases like neurodegenerative disorders. Thus inhibiting the formation of toxic Aβ assemblies is a reasonable hypothesis to prevent and perhaps treat AD

Methods

Solution NMR and molecular modeling were used to obtain more information about the interaction between the Aβ1–40 and the polyphenol ε-viniferin glucoside (EVG) and particularly the Aβ residues involved in the complex.

Results

The study demonstrates the formation of a complex between two EVG molecules and Aβ1–40 in peptide characteristic regions that could be in agreement with the inhibition of aggregation. Indeed, in previous studies, we reported that EVG strongly inhibited in vitro the fibril formation of the full length peptides Aβ1–40 and Aβ1–42, and had a strong protective effect against PC12 cell death induced by these peptides.

Conclusion

For the full length peptide Aβ1–40, the binding sites observed could explain the EVG inhibitory effect on fibrillization and thus prevent amyloidogenic neurotoxicity.

General significance

Even though this interaction might be important at the biological level to explain the protective effect of polyphenols in neurodegenerative diseases, caution is required when extrapolating this in vitro model to human physiology.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号