首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Phosphoinositides are found in low concentration in cellular membranes but perform numerous functions such as signaling, membrane trafficking, protein recruitment and modulation of protein activity. Spatiotemporal regulation by enzymes that phosphorylate and dephosphorylate the inositol ring results in the production of seven distinct and functionally diverse derivatives. Ionization properties of the phosphorylated headgroups of anionic lipids have been shown to impact how they interact with proteins and lipids in the membrane. While the ionization properties of the three bis and one tris phosphorylated forms have been studied in physiologically relevant model membranes, that of the monophosphorylated forms (i.e., phosphatidylinositol-3-phosphate (PI3P), phosphatidylinositol-4-phosphate (PI4P), phosphatidylinositol-5-phosphate (PI5P)) has received less attention. Here, we used 31P MAS NMR to determine the charge of 5 mol% of the monophosphorylated derivatives in pure dioleoylphosphatidylcholine (DOPC) and DOPC/dioleoylphosphatidylethanolamine (DOPE) bilayers as a function of pH. We find that PI3P, PI4P and PI5P each have unique pKa2 values in a DOPC bilayer, and each is reduced in DOPC/DOPE model membranes through the interaction of their headgroups with DOPE according to the electrostatic-hydrogen bond switch model. In this study, using model membranes mimicking the plasma membrane (inner leaflet), Golgi, nuclear membrane, and endosome (outer leaflet), we show that PI3P, PI4P or PI5P maximize their charge at neutral pH. Our results shed light on the electrostatics of the monophosphorylated headgroups of PI3P, PI4P, and PI5P and form the basis of their intracellular functions.  相似文献   

2.
Protein kinase D (PKD) plays a critical role at the trans-Golgi network by regulating the fission of transport carriers destined for the plasma membrane. Two known Golgi-localized PKD substrates, PI4-kinase IIIβ and the ceramide transfer protein CERT, mediate PKD signaling to influence vesicle trafficking to the plasma membrane and sphingomyelin synthesis, respectively. PKD is recruited and activated at the Golgi through interaction with diacylglycerol, a pool of which is generated as a by-product of sphingomyelin synthesis from ceramide. Here we identify a novel substrate of PKD at the Golgi, the oxysterol-binding protein OSBP. Using a substrate-directed phospho-specific antibody that recognizes the optimal PKD consensus motif, we show that PKD phosphorylates OSBP at Ser240 in vitro and in cells. We further show that OSBP phosphorylation occurs at the Golgi. Phosphorylation of OSBP by PKD does not modulate dimerization, sterol binding, or affinity for PI(4)P. Instead, phosphorylation attenuates OSBP Golgi localization in response to 25-hydroxycholesterol and cholesterol depletion, impairs CERT Golgi localization, and promotes Golgi fragmentation.  相似文献   

3.
The network of proteins that orchestrate the distribution of cholesterol among cellular organelles is not fully characterized. We previously proposed that oxysterol‐binding protein (OSBP) drives cholesterol/PI4P exchange at contact sites between the endoplasmic reticulum (ER) and the trans‐Golgi network (TGN). Using the inhibitor OSW‐1, we report here that the sole activity of endogenous OSBP makes a major contribution to cholesterol distribution, lipid order, and PI4P turnover in living cells. Blocking OSBP causes accumulation of sterols at ER/lipid droplets at the expense of TGN, thereby reducing the gradient of lipid order along the secretory pathway. OSBP consumes about half of the total cellular pool of PI4P, a consumption that depends on the amount of cholesterol to be transported. Inhibiting the spatially restricted PI4‐kinase PI4KIIIβ triggers large periodic traveling waves of PI4P across the TGN. These waves are cadenced by long‐range PI4P production by PI4KIIα and PI4P consumption by OSBP. Collectively, these data indicate a massive spatiotemporal coupling between cholesterol transport and PI4P turnover via OSBP and PI4‐kinases to control the lipid composition of subcellular membranes.  相似文献   

