首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Clostridium difficile is a major and growing problem as a hospital-associated infection that can cause severe, recurrent diarrhea. The mechanism by which the bacterium colonizes the gut during infection is poorly understood but undoubtedly involves protein components within the surface layer (S-layer), which play a role in adhesion. In C. difficile, the S-layer is composed of two principal components, the high and low molecular weight S-layer proteins, which are formed from the post-translational cleavage of a single precursor, SlpA. In the present study, we demonstrate that a recently characterized cysteine protease, Cwp84 plays a role in maturation of SlpA. Using a gene knock-out approach, we show that inactivation of the Cwp84 gene in C. difficile 630ΔErm results in a bacterial phenotype in which only immature, single chain SlpA comprises the S-layer. The Cwp84 knock-out mutants (CDΔCwp84) displayed significantly different colony morphology compared with the wild-type strain and grew more slowly in liquid medium. SlpA extracted from CDΔCwp84 was readily cleaved into its mature subunits by trypsin treatment. Addition of trypsin to the growth medium also cleaved SlpA on CDΔCwp84 and increased the growth rate of the bacterium in a dose-dependent manner. Using the hamster model for C. difficile infection, CDΔCwp84 was found to be competent at causing disease with a similar pathology to the wild-type strain. The data show that whereas Cwp84 plays a role in the cleavage of SlpA, it is not an essential virulence factor and that bacteria expressing immature SlpA are able to cause disease.  相似文献   

2.
3.
The reassembly of the S-layer protein SlpA of Lactobacillus brevis ATCC 8287 on positively charged liposomes was studied by small angle X-ray scattering (SAXS) and zeta potential measurements. SlpA was reassembled on unilamellar liposomes consisting of 1-palmitoyl-2-oleyl-sn-glycero-3-phosphocholine and 1,2-dioleoyl-3-trimethylammonium-propane, prepared by extrusion through membranes with pore sizes of 50 nm and 100 nm. Similarly extruded samples without SlpA were used as a reference. The SlpA-containing samples showed clear diffraction peaks in their SAXS intensities. The lattice constants were calculated from the diffraction pattern and compared to those determined for SlpA on native cell wall fragments. Lattice constants for SlpA reassembled on liposomes (a = 9.29 nm, b = 8.03 nm, and γ = 84.9°) showed a marked change in the lattice constants b and γ when compared to those determined for SlpA on native cell wall fragments (a = 9.41 nm, b = 6.48 nm, and γ = 77.0°). The latter are in good agreement with values previously determined by electron microscopy. This indicates that the structure formed by SlpA is stable on the bacterial cell wall, but SlpA reassembles into a different structure on cationic liposomes. From the (10) reflection, the lower limit of crystallite size of SlpA on liposomes was determined to be 92 nm, corresponding to approximately ten aligned lattice planes.  相似文献   

4.
The ancient bacterial lineage Thermus spp has a primitive form of outer membrane attached to the cell wall through SlpA, a protein that shows intermediate properties between S-layer proteins and outer membrane (OM) porins. In E. coli and related Proteobacteria, porins are secreted through the BAM (β-barrel assembly machinery) pathway, whose main component is BamA. A homologue to this protein is encoded in all the Thermus spp so far sequenced, so we wondered if this pathway could be responsible for SlpA secretion in this ancient bacterial model. To analyse this hypothesis, we attempted to get mutants on this BamAth of T. thermophilus HB27. Knockout and deletion mutants lacking the last 10 amino acids were not viable, whereas its depletion by means of a BamA antisense RNA lead defective attachment to the cell wall of its OM-like envelope. Such defects were related to defective folding of the SlpA protein that was more sensitive to proteases than in a wild-type strain. A similar phenotype was found in mutants lacking the terminal Phe of SlpA. Further protein–protein interaction assays confirmed the existence of specific binding between SlpA and BamAth. Taking together, these data suggest that SlpA is secreted through a BAM-like pathway in this ancestral bacterial lineage, supporting an ancient origin of this pathway before the evolution of the Proteobacteria.  相似文献   

