首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Amyloidogenic proteins are related to a variety of amyloid diseases, such as type 2 diabetes (T2D), Alzheimer's disease (AD) and Parkinson's disease (PD). The amyloid proteins in which this review focuses include amylin, Aβ, tau and α-synuclein. Understanding the molecular mechanisms in which these amyloidogenic proteins interact with membranes is a challenging research to both experimental and computational studies. This review illustrates recent studies on amyloid-membrane interactions, but it mainly focuses on the challenge issues related to experimental techniques to investigate at the molecular level these interactions and provides thoughts and outlook for future computational studies.  相似文献   

2.
Amyloid fibril formation has been implicated in a wide range of human diseases and the interactions of amyloidogenic proteins with cell membranes are considered to be important in the aetiology of these pathologies. In type 2 diabetes mellitus (T2DM), the human islet amyloid polypeptide (hIAPP) forms amyloid fibrils which impair the functionality and viability of pancreatic β cells. The mechanisms of hIAPP cytotoxicity are linked to the ability of the peptide to self-aggregate and to interact with membranes. Previous studies have shown that the N-terminal part of hIAPP from residues 1 to 19 is the membrane binding domain. The non-amyloidogenic and nontoxic mouse IAPP differs from hIAPP by six residues out of 37, among which a single one, residue 18, lies in the membrane binding region. To gain more insight into hIAPP-membrane interactions we herein performed comprehensive biophysical studies on four analogues (H18R-IAPP, H18K-IAPP, H18E-IAPP and H18A-IAPP). Our data reveal that all peptides are able to insert efficiently in the membrane, indicating that residue 18 is not essential for hIAPP membrane binding and insertion. However, only wild-type hIAPP and H18K-IAPP are able to form fibrils at the membrane. Importantly, all peptides induce membrane damage; wild-type hIAPP and H18K-IAPP presumably cause membrane disruption mainly by fibril growth at the membrane, while for H18R-IAPP, H18E-IAPP and H18A-IAPP, membrane leakage is most likely due to high molecular weight oligomeric species. These results highlight the importance of the residue at position 18 in IAPP for modulating fibril formation at the membrane and the mechanisms of membrane leakage.  相似文献   

3.
Amyloid diseases are a group of degenerative disorders characterized by cell/tissue damage caused by toxic protein aggregates. Abnormal production, processing and/or clearance of misfolded proteins or peptides may lead to their accumulation and to the formation of amyloid aggregates. Early histopathological investigation of affected organs in different amyloid diseases revealed the ubiquitous presence of fibrillar protein aggregates forming large deposits known as amyloid plaques. Further in vitro biochemical and cell biology studies, as well as studies using transgenic animal models, provided strong support to what initially seemed to be a solid concept, namely that amyloid fibrils played crucial roles in amyloid pathogenesis. However, recent studies describing tissue-specific accumulation of soluble protein oligomers and their strong impact on cell function have challenged the fibril hypothesis and led to the emergence of a new view: Fibrils are not the only toxins derived from amyloidogenic proteins and, quite possibly, not the most important ones with respect to disease etiology. Here, we review some of the recent findings and concepts in this rapidly developing field, with emphasis on the involvement of soluble oligomers of the amyloid-beta peptide in the pathogenesis of Alzheimer's disease. Recent studies suggesting that soluble oligomers from different proteins may share common mechanisms of cytotoxicity are also discussed. Increased understanding of the cellular toxic mechanisms triggered by protein oligomers may lead to the development of rational, effective treatments for amyloid disorders.  相似文献   