4.
The endoplasmic reticulum (ER)-Golgi sterol transfer activity of oxysterol-binding protein (OSBP) regulates sphingomyelin (SM) synthesis, as well as post-Golgi cholesterol efflux pathways. The phosphorylation and ER-Golgi localization of OSBP are correlated, suggesting this modification regulates the directionality and/or specificity of transfer activity. In this paper, we report that phosphorylation on two serine-rich motifs, S381-S391 (site 1) and S192, S195, S200 (site 2), specifically controls OSBP activity at the ER. A phosphomimetic of the SM/cholesterol-sensitive phosphorylation site 1 (OSBP-S5E) had increased in vitro cholesterol and 25-hydroxycholesterol-binding capacity, and cholesterol extraction from liposomes, but reduced transfer activity. Phosphatidylinositol 4-phosphate (PI(4)P) and cholesterol competed for a common binding site on OSBP; however, direct binding of PI(4)P was not affected by site 1 phosphorylation. Individual site 1 and site 2 phosphomutants supported oxysterol activation of SM synthesis in OSBP-deficient CHO cells. However, a double site1/2 mutant (OSBP-S381A/S3D) was deficient in this activity and was constitutively colocalized with vesicle-associated membrane protein-associated protein A (VAP-A) in a collapsed ER network. This study identifies phosphorylation regulation of sterol and VAP-A binding by OSBP in the ER, and PI(4)P as an alternate ligand that could be exchanged for sterol in the Golgi apparatus.  相似文献   

5.
Sphingomyelin (SM) and cholesterol are coregulated metabolically and associate physically in membrane microdomains involved in cargo sorting and signaling. One mechanism for regulation of this metabolic interface involves oxysterol binding protein (OSBP) via high-affinity binding to oxysterol regulators of cholesterol homeostasis and activation of SM synthesis at the Golgi apparatus. Here, we show that OSBP regulation of SM synthesis involves the endoplasmic reticulum (ER)-to-Golgi ceramide transport protein (CERT). RNA interference (RNAi) experiments in Chinese hamster ovary (CHO)-K1 cells revealed that OSBP and vesicle-associated membrane protein-associated protein (VAP) were required for stimulation of CERT-dependent ceramide transport and SM synthesis by 25-hydroxycholesterol and cholesterol depletion in response to cyclodextrin. Additional RNAi experiments in human embryonic kidney 293 cells supported OSBP involvement in oxysterol-activated SM synthesis and also revealed a role for OSBP in basal SM synthesis. Activation of ER-to-Golgi ceramide transport in CHO-K1 cells required interaction of OSBP with the ER and Golgi apparatus, OSBP-dependent Golgi translocation of CERT, and enhanced CERT-VAP interaction. Regulation of CERT by OSBP, sterols, and VAP reveals a novel mechanism for integrating sterol regulatory signals with ceramide transport and SM synthesis in the Golgi apparatus.  相似文献   

6.
Cholesterol and sphingomyelin (SM) associate in raft domains and are metabolically coregulated. One aspect of coordinate regulation occurs in the Golgi apparatus where oxysterol binding protein (OSBP) mediates sterol-dependent activation of ceramide transport protein (CERT) activity and SM synthesis. Because CERT transfer activity is dependent on its phosphatidylinositol 4 phosphate [PtdIns(4)P]-specific pleckstrin homology domain, we investigated whether OSBP activation of CERT involved a Golgi-associated PtdIns 4-kinase (PI4K). Cell fractionation experiments revealed that Golgi/endosome-enriched membranes from 25-hydroxycholesterol-treated Chinese hamster ovary cells had increased activity of a sterol-sensitive PI4K that was blocked by small interfering RNA silencing of OSBP. Consistent with this sterol-requirement, OSBP silencing also reduced the cholesterol content of endosome/trans-Golgi network (TGN) fractions containing PI4KIIα. PI4KIIα, but not PI4KIIIβ, was required for oxysterol-activation of SM synthesis and recruitment of CERT to the Golgi apparatus. However, neither PI4KIIα nor PI4KIIIβ expression was required for 25-hydroxycholesterol-dependent translocation of OSBP to the Golgi apparatus. The presence of OSBP, CERT, and PI4KIIα in the TGN of oxysterol-stimulated cells suggests that OSBP couples sterol binding or transfer activity with regulation of PI4KIIα activity, leading to CERT recruitment to the TGN and increased SM synthesis.  相似文献   