5.
Lactobacillus brevis is a promising lactic acid bacterium for use as a probiotic dietary adjunct and a vaccine vector. The N-terminal region of the S-layer protein (SlpA) of L. brevis ATCC 8287 was recently shown to mediate adhesion to various human cell lines in vitro. In this study, a surface display cassette was constructed on the basis of this SlpA receptor-binding domain, a proteinase spacer, and an autolysin anchor. The cassette was expressed under control of the nisA promoter in Lactococcus lactis NZ9000. Western blot assay of lactococcal cell wall extracts with anti-SlpA antibodies confirmed that the SlpA adhesion domain of the fusion protein was expressed and located within the cell wall layer. Whole-cell enzyme-linked immunosorbent assay and immunofluorescence microscopy verified that the SlpA adhesion-mediating region was accessible on the lactococcal cell surface. In vitro adhesion assays with the human intestinal epithelial cell line Intestine 407 indicated that the recombinant lactococcal cells had gained an ability to adhere to Intestine 407 cells significantly greater than that of wild-type L. lactis NZ9000. Serum inhibition assay further confirmed that adhesion of recombinant lactococci to Intestine 407 cells was indeed mediated by the N terminus-encoding part of the slpA gene. The ability of the receptor-binding region of SlpA to adhere to fibronectin was also confirmed with this lactococcal surface display system. These results show that, with the aid of the receptor-binding region of the L. brevis SlpA protein, the ability to adhere to gut epithelial cells can indeed be transferred to another, nonadhesive, lactic acid bacterium.  相似文献   

6.
The radiation resistant bacterium, Deinococcus radiodurans contains two major surface (S)-layer proteins, Hpi and SlpA. The Hpi protein was shown to (a) undergo specific in vivo cleavage, and (b) closely associate with the SlpA protein. Using a non-specific acid phosphatase from Salmonella enterica serovar Typhi, PhoN as a reporter, the Surface Layer Homology (SLH) domain of SlpA was shown to bind deinococcal peptidoglycan-containing cell wall sacculi. The association of SlpA with Hpi on one side and peptidoglycan on the other, localizes this protein in the ‘interstitial’ layer of the deinoccocal cell wall. Gene chimeras of hpi-phoN and slh-phoN were constructed to test efficacy of S-layer proteins, as vehicles for cell surface localization in D. radiodurans. The Hpi-PhoN protein localized exclusively in the membrane fraction, and displayed cell-based phosphatase activity in vivo. The SLH-PhoN, which localized to both cytosolic and membrane fractions, displayed in vitro activity but no cell-based in vivo activity. Hpi, therefore, emerged as an efficient surface localizing protein and can be exploited for suitable applications of this superbug.  相似文献   

7.
Depletion of the SlpA protein from the bacterial surface greatly reduced the adhesion of Lactobacillus brevis ATCC 8287 to the human intestinal cell lines Caco-2 and Intestine 407, the endothelial cell line EA-hy926, and the urinary bladder cell line T24, as well as immobilized fibronectin. For functional analysis of the SlpA surface protein, different regions of the slpA gene were expressed as internal in-frame fusions in the variable region of the fliC(H7) gene of Escherichia coli. The resulting chimeric flagella carried inserts up to 275 amino acids long from the mature S-layer protein, which is 435 amino acids in size. The expression of the SlpA fragments on the chimeric flagella was assessed by immunoelectron microscopy and Western blotting using anti-SlpA antibodies, and their binding to human cells was assessed by indirect immunofluorescence. Chimeric flagella harboring inserts that represented the N-terminal part of the S-layer protein bound to the epithelial cell lines, whereas the C-terminal part of the S-layer protein did not confer binding on the flagella. The shortest S-layer peptide capable of detectable binding was 81 amino acid residues in size and represented residues 96 through 176 in the unprocessed S-layer protein. The bacteria and the chimeric flagella did not show detectable binding to erythrocytes, whereas the SlpA-expressing ATCC 8287 cells as well as the chimeric SlpA 96-245/FliC flagella bound to immobilized fibronectin. The N-terminal SlpA peptide 96-176 or 96-200 fused to FliC was not recognized in Western blotting or immunoelectron microscopy by a polyclonal serum raised against the S-layer protein; the antiserum, however, reacted in immunofluorescence with the ATCC 8287 cells. In contrast, an antiserum raised against the His-tagged peptide 96-245 of SlpA bound to the hybrid flagella with the N-terminal SlpA inserts but did not react with ATCC 8287 cells. The results identify the S-layer of L. brevis ATCC 8287 as an adhesin with affinity for human epithelial cells and fibronectin and locate the receptor-binding region within a fragment of 81 amino acids in the N-terminal part of the molecule, which in native S-layer seems inaccessible to antibodies.  相似文献   