4.
The amyloid deposits of human islet amyloid polypeptide (hIAPP) are found in type 2 diabetes patients. hIAPP monomer is intrinsically disordered in solution, whereas it can form amyloid fibrils both in vivo and in vitro. Extensive evidence suggests that hIAPP causes the disruption of cellular membrane, and further induces cytotoxicity and the death of islet β-cells in pancreas. The presence of membrane also accelerates the hIAPP fibril formation. hIAPP oligomers and protofibrils in the early stage of aggregation were reported to be the most cytotoxic, disrupting the membrane integrity and giving rise to the pathological process. The detailed molecular mechanisms of hIAPP-membrane interactions and membrane disruption are complex and remain mostly unknown. Here in this review, we focus on recent computational studies that investigated the interactions of full length and fragmentary hIAPP monomers, oligomers and protofibrils with anionic, zwitterionic and mixed anionic-zwitterionic lipid bilayers. We mainly discuss the binding orientation of monomers at membrane surface, the conformational ensemble and the oligomerization of hIAPP inside membranes, the effect of lipid composition on hIAPP oligomers/protofibrils-membrane interactions, and the hIAPP-induced membrane perturbation. This review provides mechanistic insights into the interactions between hIAPP and lipid bilayers with different lipid composition at an atomistic level, which is helpful to understand the hIAPP cytotoxicity mediated by membrane. This article is part of a Special Issue entitled: Protein Aggregation and Misfolding at the Cell Membrane Interface edited by Ayyalusamy Ramamoorthy.  相似文献   

5.
Amyloids are highly ordered, cross-β-sheet-rich protein/peptide aggregates associated with both human diseases and native functions. Given the well established ability of amyloids in interacting with cell membranes, we hypothesize that amyloids can serve as universal cell-adhesive substrates. Here, we show that, similar to the extracellular matrix protein collagen, amyloids of various proteins/peptides support attachment and spreading of cells via robust stimulation of integrin expression and formation of integrin-based focal adhesions. Additionally, amyloid fibrils are also capable of immobilizing non-adherent red blood cells through charge-based interactions. Together, our results indicate that both active and passive mechanisms contribute to adhesion on amyloid fibrils. The present data may delineate the functional aspect of cell adhesion on amyloids by various organisms and its involvement in human diseases. Our results also raise the exciting possibility that cell adhesivity might be a generic property of amyloids.  相似文献   

6.
Amyloid fibrils characterized as highly intractable thread-like species are associated with many neurodegenerative diseases. Although neither the mechanism of amyloid formation nor the origin of amyloid toxicity is currently completely understood, the detailed three-dimensional atomic structures of the yeast protein Sup35 and Abeta amyloid protein determined by recent experiments provide the first and important step towards the comprehension of the pathogenesis and aggregation mechanisms of amyloid diseases. By analyzing these two amyloid peptides which have available crystal structures and other amyloid sequences with proposed structures using computational simulations, we delineate three common features in amyloid organizations and amyloid structures. These could contribute to an improved understanding of the molecular mechanism of amyloid formation, the nature of the aggregation driving forces that stabilize these structures and the development of potential therapeutic agents against amyloid diseases.  相似文献   

7.
Recent data depict membranes as the main sites where proteins/peptides are recruited and concentrated, misfold, and nucleate amyloids; at the same time, membranes are considered key triggers of amyloid toxicity. The N-terminal domain of the prokaryotic hydrogenase maturation factor HypF (HypF-N) in 30% trifluoroethanol undergoes a complex path of fibrillation starting with initial 2-3-nm oligomers and culminating with the appearance of mature fibrils. Oligomers are highly cytotoxic and permeabilize lipid membranes, both biological and synthetic. In this article, we report an in-depth study aimed at providing information on the surface activity of HypF-N and its interaction with synthetic membranes of different lipid composition, either in the native conformation or as amyloid oligomers or fibrils. Like other amyloidogenic peptides, the natively folded HypF-N forms stable films at the air/water interface and inserts into synthetic phospholipid bilayers with efficiencies depending on the type of phospholipid. In addition, HypF-N prefibrillar aggregates interact with, insert into, and disassemble supported phospholipid bilayers similarly to other amyloidogenic peptides. These results support the idea that, at least in most cases, early amyloid aggregates of different peptides and proteins produce similar effects on the integrity of membrane assembly and hence on cell viability.  相似文献   