7.
Studies on anti‐picornavirus compounds have revealed an essential role of a novel cellular pathway via host phosphatidylinositol‐4 kinase III beta (PI4KB) and oxysterol‐binding protein (OSBP) family I in poliovirus (PV) replication. However, the molecular role for this pathway in PV replication has yet to be determined. Here, viral and host proteins modulating production of phosphatidylinositol 4‐phosphate (PI4P) and accumulation of unesterified cholesterol (UC) in cells were analyzed and the role of the PI4KB/OSBP pathway in PV replication characterized. Virus protein 2BC was identified as a novel interactant of PI4KB. PI4KB and VCP/p97 bind to a partially overlapped region of 2BC with different sensitivity to a 2C inhibitor. Production of PI4P and accumulation of UC were enhanced by virus protein 2BC, but suppressed by virus proteins 3A and 3AB. In PV‐infected cells, a PI4KB inhibitor suppressed production of PI4P, and both a PI4KB inhibitor and an OSBP ligand suppressed accumulation of UC on virus‐induced membrane structure. Inhibition of PI4KB activity caused dissociation of OSBP from virus‐induced membrane structure in PV‐infected cells. Synthesis of viral nascent RNA in PV‐infected cells was not affected in the presence of PI4KB inhibitor and OSBP ligand; however, transient pre‐treatment of PV‐infected cells with these inhibitors suppressed viral RNA synthesis. These results suggest that virus proteins modulate PI4KB activity and provide PI4P for recruitment of OSBP to accumulate UC on virus‐induced membrane structure for formation of a virus replication complex.  相似文献   

8.
Amyloid fibrils are associated with multiple neurodegenerative disorders, such as Alzheimer's disease. Although biological membranes are involved in fibril plaque formation, the role of lipid membrane composition in fibril formation and toxicity is not well understood. We investigated the effect of cholesterol on the interaction of model lipid membranes with amyloid-β peptide (Aβ). With atomic force microscopy we demonstrated that binding of Aβ (1-42) to DOPC bilayer, enriched with 20% cholesterol, resulted in an intriguing formation of small nonuniform islands loaded with Aβ. We attribute this effect to the presence of nanoscale electrostatic domains induced by cholesterol in DOPC bilayers. Using frequency-modulated Kelvin probe force microscopy we were able to resolve these nanoscale electrostatic domains in DOPC monolayers. These findings directly affect our understanding of how the presence of cholesterol may induce targeted binding of amyloid deposits to biomembranes. We postulate that this nonhomogeneous electrostatic effect of cholesterol has a fundamental nature and may be present in other lipid membranes and monolayers.  相似文献   

9.
Previously we reported that when cell cholesterol is acutely lowered with beta-methyl-cyclodextrin the amount of activated ERK1/2 in caveolae dramatically increases. We traced the origin of this novel method of pERK1/2 accumulation to a macromolecular complex with dual specific phosphatase activity that contains the serine/threonine phosphatase PP2A, the tyrosine phosphatase HePTP, the oxysterol-binding protein OSBP and cholesterol. When cell cholesterol is lowered, or oxysterols is introduced, the complex disassembles and pERK1/2 increases. In an effort to better understand how OSBP functions as a cholesterol-regulated scaffolding protein, we have mapped the functional parts of the molecule. The command center of the molecule is a centrally located, 51 amino acids (408-459) long sterol-binding domain that can bind both cholesterol and 25-hydroxycholesterol. This domain is functional whether attached to the N- or the C-terminal half of OSBP. Introduction of a Y458S mutation impairs binding. Even though 25-hydroxycholesterol will compete for cholesterol binding to OSBP(408-809), it will not compete for cholesterol binding in full-length OSBP. Upon further analysis we found that a glycine-alaninerich region at the N-terminal end of OSBP works with the PH domain to control cholesterol binding without affecting 25-hydroxycholesterol binding. Finally, we found that HePTP and PP2A bind the C-terminal half of OSBP, HePTP binds a coiled-coil domain (amino acids 732-761), and PP2A binds neither the coiled-coil nor HePTP. On the basis of this information we propose a new model for how OSBP is able to sense both membrane cholesterol and oxidized sterols and link this information to the ERK1/2 signaling pathway.  相似文献   