8.
Clostridium difficile is the main cause of antibiotic-associated diarrhea, leading to significant morbidity and mortality and putting considerable economic pressure on healthcare systems. Current knowledge of the molecular basis of pathogenesis is limited primarily to the activities and regulation of two major toxins. In contrast, little is known of mechanisms used in colonization of the enteric system. C. difficile expresses a proteinaceous array on its cell surface known as the S-layer, consisting primarily of the major S-layer protein SlpA and a family of SlpA homologues, the cell wall protein (CWP) family. CwpV is the largest member of this family and is expressed in a phase variable manner. Here we show CwpV promotes C. difficile aggregation, mediated by the C-terminal repetitive domain. This domain varies markedly between strains; five distinct repeat types were identified and were shown to be antigenically distinct. Other aspects of CwpV are, however, conserved. All CwpV types are expressed in a phase variable manner. Using targeted gene knock-out, we show that a single site-specific recombinase RecV is required for CwpV phase variation. CwpV is post-translationally cleaved at a conserved site leading to formation of a complex of cleavage products. The highly conserved N-terminus anchors the CwpV complex to the cell surface. Therefore CwpV function, regulation and processing are highly conserved across C. difficile strains, whilst the functional domain exists in at least five antigenically distinct forms. This hints at a complex evolutionary history for CwpV.  相似文献   

9.
Two Bacillus stearothermophilus wild-type strains were investigated regarding a common recognition and binding mechanism between the S-layer protein and the underlying cell envelope layer. The S-layer protein from B. stearothermophilus PV72/p6 has a molecular weight of 130,000 and assembles into a hexagonally ordered lattice. The S-layer from B. stearothermophilus ATCC 12980 shows oblique lattice symmetry and is composed of subunits with a molecular weight of 122,000. Immunoblotting, peptide mapping, N-terminal sequencing of the whole S-layer protein from B. stearothermophilus ATCC 12980 and of proteolytic cleavage fragments, and comparison with the S-layer protein from B. stearothermophilus PV72/p6 revealed that the two S-layer proteins have identical N-terminal regions but no other extended structurally homologous domains. In contrast to the heterogeneity observed for the S-layer proteins, the secondary cell wall polymer isolated from peptidoglycan-containing sacculi of the different strains showed identical chemical compositions and comparable molecular weights. The S-layer proteins could bind and recrystallize into the appropriate lattice type on native peptidoglycan-containing sacculi from both organisms but not on those extracted with hydrofluoric acid, leading to peptidoglycan of the A1γ chemotype. Affinity studies showed that only proteolytic cleavage fragments possessing the complete N terminus of the mature S-layer proteins recognized native peptidoglycan-containing sacculi as binding sites or could associate with the isolated secondary cell wall polymer, while proteolytic cleavage fragments missing the N-terminal region remained unbound. From the results obtained in this study, it can be concluded that S-layer proteins from B. stearothermophilus wild-type strains possess an identical N-terminal region which is responsible for anchoring the S-layer subunits to a secondary cell wall polymer of identical chemical composition.  相似文献   