8.
《朊病毒》2013,7(4):339-345
Fibrillar aggregates of misfolded amyloid proteins are involved in a variety of diseases such as Alzheimer disease (AD), type 2 diabetes, Parkinson, Huntington and prion-related diseases. In the case of AD amyloid β (Aβ) peptides, the toxicity of amyloid oligomers and larger fibrillar aggregates is related to perturbing the biological function of the adjacent cellular membrane. We used atomistic molecular dynamics (MD) simulations of Aβ9–40 fibrillar oligomers modeled as protofilament segments, including lipid bilayers and explicit water molecules, to probe the first steps in the mechanism of Aβ-membrane interactions. Our study identified the electrostatic interaction between charged peptide residues and the lipid headgroups as the principal driving force that can modulate the further penetration of the C-termini of amyloid fibrils or fibrillar oligomers into the hydrophobic region of lipid membranes. These findings advance our understanding of the detailed molecular mechanisms and the effects related to Aβ-membrane interactions, and suggest a polymorphic structural character of amyloid ion channels embedded in lipid bilayers. While inter-peptide hydrogen bonds leading to the formation of β-strands may still play a stabilizing role in amyloid channel structures, these may also present a significant helical content in peptide regions (e.g., termini) that are subject to direct interactions with lipids rather than with neighboring Aβ peptides.  相似文献   

9.
Although cell-penetrating peptides are widely used as molecular devices to cross membranes and transport molecules or nanoparticles inside cells, the underlying internalization mechanism for such behavior is still studied and discussed. One of the reasons for such a debate is the wide panel of chemically different cell-penetrating peptides or cargo that is used. Indeed the intrinsic physico-chemical properties of CPP and conjugates strongly affect the cell membrane recognition and therefore the internalization pathways. Altogether, the mechanisms described so far should be shared between two general pathways: endocytosis and direct translocation. As it is established now that one cell-penetrating peptide can internalize at the same time by these two different pathways, the balance between the two pathways relies on the binding of the cell-penetrating peptide or conjugate to specific cell membrane components (carbohydrates, lipids). Like endocytosis which includes clathrin- and caveolae-dependent processes and macropinocytosis, different translocation mechanisms could co-exist, an idea that emerges from recent studies. In this review, we will focus solely on penetratin membrane interactions and internalization mechanisms.  相似文献   

10.
The peptide hormone, calcitonin, which is associated with medullary carcinoma of the thyroid, has a marked tendency to form amyloid fibrils and may be a useful model in probing the role of peptide-membrane interactions in beta-sheet and amyloid formation and amyloid neurotoxicity. Using bovine calcitonin, we found that, like other amyloids, the peptide was toxic only when in a beta-sheet-rich, amyloid form, but was non-toxic, when it lacked an amyloid structure. We found that the peptide bound with significant affinity to membranes that contained either cholesterol and gangliosides. In addition, incubation of calcitonin with cholesterol-rich and ganglioside-containing membranes resulted in significant changes in peptide structure yielding a peptide enriched in beta-sheet and amyloid content. Because the cholesterol- and ganglioside-rich phospholipid systems enhanced the calcitonin beta-sheet and amyloid contents, and peptide amyloid content was associated with neurotoxicity, we then investigated whether depleting cellular cholesterol and gangliosides affected calcitonin neurotoxicity. We found that cholesterol and ganglioside removal significantly reduced the calcitonin-induced PC12 cell neurotoxicity. Similar results have been observed with other amyloid-forming peptides such as beta-amyloid (A beta) of Alzheimer's disease and suggest that modulation of membrane composition and peptide-membrane interactions may prove useful in the control of amyloid formation and amyloid neurotoxicity.  相似文献   

11.
The pathway to amyloid fibril formation in proteins involves specific structural changes leading to the combination of misfolded intermediates into oligomeric assemblies. Recent NMR studies showed the presence of “turns” in amyloid peptides, indicating that turn formation may play an important role in the nucleation of the intramolecular folding and possible assembly of amyloid. Fully solvated all-atom molecular dynamics simulations were used to study the structure and dynamics of the apolipoprotein C-II peptide 56 to 76, associated with the formation of amyloid fibrils. The peptide populated an ensemble of turn structures, stabilized by hydrogen bonds and hydrophobic interactions enabling the formation of a strong hydrophobic core which may provide the conditions required to initiate aggregation. Two competing mechanisms discussed in the literature were observed. This has implications in understanding the mechanism of amyloid formation in not only apoC-II and its fragments, but also in other amyloidogenic peptides.  相似文献   