10.
Portet T  Dimova R 《Biophysical journal》2010,99(10):3264-3273
We report a novel and facile method for measuring edge tensions of lipid membranes. The approach is based on electroporation of giant unilamellar vesicles and analysis of the pore closure dynamics. We applied this method to evaluate the edge tension in membranes with four different compositions: egg phosphatidylcholine (eggPC), dioleoylphosphatidylcholine (DOPC), and mixtures of DOPC with cholesterol and dioleoylphosphatidylethanolamine. Our data confirm previous results for eggPC and DOPC. The addition of 17 mol % cholesterol to the DOPC membrane causes an increase in the membrane edge tension. On the contrary, when the same fraction of dioleoylphosphatidylethanolamine is added to the membrane, a decrease in the edge tension is observed, which is an unexpected result considering the inverted-cone shape geometry of the molecule. It is presumed that interlipid hydrogen bonding is the origin of this behavior. Furthermore, cholesterol was found to lower the lysis tension of DOPC bilayers. This behavior differs from that observed on bilayers made of stearoyloleoylphosphatidylcholine, suggesting that cholesterol influences the membrane mechanical stability in a lipid-specific manner.  相似文献   

11.
Lipid rafts are membrane structures enriched in cholesterol, sphingomyelin and glycolipids. In majority raft-mimicking model systems high contents of cholesterol and sphingomyelin (approximately 30 mol%) are used. Existence of raft-like structures was, however, reported also in model and natural membranes containing low levels of cholesterol and sphingomyelin. In the present work differential scanning calorimetry and fluorescence spectroscopy with the use of Laurdan probe was employed to demonstrate the existence of phase separation in model systems containing DPPC with addition of 5 mol% or 10 mol% of both cholesterol and sphingomyelin. Additionally, the influence of three phenothiazine derivatives on phase separation in mixed DPPC/cholesterol/sphingomyelin bilayers was investigated. Chlorpromazine, thioridazine and trifluoperazine were able to induce phase separation in DPPC and DPPC/cholesterol/sphingomyelin bilayers in temperatures below lipid main phase transition. However, only trifluoperazine induced phase separation in temperatures close to or above main phase transition. Trifluoperazine also induced phase separation in bilayers composed of egg yolk PC or DOPC mixed with cholesterol and sphingomyelin. We concluded that presence of lipid domains can be observed in model membranes containing low levels of cholesterol and sphingomyelin. Among three phenothiazine derivatives studied, only trifluoperazine was able to induce a permanent phase separation in phosphatidylcholine/cholesterol/sphingomyelin systems.  相似文献   