10.
There is experimental evidence to suggest that the 100-kDa S-layer protein from Thermus thermophilus HB8 binds to the peptidoglycan cell wall. This property could be related to the presence of a region (SLH) of homology with other S-layer proteins and extracellular enzymes (A. Lupas, H. Engelhardt, J. Peters, U. Santarius, S. Volker, and W. Baumeister, J. Bacteriol. 176:1224-1233, 1994). By using specific monoclonal antibodies, we show that similar regions are present in different members of the Deinococcus-Thermus phylogenetic group. To analyze the role that the SLH domain plays in vivo and in vitro in T. thermophilus, we have obtained a mutant form (slpA.X) of the S-layer gene (slpA) in which the SLH domain was deleted. The slpA.X gene was inserted into the chromosome of the thermophile by gene replacement, resulting in a mutant which expressed a major membrane protein with the size expected from the construction (90 kDa). This protein was identified as the product of slpA.X by its differential reaction with monoclonal antibodies. Mutants expressing the SlpA.X protein grow as groups of cells, surrounded by a common external envelope of trigonal symmetry that contains the SlpA.X protein as a main component, thus showing the inability of the SLH-defective protein to attach to the underlying material in vivo. In addition, averaged images of SlpA.X-rich fractions showed a regular arrangement, identical to that built up by the wild-type (SlpA) protein in the absence of peptidoglycan. Finally, we demonstrate by Western blotting (immunoblotting) the direct role of the SLH domain in the binding of the S-layer of T. thermophilus HB8 to the peptidoglycan layer.  相似文献   