12.
The misfolding, amyloid aggregation, and fibril formation of intrinsically disordered proteins/peptides (or amyloid proteins) have been shown to cause a number of disorders. The underlying mechanisms of amyloid fibrillation and structural properties of amyloidogenic precursors, intermediates, and amyloid fibrils have been elucidated in detail; however, in-depth examinations on physiologically relevant contributing factors that induce amyloidogenesis and lead to cell death remain challenging. A large number of studies have attempted to characterize the roles of biomembranes on protein aggregation and membrane-mediated cell death by designing various membrane components, such as gangliosides, cholesterol, and other lipid compositions, and by using various membrane mimetics, including liposomes, bicelles, and different types of lipid-nanodiscs.We herein review the dynamic effects of membrane curvature on amyloid generation and the inhibition of amyloidogenic proteins and peptides, and also discuss how amyloid formation affects membrane curvature and integrity, which are key for understanding relationships with cell death. Small unilamellar vesicles with high curvature and large unilamellar vesicles with low curvature have been demonstrated to exhibit different capabilities to induce the nucleation, amyloid formation, and inhibition of amyloid-β peptides and α-synuclein. Polymorphic amyloidogenesis in small unilamellar vesicles was revealed and may be viewed as one of the generic properties of interprotein interaction-dominated amyloid formation. Several mechanical models and phase diagrams are comprehensively shown to better explain experimental findings. The negative membrane curvature-mediated mechanisms responsible for the toxicity of pancreatic β cells by the amyloid aggregation of human islet amyloid polypeptide (IAPP) and binding of the precursors of the semen-derived enhancer of viral infection (SEVI) are also described. The curvature-dependent binding modes of several types of islet amyloid polypeptides with high-resolution NMR structures are also discussed.  相似文献   

13.
Fibrillar aggregates of misfolded amyloid proteins are involved in a variety of diseases such as Alzheimer disease (AD), type 2 diabetes, Parkinson, Huntington and prion-related diseases. In the case of AD amyloid β (Aβ) peptides, the toxicity of amyloid oligomers and larger fibrillar aggregates is related to perturbing the biological function of the adjacent cellular membrane. We used atomistic molecular dynamics (MD) simulations of Aβ9–40 fibrillar oligomers modeled as protofilament segments, including lipid bilayers and explicit water molecules, to probe the first steps in the mechanism of Aβ-membrane interactions. Our study identified the electrostatic interaction between charged peptide residues and the lipid headgroups as the principal driving force that can modulate the further penetration of the C-termini of amyloid fibrils or fibrillar oligomers into the hydrophobic region of lipid membranes. These findings advance our understanding of the detailed molecular mechanisms and the effects related to Aβ-membrane interactions, and suggest a polymorphic structural character of amyloid ion channels embedded in lipid bilayers. While inter-peptide hydrogen bonds leading to the formation of β-strands may still play a stabilizing role in amyloid channel structures, these may also present a significant helical content in peptide regions (e.g., termini) that are subject to direct interactions with lipids rather than with neighboring Aβ peptides.  相似文献   

14.
Nucleic acids promote amyloid formation in diseases including Alzheimer's and Creutzfeldt-Jakob disease. However, it remains unclear whether the close interactions between amyloid and nucleic acid allow nucleic acid secondary structure to play a role in modulating amyloid structure and function. Here we have used a simplified system of short basic peptides with alternating hydrophobic and hydrophilic amino acid residues to study nucleic acid - amyloid interactions. Employing biophysical techniques including X-ray fibre diffraction, circular dichroism spectroscopy and electron microscopy we show that the polymerized charges of nucleic acids concentrate and enhance the formation of amyloid from short basic peptides, many of which would not otherwise form fibres. In turn, the amyloid component binds nucleic acids and promotes their hybridisation at concentrations below their solution K(d), as shown by time-resolved FRET studies. The self-reinforcing interactions between peptides and nucleic acids lead to the formation of amyloid nucleic acid (ANA) fibres whose properties are distinct from their component polymers. In addition to their importance in disease and potential in engineering, ANA fibres formed from prebiotically-produced peptides and nucleic acids may have played a role in early evolution, constituting the first entities subject to Darwinian evolution.  相似文献   