12.
Phosphatidylinositol-4-phosphate (PI4P) plays a crucial role in cellular functions, including protein trafficking, and is mainly located in the cytoplasmic surface of intracellular membranes, which include the trans-Golgi network (TGN) and the plasma membrane. However, many PI4P-binding domains of membrane-associated proteins are localized only to the TGN because of the requirement of a second binding protein such as ADP-ribosylation factor 1 (ARF1) in order to be stably localized to the specific membrane. In this study, we developed new probes that were capable of detecting PI4P at the plasma membrane using the known TGN-targeting PI4P-binding domains. The PI4P-specific binding pleckstrin homology (PH) domain of various proteins including CERT, OSBP, OSH1, and FAPP1 was combined with the N-terminal moderately hydrophobic domain of the short-form of Aplysia phosphodiesterase 4 (S(N30)), which aids in plasma membrane association but cannot alone facilitate this association. As a result, we found that the addition of S(N30) to the N-terminus of the GFP-fused PH domain of OSBP (S(N30)-GFP-OSBP-PH), OSH1 (S(N30)-GFP-OSH1-PH), or FAPP1 (S(N30)-GFP-FAPP1-PH) could induce plasma membrane localization, as well as retain TGN localization. The plasma membrane localization of S(N30)-GFP-FAPP1-PH is mediated by PI4P binding only, whereas those of S(N30)-GFP-OSBP-PH and S(N30)-GFP-OSH1-PH are mediated by either PI4P or PI(4,5)P2 binding. Taken together, we developed new probes that detect PI4P at the plasma membrane using a combination of a moderately hydrophobic domain with the known TGN-targeting PI4P-specific binding PH domain.  相似文献   

13.
MK-801, a noncompetitive antagonist of the NMDA (N-methyl-D-aspartate) receptor, has protective effects against excitotoxicity and ethanol withdrawal seizures. We have determined membrane/buffer partition coefficients (Kp[mem]) of MK-801 and its rates of association with and dissociation from membranes. Kp[mem] (+/- SD) = 1137 (+/- 320) in DOPC membranes and 485 (+/- 99) in synaptoneurosomal (SNM) lipid membranes from rat cerebral cortex (unilamellar vesicles). In multilamellar vesicles, Kp[mem] was higher: 3374 (+/- 253) in DOPC and 6879 (+/- 947) in SNM. In cholesterol/DOPC membranes, Kp[mem] decreased as the cholesterol content increased. MK-801 associated with and dissociated from membranes rapidly. Addition of ethanol to SNM did not affect Kp[mem]. MK-801 decreased the cooperative unit size of DMPC membranes. The decrease was smaller than that caused by 1,4-dihydropyridine drugs, indicating a weaker interaction with the hydrocarbon core. Small angle x-ray diffraction, with multilayer autocorrelation difference function modeling, indicated that MK-801 in a cholesterol/DOPC membrane (mole ratio = 0.6) causes a perturbation at approximately 16.0 A from the bilayer center. In bilayers of cholesterol/DOPC = 0.15 (mole ratio) or pure DOPC, the perturbation caused by MK-801 was more complex. The physical chemical interactions of MK-801 with membranes in vitro are consistent with a fast onset and short duration of action in vivo.  相似文献   

14.
Lipid transport between intracellular organelles is mediated by vesicular and nonvesicular transport mechanisms and is critical for maintaining the identities of different cellular membranes. Nonvesicular lipid transport between the endoplasmic reticulum (ER) and the Golgi complex has been proposed to affect the lipid composition of the Golgi membranes. Here, we show that the integral ER-membrane proteins VAP-A and VAP-B affect the structural and functional integrity of the Golgi complex. Depletion of VAPs by RNA interference reduces the levels of phosphatidylinositol-4-phosphate (PI4P), diacylglycerol, and sphingomyelin in the Golgi membranes, and it leads to substantial inhibition of Golgi-mediated transport events. These effects are coordinately mediated by the lipid-transfer/binding proteins Nir2, oxysterol-binding protein (OSBP), and ceramide-transfer protein (CERT), which interact with VAPs via their FFAT motif. The effect of VAPs on PI4P levels is mediated by the phosphatidylinositol/phosphatidylcholine transfer protein Nir2, which is required for Golgi targeting of OSBP and CERT and the subsequent production of diacylglycerol and sphingomyelin. We propose that Nir2, OSBP, and CERT function coordinately at the ER-Golgi membrane contact sites, thereby affecting the lipid composition of the Golgi membranes and consequently their structural and functional identities.  相似文献   