11.
Bacterial surface layer (S-layer) proteins are excellent candidates for in vivo and in vitro nanobiotechnological applications because of their ability to self-assemble into two-dimensional lattices that form the outermost layer of many Eubacteria and most Archaea species. Despite this potential, knowledge about their molecular architecture is limited. In this study, we investigated SlpA, the S-layer protein of the potentially probiotic bacterium Lactobacillus brevis ATCC 8287 by cysteine-scanning mutagenesis and chemical modification. We generated a series of 46 mutant proteins by replacing single amino acids with cysteine, which is not present in the wild-type protein. Most of the replaced amino acids were located in the self-assembly domain (residues 179 to 435) that likely faces the outer surface of the lattice. As revealed by electron microscopy, all the mutant proteins were able to form self-assembly products identical to that of the wild type, proving that this replacement does not dramatically alter the protein conformation. The surface accessibility of the sulfhydryl groups introduced was studied with two maleimide-containing marker molecules, TMM(PEG)12 (molecular weight [MW], 2,360) and AlexaFluor488-maleimide (MW = 720), using both monomeric proteins in solution and proteins allowed to self-assemble on cell wall fragments. Using the acquired data and available domain information, we assigned the mutated residues into four groups according to their location in the protein monomer and lattice structure: outer surface of the lattice (9 residues), inner surface of the lattice (9), protein interior (12), and protein-protein interface/pore regions (16). This information is essential, e.g., in the development of therapeutic and other health-related applications of Lactobacillus S-layers.Bacterial surface layers (S-layers) are cell envelope structures ubiquitously found in gram-positive and gram-negative bacteria as well as in Archaea. S-layers are composed of identical (glyco)protein subunits with a molecular mass in the range of 40 to 200 kDa. The proteins self-assemble into two-dimensional crystalline structures with oblique (p1, p2), square (p4), or hexagonal (p3, p6) symmetry, covering the entire cell surface. The subunits are held together and attached to the underlying cell wall by noncovalent interactions and they have an intrinsic ability to spontaneously form regular layers in solution and on solid supports (24). S-layers have been shown to have roles in the determination and maintenance of cell shape as virulence factors, as mediators of cell adhesion, and as regulators of immature dendritic and T cells. Moreover, they can also function as a protective coat, molecular sieve, murein hydrolase, and ion trap (4, 8, 13, 17, 19, 25, 29).S-layer proteins have several properties that make them an attractive target for the development of nanobiotechnological applications both in vivo and in vitro. In particular, a high number of protein subunits are displayed at the bacterial cell surface. Moreover, the protein subunits are able to spontaneously self-assemble into a regularly arranged lattice structure both in solution and on solid supports (1, 27, 30, 31). However, despite the high prevalence of S-layers in nature, their molecular structure remains poorly elucidated. In particular, knowledge about the spatial organization of amino acid residues in S-layer proteins or the interactions between these residues and other subunits is limited. The poor solubility of protein assemblies and the absence of stoichiometrically defined oligomers have hindered attempts to apply nuclear magnetic resonance or hydrogen/deuterium exchange mass spectroscopy. In addition, the intrinsic property of S-layer proteins to form two-dimensional lattices has hampered efforts to obtain three-dimensional crystals required for X-ray crystallography (12, 31). To our knowledge, only part of the structure of one S-layer protein, SbsC of Geobacillus stearothermophilus, has been determined by X-ray crystallography (18). Since high-resolution, three-dimensional structural data are mostly lacking, traditional mutation-based techniques are presently the methods of choice. In cysteine-scanning mutagenesis (CSM), a series of mutant proteins is generated by replacing single residues with cysteine, which contains a sulfhydryl group amenable to further chemical modification. The spatial locations of amino acid residues within the S-layer protein SbsB of gram-positive thermophile G. stearothermophilus PV72/p2 have been analyzed by CSM. A total of 75 residues out of 920 were studied, identifying 23 residues located at the surface of protein monomers, five of those located on the outer surface of the protein lattice (10). These mutant proteins were subsequently analyzed by a cross-linking screen to assess residues accessible in monomeric form to the protein/protein interface and the inner surface of the lattice (12).In the genus Lactobacillus, S-layers have been found in several species. S-layer protein genes have been sequenced from L. brevis, L. helveticus, and L. acidophilus group organisms. Sequence similarity between Lactobacillus S-layer protein genes can be found only between closely related Lactobacillus species. Therefore, the primary sequences of Lactobacillus S-layer proteins show extensive variability, with the number of identical amino acids varying from 7 to 100% between different proteins. As a group, Lactobacillus S-layer proteins differ from those of most other bacteria in their smaller sizes (25 to 71 kDa) and higher calculated isoelectric point (pI) values (9.4 to 10.4) (1). The presence of two or more S-layer protein genes in the same strain is common in lactobacilli (5, 6, 11, 28, 35); however, only one S-layer protein gene, slpA, has so far been described to be present in the genome of L. brevis ATCC 8287. SlpA is a 435-amino-acid, 46-kDa S-layer protein that assembles into a lattice of oblique symmetry on the bacterial surface (2, 36). L. brevis ATCC 8287 has GRAS (generally recognized as safe) status and has been shown to possess probiotic properties (21), which make SlpA a very attractive subject, e.g., in the development of live oral vaccines. Moreover, a recent report using differential scanning calorimetry suggests that in comparison with other S-layer proteins, SlpA is resistant to high temperatures (21). This thermal stability could prove potentially useful in a variety of in vitro S-layer applications currently being planned or under development (27, 30, 31). Recently, SlpA was characterized to consist of an N-terminal cell wall binding domain (residues 1 to 178) and a C-terminal self-assembly domain (179 to 435) (3). For the development of applications that take advantage of these characteristics, further investigation of SlpA at the molecular level is essential.Herein, we use CSM and targeted chemical modification to assign 46 amino acid residues of SlpA to spatial locations in the protein monomer and in the lattice according to their surface accessibility. We focused mainly on the self-assembly domain, the region facing the outer surface of the protein lattice and thus most amenable to insertions and chemical modification. Two different marker molecules were used to modify cysteine-containing mutant proteins that were either in solution or attached to the cell wall. The results were subsequently evaluated taking advantage of the recent new information on SlpA domain boundaries (3). We were able to distinguish residues located in the outer and inner surfaces of the lattice, protein interior, and interface/pore regions. The information gathered here can be used in the development of further biotechnological and nanobiological applications, both in vitro and in vivo, that benefit from a thermostable S-layer protein from a GRAS bacterium with health-beneficial properties.  相似文献   