15.
Prion diseases are neurodegenerative disorders associated with a conformational change in the normal cellular isoform of the prion protein, PrP(C), to an abnormal scrapie isoform, PrP(SC). Unlike the alpha-helical PrP(C), the protease-resistant core of PrP(SC) is predominantly beta-sheet and possesses a tendency to polymerize into amyloid fibrils. We performed experiments with two synthetic human prion peptides, PrP(106-126) and PrP(127-147), to determine how peptide structure affects neurotoxicity and protein-membrane interactions. Peptide solutions possessing beta-sheet and amyloid structures were neurotoxic to PC12 cells in vitro and bound with measurable affinities to cholesterol-rich phospholipid membranes at ambient conditions, but peptide solutions lacking stable beta-sheet structures and amyloid content were nontoxic and possessed less than one tenth of the binding affinities of the amyloid-containing peptides. Regardless of structure, the peptide binding affinities to cholesterol-depleted membranes were greatly reduced. These results suggest that the beta-sheet and amyloid structures of the prion peptides give rise to their toxicity and membrane binding affinities and that membrane binding affinity, especially in cholesterol-rich environments, may be related to toxicity. Our results may have significance in understanding the role of the fibrillogenic cerebral deposits associated with some of the prion diseases in neurodegeneration and may have implications for other amyloidoses.  相似文献   

16.
Cationic antimicrobial peptides play important roles in innate immunity. Compared with extensive studies on peptide-bacteria interactions, little is known about peptide-human cell interactions. Using human cervical carcinoma HeLa and fibroblastic TM12 cells, we investigated the cellular uptake of fluorescent analogues of the two representative antimicrobial peptides magainin 2 and buforin 2 in comparison with the representative Arg-rich cell-penetrating Tat-(47-57) peptide (YGRKKRRQRRR). The dose, time, temperature, and energy dependence of translocation suggested that the three peptides cross cell membranes through different mechanisms. The magainin peptide was internalized within a time scale of tens of minutes. The cooperative concentration dependence of uptake suggested that the peptide forms a pore as an intermediate similar to the observations in model membranes. Furthermore, the translocation was coupled with cytotoxicity, which was larger for tumor HeLa cells. In contrast, the buforin peptide translocated within 10 min by a temperature-independent, less concentration-dependent passive mechanism without showing any significant cytotoxicity at the highest concentration investigated (100 microm). The uptake of the Tat peptide was proportional to the peptide concentration, and the concentration dependence was lost upon ATP depletion. The peptide exhibited a moderate cytotoxicity at higher concentrations. The time course did not show saturation even after 120 min. The buforin peptide, covalently attached to the 28-kDa green fluorescent protein, also entered cells, suggesting a potency of the peptide as a vector for macromolecular delivery into cells. However, the mechanism appeared to be different from that of the parent peptide.  相似文献   

17.
The role of fatty acid binding proteins as intracellular fatty acid transporters may require their direct interaction with membranes. In this way different mechanisms have been previously characterized through experimental studies suggesting different models for FABPs-membrane association, although the process in which the molecule adsorbs to the membrane remains to be elucidated. To estimate the importance of the electrostatic energy in the FABP-membrane interaction, we computationally modeled the interaction of different FABPs with both anionic and neutral membranes. Free Electrostatic Energy of Binding (dE), was computed using Finite Difference Poisson Boltzmann Equation (FDPB) method as implemented in APBS (Adaptive Poisson Boltzmann Solver). Based on the computational analysis, it is found that recruitment to membranes is facilitated by non-specific electrostatic interactions. Also energetic analysis can quantitatively differentiate among the mechanisms of membrane association proposed and determinate the most energetically favorable configuration for the membrane-associated states of different FABPs. This type of calculations could provide a starting point for further computational or experimental analysis.  相似文献   

