首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pH (low) insertion peptide (pHLIP) has exceptional characteristics: at neutral pH it is an unstructured monomer in solution or when bound to lipid bilayer surfaces, and it inserts across a lipid bilayer as a monomeric alpha-helix at acidic pH. The peptide targets acidic tissues in vivo and may be useful in cancer biology for delivery of imaging or therapeutic molecules to acidic tumors. To find ways to vary its useful properties, we have designed and analyzed pHLIP sequence variants. We find that each of the Asp residues in the transmembrane segment is critical for solubility and pH-dependent membrane insertion of the peptide. Changing both of the Asp residues in the transmembrane segment to Glu, inserting an additional Asp into the transmembrane segment, or replacing either of the Asp residues with Ala leads to aggregation and/or loss of pH-dependent membrane insertion of the peptide. However, variants with either of the Asp residues changed to Glu remained soluble in an aqueous environment and inserted into the membrane at acidic pH with a higher pKapp of membrane insertion.  相似文献   

2.
The pH low insertion peptide (pHLIP) is a pH-sensitive cell penetrating peptide that transforms from an unstructured coil on the membrane surface at pH > 7, to a transmembrane (TM) α-helix at pH < 5. By exploiting this unique property, pHLIP attracts interest as a potential tool for drug delivery and visualisation of acidic tissues produced by various maladies such as cancer, inflammation, hypoxia etc. Even though the structures of initial and end states of pHLIP insertion have been widely accepted, the intermediate structures in between these two states are less clear. Here, we have applied in situ Surface-Enhanced Infrared Absorption spectroscopy to examine the pH-induced insertion and folding processes of pHLIP into a solid-supported lipid bilayer. We show that formation of partially helical structure already takes place at pH only slightly below 7.0, but with the helical axis parallel to the membrane surface. The peptide starts to reorientate its helix from horizontal to vertical direction, accompanied by the insertion into the TM region at pH < 6.2. Further insertion into the TM region of the peptide results in an increase of inherent α-helical structure and complete secondary structure formation at pH 5.3. Analysis of the changes of the carboxylate vibrational bands upon pH titration shows two distinctive groups of aspartates and glutamates with pKa values of 4.5 and 6.3, respectively. Comparison to the amide bands of the peptide backbone suggests that the latter Asp/Glu groups are directly involved in the conformational changes of pHLIP in the respective intermediate states.  相似文献   

3.
The membrane-associated folding/unfolding of pH (low) insertion peptide (pHLIP) provides an opportunity to study how sequence variations influence the kinetics and pathway of peptide insertion into bilayers. Here, we present the results of steady-state and kinetics investigations of several pHLIP variants with different numbers of charged residues, with attached polar cargoes at the peptide's membrane-inserting end, and with three single-Trp variants placed at the beginning, middle, and end of the transmembrane helix. Each pHLIP variant exhibits a pH-dependent interaction with a lipid bilayer. Although the number of protonatable residues at the inserting end does not affect the ultimate formation of helical structure across a membrane, it correlates with the time for peptide insertion, the number of intermediate states on the folding pathway, and the rates of unfolding and exit. The presence of polar cargoes at the peptide's inserting end leads to the appearance of intermediate states on the insertion pathway. Cargo polarity correlates with a decrease of the insertion rate. We conclude that the existence of intermediate states on the folding and unfolding pathways is not mandatory and, in the simple case of a polypeptide with a noncharged and nonpolar inserting end, the folding and unfolding appears as an all-or-none transition. We propose a model for membrane-associated insertion/folding and exit/unfolding and discuss the importance of these observations for the design of new delivery agents for direct translocation of polar therapeutic and diagnostic cargo molecules across cellular membranes.  相似文献   

4.
Tang J  Gai F 《Biochemistry》2008,47(32):8250-8252
When it is bound to lipid bilayers, the conformation and location of the membrane pH (low) insertion peptide (pHLIP) depend on pH. This unique feature allows us to explicitly measure the kinetics leading to different membrane-bound states of pHLIP using a model membrane and stopped-flow technique. Our results show that the membrane association kinetics of pHLIP are multiexponential and are consistent with a parallel membrane interaction mechanism. Interestingly, our results also show that the overall rate at which the membrane-inserted state is formed is almost identical to that of formation of the surface-bound state, while prebinding slows the rate of peptide insertion.  相似文献   