12.
Lactobacillus brevis is a promising lactic acid bacterium for use as a probiotic dietary adjunct and a vaccine vector. The N-terminal region of the S-layer protein (SlpA) of L. brevis ATCC 8287 was recently shown to mediate adhesion to various human cell lines in vitro. In this study, a surface display cassette was constructed on the basis of this SlpA receptor-binding domain, a proteinase spacer, and an autolysin anchor. The cassette was expressed under control of the nisA promoter in Lactococcus lactis NZ9000. Western blot assay of lactococcal cell wall extracts with anti-SlpA antibodies confirmed that the SlpA adhesion domain of the fusion protein was expressed and located within the cell wall layer. Whole-cell enzyme-linked immunosorbent assay and immunofluorescence microscopy verified that the SlpA adhesion-mediating region was accessible on the lactococcal cell surface. In vitro adhesion assays with the human intestinal epithelial cell line Intestine 407 indicated that the recombinant lactococcal cells had gained an ability to adhere to Intestine 407 cells significantly greater than that of wild-type L. lactis NZ9000. Serum inhibition assay further confirmed that adhesion of recombinant lactococci to Intestine 407 cells was indeed mediated by the N terminus-encoding part of the slpA gene. The ability of the receptor-binding region of SlpA to adhere to fibronectin was also confirmed with this lactococcal surface display system. These results show that, with the aid of the receptor-binding region of the L. brevis SlpA protein, the ability to adhere to gut epithelial cells can indeed be transferred to another, nonadhesive, lactic acid bacterium.  相似文献   

13.
S-layer proteins of lactobacilli may be utilized for developing a surface display system in these bacteria. In this study, S-layer proteins of Lactobacillus brevis ATCC 367 were identified for the first time. Using the peptide fingerprint method, it was shown that the main protein of the S-layer of this strain, SlpE, having a mass of 52 kDa is the product of translation of the consecutive open reading frames LVIS_2086 and LVIS_2085. Repeated sequencing of a genome region of L. brevis ATCC 367, containing LVIS_2086 and LVIS_2085 loci, has showed that the LVIS_2086 sequence contains the TGG tryptophan codon instead of the TAG stop codon. Thus, LVIS_2085 and LVIS_2086 form a single slpE gene, the nucleotide sequence we deposited in the Genbank database under No. KY273133. The translation product of the slpE gene consists of 465 amino acids and has a calculated mass of 51.6 kDa, which corresponds to the experimentally obtained value. An S-layer protein with a mass of 56 kDa, identified as a form of the SlpE, is probably formed during the posttranslational modification. The concomitant 48 kDa S-protein was proven to be product of the LVIS- 2083 gene. The N-terminal domains of LVIS_2083 and SlpE have 70.7 and 96.5%, respectively, identity to the anchoring N-terminal domain of SlpA from L. brevis ATCC 8287, which is responsible for attachment to the cell wall. In this work, fusion proteins consisting of N-terminal domains of Lvis_2083 and SlpA proteins and the eGFP marker protein were obtained. The ability of fusion proteins SlpA_eGFP and Lvis_2083_eGFP, as well as the recombinant Lvis_2083 protein, to be specifically sorbed on the cell wall of L. brevis ATCC 8287, ATCC 367, and L. acidophilus ATCC 4356 strains has been demonstrated. It was shown that in the chimeric Lvis_2083_eGFP construction the N-terminal domain Lvis_2083 is responsible for an attachment to the cell wall and provides display of the functionally active eGFP protein on its surface. Thus, the N-terminal domain Lvis_2083 can be used as a basis of the protein display system on the cell surface of L. brevis strains in vitro.  相似文献   