15.
The influence of cholesterol on the sphingomyelin (SM)/dioleoylphosphatidylcholine (DOPC) binary system was investigated in various respects. Electron spin resonance (ESR) measurements reveal that the order parameter of 5DS (5-doxyl stearic acid) in SM/DOPC bilayers increases notably when the concentration of cholesterol is over 30 mol%. Membrane potential measurements indicate that the K+ permeability of the SM/DOPC bilayer decreases steeply at 40 mol% cholesterol concentration. Both these experiments suggest that cholesterol reduces the motion amplitude of hydrocarbon chains abruptly above 30 mol%. In contrast to the ordering effects on the hydrocarbon chains, 31P-NMR results indicate that cholesterol slightly increases the motion of phosphate groups of the lipids. 31P-NMR also raises the possibility of domain formation in the presence of cholesterol. Fluorescence-quenching experiments verified that solid domains appear in the binary system when cholesterol is present, and percolation threshold occurs at 50 mol% cholesterol concentration. The solid domains bear the properties of liquid ordered phase, which is the basic structure of caveolae and functional rafts. So this work provides an artificial model for the study of rafts and caveolae on biological membranes. Received: 29 January 2001/Revised: 17 May 2001  相似文献   

16.
Oxysterol‐binding protein (OSBP) localizes to endoplasmic reticulum (ER)‐Golgi contact sites where it transports cholesterol and phosphatidylinositol 4‐phosphate (PI‐4P), and activates lipid transport and biosynthetic activities. The PI‐4P phosphatase Sac1 cycles between the ER and Golgi apparatus where it potentially regulates OSBP activity. Here we examined whether the ER‐Golgi distribution of endogenous or ectopically expressed Sac1 influences OSBP activity. OSBP and Sac1 co‐localized at apparent ER‐Golgi contact sites in response to 25‐hydroxycholesterol (25OH), cholesterol depletion and p38 MAPK inhibitors. A Sac1 mutant that is unable to exit the ER did not localize with OSBP, suggesting that sterol perturbations cause Sac1 transport to the Golgi apparatus. Ectopic expression of Sac1 in the ER or Golgi apparatus, or Sac1 silencing, did not affect OSBP localization to ER‐Golgi contact sites, OSBP‐dependent activation of sphingomyelin synthesis, or cholesterol esterification in the ER. p38 MAPK inhibition and retention of Sac1 in the Golgi apparatus also caused OSBP phosphorylation and OSBP‐dependent activation of sphingomyelin synthesis at ER‐Golgi contacts. These results demonstrate that Sac1 expression in either the ER or Golgi apparatus has a minimal impact on the PI‐4P that regulates OSBP activity or recruitment to contact sites.   相似文献   

17.
We report here on an in situ atomic force microscopy study of the interaction of indolicidin, a tryptophan-rich antimicrobial peptide, with phase-segregated zwitterionic DOPC/DSPC supported planar bilayers. By varying the peptide concentration and bilayer composition through the inclusion of anionic lipids (DOPG or DSPG), we found that indolicidin interacts with these model membranes in one of two concentration-dependent manners. At low peptide concentrations, indolicidin forms an amorphous layer on the fluid domains when these domains contain anionic lipids. At high peptide concentrations, indolicidin appears to initiate a lowering of the gel-phase domains independent of the presence of an anionic lipid. Similar studies performed using membrane-raft mimetic bilayers comprising 30mol% cholesterol/1:1 DOPC/egg sphingomyelin revealed that indolicidin does not form a carpet-like layer on the zwitterionic DOPC domains at low peptide concentrations and does not induce membrane lowering of the liquid-ordered sphingomyelin/cholesterol-rich domains at high peptide concentration. Simultaneous AFM-confocal microscopy imaging did however reveal that indolicidin preferentially inserts into the fluid-phase DOPC domains. These data suggest that the indolicidin-membrane association is influenced greatly by specific electrostatic interactions, lipid fluidity, and peptide concentration. These insights provide a glimpse into the mechanism of the membrane selectivity of antibacterial peptides and suggest a powerful correlated approach for characterizing peptide-membrane interactions.  相似文献   