5.
Structure and stability of the P93G variant of ribonuclease A.   总被引:3,自引:3,他引:0       下载免费PDF全文
The peptide bonds preceding Pro 93 and Pro 114 of bovine pancreatic ribonuclease A (RNase A) are in the cis conformation. The trans-to-cis isomerization of these bonds had been indicted as the slow step during protein folding. Here, site-directed mutagenesis was used to replace Pro 93 or Pro 114 with a glycine residue, and the crystalline structure of the P93G variant was determined by X-ray diffraction analysis to a resolution of 1.7 A. This structure is essentially identical to that of the wild-type protein, except for the 91-94 beta-turn containing the substitution. In the wild-type protein, the beta-turn is of type VIa. In the P93G variant, this turn is of type II with the peptide bond preceding Gly 93 being trans. The thermal stabilities of the P93G and P114G variants were assessed by differential scanning calorimetry and thermal denaturation experiments monitored by ultraviolet spectroscopy. The value of delta deltaGm which reports on the stability lost in the variants, is 1.5-fold greater for the P114G variant than for the P93G variant. The greater stability of the P93G variant is likely due to the relatively facile accommodation of residues 91-94 in a type II turn, which has a preference for a glycine residue in its i + 2 position.  相似文献   

6.
Neutron diffraction from oriented multibilayers has been used to study the bilayer interaction of the amphipathic peptide salmon calcitonin. Penetration of calcitonin into bilayers composed of dioleoylphosphatidylcholine increases with the addition of 15% (mol) of the anionic phospholipid dioleoylphosphatidylglycerol. Neutron scattering profiles of water distribution in stacked bilayers show a continuous band of deuterons across each bilayer, consistent with the suggestion that the hormone forms transbilayer alpha-helixes under these conditions. These experiments add to the growing body of data on the role of phosphatidylglycerol in bilayer insertion of protein helices and suggests a possible evolutionary history for calcitonin.  相似文献   

7.
Antimicrobial peptides (AMPs) are an important component of innate immunity and have generated considerable interest as a potential new class of antibiotic. The biological activity of AMPs is strongly influenced by peptide-membrane interactions; however, for many of these peptides the molecular details of how they disrupt and/or translocate across target membranes are not known. CM15 is a linear, synthetic hybrid AMP composed of the first seven residues of the cecropin A and residues 2-9 of the bee venom peptide mellitin. Previous studies have shown that upon membrane binding CM15 folds into an alpha-helix with its helical axis aligned parallel to the bilayer surface and have implicated the formation of 2.2-3.8 nm pores in its bactericidal activity. Here we report site-directed spin labeling electron paramagnetic resonance studies examining the behavior of CM15 analogs labeled with a methanethiosulfonate spin label (MTSL) and a brominated MTSL as a function of increasing peptide concentration and utilize phospholipid-analog spin labels to assess the effects of CM15 binding and accumulation on the physical properties of membrane lipids. We find that as the concentration of membrane-bound CM15 is increased the N-terminal domain of the peptide becomes more deeply immersed in the lipid bilayer. Only minimal changes are observed in the rotational dynamics of membrane lipids, and changes in lipid dynamics are confined primarily to near the membrane surface. However, the accumulation of membrane-bound CM15 dramatically increases accessibility of lipid-analog spin labels to the polar relaxation agent, nickel (II) ethylenediaminediacetate, suggesting an increased permeability of the membrane to polar solutes. These results are discussed in relation to the molecular mechanism of membrane disruption by CM15.  相似文献   

8.
Free energy profiles for insertion of a hydrophobic transmembrane protein α-helix (M2 from CFTR) into a lipid bilayer have been calculated using coarse-grained molecular dynamics simulations and umbrella sampling to yield potentials of mean force along a reaction path corresponding to translation of a helix across a lipid bilayer. The calculated free energy of insertion is smaller when a bilayer with a thinner hydrophobic region is used. The free energies of insertion from the potentials of mean force are compared with those derived from a number of hydrophobicity scales and with those derived from translocon-mediated insertion. This comparison supports recent models of translocon-mediated insertion and in particular suggests that: 1), helices in an about-to-be-inserted state may be located in a hydrophobic region somewhat thinner than the core of a lipid bilayer; and/or 2), helices in a not-to-be-inserted state may experience an environment more akin (e.g., in polarity/hydrophobicity) to the bilayer/water interface than to bulk water.  相似文献   