14.
Clostridium difficile infection is a leading cause of antibiotic-associated diarrhea, placing considerable economic pressure on healthcare systems and resulting in significant morbidity and mortality. The pathogen produces a proteinaceous array on its cell surface known as the S-layer, consisting primarily of the major S-layer protein SlpA and a family of SlpA homologs. CwpV is the largest member of this family and is expressed in a phase-variable manner. The protein is post-translationally processed into two fragments that form a noncovalent, heterodimeric complex. To date, no specific proteases capable of cleaving CwpV have been identified. Using site-directed mutagenesis we show that CwpV undergoes intramolecular autoproteolysis, most likely facilitated by a N-O acyl shift, with Thr-413 acting as the source of a nucleophile driving this rearrangement. We demonstrate that neighboring residues are also important for correct processing of CwpV. Based on protein structural predictions and analogy to the glycosylasparaginase family of proteins, it appears likely that these residues play key roles in determining the correct protein fold and interact directly with Thr-413 to promote nucleophilic attack. Furthermore, using a cell-free protein synthesis assay we show that CwpV maturation requires neither cofactors nor auxiliary enzymes.  相似文献   

15.
Clostridium difficile expresses a number of cell wall proteins, including the abundant high-molecular-weight and low-molecular-weight S-layer proteins (SLPs). These proteins are generated by posttranslational cleavage of the precursor SlpA by the cysteine protease Cwp84. We compared the phenotypes of C. difficile strains containing insertional mutations in either cwp84 or its paralog cwp13 and complemented with plasmids expressing wild-type or mutant forms of their genes. We show that the presence of uncleaved SlpA in the cell wall of the cwp84 mutant results in aberrant retention of other cell wall proteins at the cell surface, as demonstrated by secretion of the proteins Cwp66 and Cwp2 into the growth medium. These phenotypes are restored by complementation with a plasmid expressing wild-type Cwp84 enzyme but not with one encoding a Cys116Ala substitution in the active site. The cwp13 mutant cleaved the SlpA precursor normally and had a wild-type-like colony phenotype. Both Cwp84 and Cwp13 are produced as proenzymes which are processed by cleavage to produce mature enzymes. In the case of Cwp84, this cleavage does not appear to be autocatalytic, whereas in Cwp13 autocatalysis was demonstrated as a Cys109Ala mutant did not undergo processing. Cwp13 appears to have a role in processing of Cwp84 but is not essential for Cwp84 activity. Cwp13 cleaves SlpA in the HMW SLP domain, which we suggest may reflect a role in cleavage and degradation of misfolded proteins at the cell surface.  相似文献   

16.
17.
Thermoanaerobacterium thermosulfurigenes EM1 has a gram-positive type cell wall completely covered by a surface layer (S-layer) with hexagonal lattice symmetry. The components of the cell envelope were isolated, and the S-layer protein was purified and characterized. S-layer monomers assembled in vitro into sheets with the same hexagonal symmetry as in vivo. Monosaccharide analysis revealed that the S-layer is associated with fucose, rhamnose, mannosamine, glucosamine, galactose, and glucose. The N-terminal 31 amino acid residues of the S-layer protein showed significant similarity to SLH (S-layer homology) domains found in S-layer proteins of different bacteria and in the exocellular enzymes pullulanase, polygalacturonate hydrolase, and xylanase of T. thermosulfurigenes EM1. The xylanase from T. thermosulfurigenes EM1 was copurified with the S-layer protein during isolation of cell wall components. Since SLH domains of some structural proteins have been shown to anchor these proteins noncovalently to the cell envelope, we propose a common anchoring mechanism for the S-layer protein and exocellular enzymes via their SLH domains in the peptidoglycan-containing layer of T. thermosulfurigenes EM1. Received: 23 October 1998 / Accepted: 21 December 1998  相似文献   