18.
We studied the interaction of Aspirin (acetylsalicylic acid) with lipid membranes using x-ray diffraction for bilayers containing up to 50 mol% of aspirin. From 2D x-ray intensity maps that cover large areas of reciprocal space we determined the position of the ASA molecules in the phospholipid bilayers and the molecular arrangement of the molecules in the plane of the membranes. We present direct experimental evidence that ASA molecules participate in saturated lipid bilayers of DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) and preferably reside in the head group region of the membrane. Up to 50 mol% ASA molecules can be dissolved in this type of bilayer before the lateral membrane organization is disturbed and the membranes are found to form an ordered, 2D crystal-like structure. Furthermore, ASA and cholesterol were found to co-exist in saturated lipid bilayers, with the ASA molecules residing in the head group region and the cholesterol molecules participating in the hydrophobic membrane core.  相似文献   

19.
Oxysterol-binding protein (OSBP) and OSBP-related protein 4 (ORP4; also designated OSBP2 and HLM) are implicated in sterol-transport and/or sensing via binding to protein partners. The aggregation of vimentin by an N-terminal-truncated variant of ORP4 (ORP4S), but not full-length ORP4L, suggested a functional interaction with this intermediate filament. Herein, we identify ORP4 domains that interact with vimentin, and determine how sterols and OSBP influence this activity. In CHO cells, ORP4L co-localized with filamentous vimentin but extensive remodeling of vimentin filaments required mutation of a leucine repeat motif (amino acids 361-382) adjacent to the oxysterol-binding domain. Similarly, the absence of the leucine repeat in ORP4S 418-878 resulted in co-localization with aggregated vimentin filaments, suggesting that both the sterol-binding domain and leucine repeat are involved. Transient expression of OSBP leucine repeat mutants also promoted vimentin aggregation by a mechanism involving heterodimerization with ORP4L. Glutathione S-transferase (GST)-ORP4 380-878 bound vimentin, cholesterol and 25-hydroxycholesterol in vitro. However, sterol-binding or a mutation that ablated sterol-binding did not influence the interaction of GST-ORP4 with vimentin. Thus the sterol-binding domain of ORP4 binds vimentin, cholesterol and oxysterols, and interacts with the filamentous vimentin network.  相似文献   

20.
N-Acyl phosphatidylethanolamines are negatively charged phospholipids, which are naturally occurring albeit at low abundance. In this study, we have examined how the amide-linked acyl chain affected the membrane behavior of the N-acyl-1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylethanolamine (N-acyl-POPE) or N-acyl-dipalmitoyl-sn-glycero-3-phosphatidylethanolamine (N-acyl-DPPE), and how the molecules interacted with cholesterol. The gel-->liquid crystalline transition temperature of sonicated N-acyl phosphatidylethanolamine vesicles in water correlated positively with the number of palmitic acyl chains in the molecules. Based on diphenylhexatriene steady state anisotropy measurements, the presence of 33 mol% cholesterol in the membranes removed the phase transition from N-oleoyl-POPE bilayers, but failed to completely remove it from N-palmitoyl-DPPE and N-palmitoyl-POPE bilayers, suggesting rather weak interaction of cholesterol with the N-saturated NAPEs. The rate of cholesterol desorption from mixed monolayers containing N-palmitoyl-DPPE and cholesterol (1:1 molar ratio) was much higher compared to cholesterol/DPPE binary monolayers, suggesting a weak cholesterol interaction with N-palmitoyl-DPPE also in monolayers. In bilayer membranes, both N-palmitoyl-POPE and N-palmitoyl-DPPE failed to form sterol-rich domains, and in fact appeared to displace sterol from sterol/N-palmitoyl-sphingomyelin domains. The present data provide new information about the effects of saturated NAPEs on the lateral distribution of cholesterol in NAPE-containing membranes. These findings may be of relevance to neural cells which accumulate NAPEs during stress and cell injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号