9.
Replacement of a cis-proline by glycine at position 114 in ribonuclease A leads to a large decrease in thermal stability and simplifies the refolding kinetics. A crystallographic approach was used to determine whether the decrease in thermal stability results from the presence of a cis glycine peptide bond, or from a localized structural rearrangement caused by the isomerization of the mutated cis 114 peptide bond. The structure was solved at 2.0 A resolution and refined to an R-factor of 19.5% and an R(free) of 21.9%. The overall conformation of the protein was similar to that of wild-type ribonuclease A; however, there was a large localized rearrangement of the mutated loop (residues 110-117-a 9.3 A shift of the Calpha atom of residue 114). The peptide bond before Gly114 is in the trans configuration. Interestingly, a large anomalous difference density was found near residue 114, and was attributed to a bound cesium ion present in the crystallization experiment. The trans isomeric configuration of the peptide bond in the folded state of this mutant is consistent with the refolding kinetics previously reported, and the associated protein conformational change provides an explanation for the decreased thermal stability.  相似文献   

10.
11.
Nymeyer H  Woolf TB  Garcia AE 《Proteins》2005,59(4):783-790
We implement the replica exchange molecular dynamics algorithm to study the interactions of a model peptide (WALP-16) with an explicitly represented DPPC membrane bilayer. We observe the spontaneous, unbiased insertion of WALP-16 into the DPPC bilayer and its folding into an alpha-helix with a transbilayer orientation. The free energy surface suggests that the insertion of the peptide into the DPPC bilayer precedes secondary structure formation. Although the peptide has some propensity to form a partially helical structure in the interfacial region of the DPPC/water system, this state is not a productive intermediate but rather an off-pathway trap for WALP-16 insertion. Equilibrium simulations show that the observed insertion/folding pathway mirrors the potential of mean force (PMF). Calculation of the enthalpic and entropic contributions to this PMF show that the surface bound conformation of WALP-16 is significantly lower in energy than other conformations, and that the insertion of WALP-16 into the bilayer without regular secondary structure is enthalpically unfavorable by 5-10 kcal/mol/residue. The observed insertion/folding pathway disagrees with the dominant conceptual model, which is that a surface-bound helix is an obligatory intermediate for the insertion of alpha-helical peptides into lipid bilayers. In our simulations, the observed insertion/folding pathway is favored because of a large (>100 kcal/mol) increase in system entropy that occurs when the unstructured WALP-16 peptide enters the lipid bilayer interior. The insertion/folding pathway that is lowest in free energy depends sensitively on the near cancellation of large enthalpic and entropic terms. This suggests the possibility that intrinsic membrane peptides may have a diversity of insertion/folding behaviors depending on the exact system of peptide and lipid under consideration.  相似文献   

12.
13.
14.
Bond PJ  Wee CL  Sansom MS 《Biochemistry》2008,47(43):11321-11331
Experimental and computational studies have indicated that hydrophobicity plays a key role in driving the insertion of transmembrane alpha-helices into lipid bilayers. Molecular dynamics simulations allow exploration of the nature of the interactions of transmembrane alpha-helices with their lipid bilayer environment. In particular, coarse-grained simulations have considerable potential for studying many aspects of membrane proteins, ranging from their self-assembly to the relation between their structure and function. However, there is a need to evaluate the accuracy of coarse-grained estimates of the energetics of transmembrane helix insertion. Here, three levels of complexity of model system have been explored to enable such an evaluation. First, calculated free energies of partitioning of amino acid side chains between water and alkane yielded an excellent correlation with experiment. Second, free energy profiles for transfer of amino acid side chains along the normal to a phosphatidylcholine bilayer were in good agreement with experimental and atomistic simulation studies. Third, estimation of the free energy profile for transfer of an arginine residue, embedded within a hydrophobic alpha-helix, to the center of a lipid bilayer gave a barrier of approximately 15 kT. Hence, there is a substantial barrier to membrane insertion for charged amino acids, but the coarse-grained model still underestimates the corresponding free energy estimate (approximately 29 kT) from atomistic simulations (Dorairaj, S., and Allen, T. W. (2007) Proc. Natl. Acad. Sci. U.S.A. 104, 4943-4948). Coarse-grained simulations were then used to predict the free energy profile for transfer of a simple model transmembrane alpha-helix (WALP23) across a lipid bilayer. The results indicated that a transmembrane orientation was favored by about -70 kT.  相似文献   