18.
The nucleotide sequence encoding the crystalline bacterial cell surface (S-layer) protein SbpA of Bacillus sphaericus CCM 2177 was determined by a PCR-based technique using four overlapping fragments. The entire sbpA sequence indicated one open reading frame of 3,804 bp encoding a protein of 1,268 amino acids with a theoretical molecular mass of 132,062 Da and a calculated isoelectric point of 4.69. The N-terminal part of SbpA, which is involved in anchoring the S-layer subunits via a distinct type of secondary cell wall polymer to the rigid cell wall layer, comprises three S-layer-homologous motifs. For screening of amino acid positions located on the outer surface of the square S-layer lattice, the sequence encoding Strep-tag I, showing affinity to streptavidin, was linked to the 5′ end of the sequence encoding the recombinant S-layer protein (rSbpA) or a C-terminally truncated form (rSbpA31-1068). The deletion of 200 C-terminal amino acids did not interfere with the self-assembly properties of the S-layer protein but significantly increased the accessibility of Strep-tag I. Thus, the sequence encoding the major birch pollen allergen (Bet v1) was fused via a short linker to the sequence encoding the C-terminally truncated form rSpbA31-1068. Labeling of the square S-layer lattice formed by recrystallization of rSbpA31-1068/Bet v1 on peptidoglycan-containing sacculi with a Bet v1-specific monoclonal mouse antibody demonstrated the functionality of the fused protein sequence and its location on the outer surface of the S-layer lattice. The specific interactions between the N-terminal part of SbpA and the secondary cell wall polymer will be exploited for an oriented binding of the S-layer fusion protein on solid supports to generate regularly structured functional protein lattices.  相似文献   

19.
Surface layer proteins of probiotic lactobacilli are theoretically efficient epitope-displaying scaffolds for oral vaccine delivery due to their high expression levels and surface localization. In this study, we constructed genetically modified Lactobacillus acidophilus strains expressing the membrane proximal external region (MPER) from human immunodeficiency virus type 1 (HIV-1) within the context of the major S-layer protein, SlpA. Intragastric immunization of mice with the recombinants induced MPER-specific and S-layer protein-specific antibodies in serum and mucosal secretions. Moreover, analysis of systemic SlpA-specific cytokines revealed that the responses appeared to be Th1 and Th17 dominant. These findings demonstrated the potential use of the Lactobacillus S-layer protein for development of oral vaccines targeting specific peptides.  相似文献   

20.
The cbsA gene of Lactobacillus crispatus strain JCM 5810, encoding a protein that mediates adhesiveness to collagens, was characterized and expressed in Escherichia coli. The cbsA open reading frame encoded a signal sequence of 30 amino acids and a mature polypeptide of 410 amino acids with typical features of a bacterial S-layer protein. The cbsA gene product was expressed as a His tag fusion protein, purified by affinity chromatography, and shown to bind solubilized as well as immobilized type I and IV collagens. Three other Lactobacillus S-layer proteins, SlpA, CbsB, and SlpnB, bound collagens only weakly, and sequence comparisons of CbsA with these S-layer proteins were used to select sites in cbsA where deletions and mutations were introduced. In addition, hybrid S-layer proteins that contained the N or the C terminus from CbsA, SlpA, or SlpnB as well as N- and C-terminally truncated peptides from CbsA were constructed by gene fusion. Analysis of these molecules revealed the major collagen-binding region within the N-terminal 287 residues and a weaker type I collagen-binding region in the C terminus of the CbsA molecule. The mutated or hybrid CbsA molecules and peptides that failed to polymerize into a periodic S-layer did not bind collagens, suggesting that the crystal structure with a regular array is optimal for expression of collagen binding by CbsA. Strain JCM 5810 was found to contain another S-layer gene termed cbsB that was 44% identical in sequence to cbsA. RNA analysis showed that cbsA, but not cbsB, was transcribed under laboratory conditions. S-layer-protein-expressing cells of strain JCM 5810 adhered to collagen-containing regions in the chicken colon, suggesting that CbsA-mediated collagen binding represents a true tissue adherence property of L. crispatus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号