18.
The role of fatty acid binding proteins as intracellular fatty acid transporters may require their direct interaction with membranes. In this way different mechanisms have been previously characterized through experimental studies suggesting different models for FABPs–membrane association, although the process in which the molecule adsorbs to the membrane remains to be elucidated. To estimate the importance of the electrostatic energy in the FABP–membrane interaction, we computationally modeled the interaction of different FABPs with both anionic and neutral membranes. Free Electrostatic Energy of Binding (dE), was computed using Finite Difference Poisson Boltzmann Equation (FDPB) method as implemented in APBS (Adaptive Poisson Boltzmann Solver). Based on the computational analysis, it is found that recruitment to membranes is facilitated by non-specific electrostatic interactions. Also energetic analysis can quantitatively differentiate among the mechanisms of membrane association proposed and determinate the most energetically favorable configuration for the membrane-associated states of different FABPs. This type of calculations could provide a starting point for further computational or experimental analysis.  相似文献   

19.
《Biophysical journal》2020,118(6):1270-1278
Membrane interactions of amyloidogenic proteins constitute central determinants both in protein aggregation as well as in amyloid cytotoxicity. Most reported studies of amyloid peptide-membrane interactions have employed model membrane systems combined with application of spectroscopy methods or microscopy analysis of individual binding events. Here, we applied for the first time, to our knowledge, imaging flow cytometry for investigating interactions of representative amyloidogenic peptides, namely, the 106–126 fragment of prion protein (PrP(106–126)) and the human islet amyloid polypeptide (hIAPP), with giant lipid vesicles. Imaging flow cytometry was also applied to examine the inhibition of PrP(106–126)-membrane interactions by epigallocatechin gallate, a known modulator of amyloid peptide aggregation. We show that imaging flow cytometry provided comprehensive population-based statistical information upon morphology changes of the vesicles induced by PrP(106–126) and hIAPP. Specifically, the experiments reveal that both PrP(106–126) and hIAPP induced dramatic transformations of the vesicles, specifically disruption of the spherical shapes, reduction of vesicle circularity, lobe formation, and modulation of vesicle compactness. Interesting differences, however, were apparent between the impact of the two peptides upon the model membranes. The morphology analysis also showed that epigallocatechin gallate ameliorated vesicle disruption by PrP(106–126). Overall, this study demonstrates that imaging flow cytometry provides powerful means for disclosing population-based morphological membrane transformations induced by amyloidogenic peptides and their inhibition by aggregation modulators.  相似文献   

20.
A number of findings suggest that lipophilic monomeric Abeta peptides can interact with the cellular lipid membranes. These interactions can affect the membrane integrity and result in the initiation of apoptotic cell death. The secondary structure of C-terminal Abeta peptides (29-40) and the longer (29-42) variant have been investigated in solution by circular dichroism measurements. The secondary structure of lipid bound Abeta (29-40) and (29-42) peptides prepared at different lipid/peptide ratio's, was investigated by ATR-FTIR spectroscopy. Finally, the changes in secondary structure (i.e. the transition of alpha-helix to beta-sheet) of the lipid bound peptides were correlated with the induction of neurotoxic and apoptotic effects in neuronal cells. The data suggest that the C-terminal fragments of the Abeta peptide induce a significant apoptotic cell death, as demonstrated by caspase-3 measurements and DNA laddering, with consistently a stronger effect of the longer Abeta (29-42) variant. Moreover, the induction of apoptotic death induced by these peptides can be correlated with the secondary structure of the lipid bound amyloid beta peptides. Based on these observations, it is proposed that membrane bound aggregated Abeta peptides (produced locally as the result of gamma-secretase cleavage) can accumulate and aggregate in the membrane. These membrane bound beta-sheet aggregated amyloid peptides induce neuronal apoptotic cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号