15.
Accurate determination of the free energy of transfer of a helical segment from an aqueous into a transmembrane (TM) conformation is essential for understanding and predicting the folding and stability of membrane proteins. Until recently, direct thermodynamically sound measurements of free energy of insertion of hydrophobic TM peptides were impossible due to peptide aggregation outside the lipid bilayer. Here, we overcome this problem by using fluorinated surfactants that are capable of preventing aggregation but, unlike detergents, do not themselves interact with the bilayer. We have applied the fluorescence correlation spectroscopy methodology to study surfactant-chaperoned insertion into preformed POPC (palmitoyloleoylphosphatidylcholine) vesicles of the two well-studied dye-labeled TM peptides of different lengths: WALP23 and WALP27. Extrapolation of the apparent free-energy values measured in the presence of surfactants to a zero surfactant concentration yielded free-energy values of -9.0±0.1 and -10.0±0.1 kcal/mol for insertion of WALP23 and WALP27, respectively. Circular dichroism measurements confirmed helical structure of peptides in lipid bilayer, in the presence of surfactants, and in aqueous mixtures of organic solvents. From a combination of thermodynamic and conformational measurements, we conclude that the partitioning of a four-residue L-A-L-A segment in the context of a continuous helical conformation from an aqueous environment into the hydrocarbon core of the membrane has a favorable free energy of 1 kcal/mol. Our measurements, combined with the predictions of two independent experimental hydrophobicity scales, indicate that the per-residue cost of transfer of the helical backbone from water to the hydrocarbon core of the lipid bilayer is unfavorable and is equal to +2.13±0.17 kcal/mol.  相似文献   

16.
Summary The purified (H+ATPase from corn roots plasma membrane inserted spontaneously into preformed bilayer from soybean lipids. The yield of the protein insertion, as measured from its H+-pumping activity, increased as a function of lipids and protein concentrations. In optimum conditions, all the (H+)ATPase molecules were closely associated with liposomes, exhibiting a high H+-pumping activity (150,000% quenching· min–1·mg–1 protein of the probe 9-amino-6-chloro-2-methoxyacridine). The insertion was achieved within a few seconds. No latency of the (H+)ATPase hydrolytic activity was revealed when lysophosphatidylcholine was added to permeabilize the vesicles. This indicated that the (H+)ATPase molecules inserted unidirectionally, the catalytic sites being exposed outside the vesicles (inside-out orientation), and thus freely accessible to Mg-ATP. The nondelipidated (H+)ATPase could also functionally insert into bilayer from PCPEPG or PCPEPI, due to the presence of both hydrophobic defects promoted by PE, and negative phospholipids specifically required by the (H+)ATPase from corn roots. The detergent octylglucoside facilitated the delipidated (H+)ATPase reinsertion probably by promoting both a proper protein conformation and hydrophobic defects in the bilayer. Lysophosphatidylcholine facilitated the delipidated protein insertion only when hydrophobic defects were already present, and thus seemed only capable to ensure a proper protein conformation  相似文献   

17.
A proof-of-principle experiment to inject a sub-attomole amount of a channel compound into a bilayer membrane is described. The system is based on reductive cleavage of a self-assembled gold-thiol monolayer. In 'macroscopic' experiments, 11-biphenyloxyundecane thiol formed well-ordered monolayers by open-circuit or controlled potential deposition. The products of reductive release were determined by chromatographic analysis. In DMF, the sole reduction product is the corresponding disulfide. In acetonitrile and water, only the thiol is detected. The current efficiency is low due to competing electrolysis of water, and to the low solubility of the released thiol or disulfide layer. On a 'microscopic' scale, the half ester of dithiodibutyric acid with gramicidin was deposited on a gold microelectrode under open circuit conditions. The thoroughly washed microelectrode, placed in proximity to a bilayer, released gramicidin only following a 100 ms pulse of reducing potential. The transfer efficiency of this method for controlled positioning of ion channels is estimated to be better than 1 part in 10(5).  相似文献   

18.
A frequent polymorphism of the human cathepsin G gene is located in exon 4.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号