首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The hydrolysis of urea as a source of ammonia has been proposed as a mechanism for the nitrification of ammonia-oxidizing bacteria (AOB) in acidic soil. The growth of Nitrososphaera viennensis on urea suggests that the ureolysis of ammonia-oxidizing archaea (AOA) might occur in natural environments. In this study, 15N isotope tracing indicates that ammonia oxidation occurred upon the addition of urea at a concentration similar to the in situ ammonium content of tea orchard soil (pH 3.75) and forest soil (pH 5.4) and was inhibited by acetylene. Nitrification activity was significantly stimulated by urea fertilization and coupled well with abundance changes in archaeal amoA genes in acidic soils. Pyrosequencing of 16S rRNA genes at whole microbial community level demonstrates the active growth of AOA in urea-amended soils. Molecular fingerprinting further shows that changes in denaturing gradient gel electrophoresis fingerprint patterns of archaeal amoA genes are paralleled by nitrification activity changes. However, bacterial amoA and 16S rRNA genes of AOB were not detected. The results strongly suggest that archaeal ammonia oxidation is supported by hydrolysis of urea and that AOA, from the marine Group 1.1a-associated lineage, dominate nitrification in two acidic soils tested.  相似文献   

2.
Alluvial aquifers are one of the mainwater resources in many countries. Iron reduction in alluvial aquifers is often a major anaerobic process involved in bioremediation or causing problems, including the release of As trapped in Fe(III) oxide. We investigated the distribution of potential iron-reducing bacteria (IRB) in riverine alluvial aquifers (B1, B3, and B6 sites) at the Mankyeong River, Republic of Korea. Inactive iron reduction zones, the diversity and abundance of IRB can be examined using a clone library and quantitative PCR analysis of 16S rRNA genes. Geobacter spp. are potential IRB in the iron-reducing zone at the B6 (9 m) site, where high Fe(II) and arsenic (As) concentrations were observed. At the B3 (16 m) site, where low iron reduction activity was predicted, a dominant clone (10.6%) was 99% identical in 16S rRNA gene sequence with Rhodoferax ferrireducens. Although a major clone belonging to Clostridium spp. was found, possible IRB candidates could not be unambiguously determined at the B1 (18 m) site. Acanonical correspondence analysis demonstrated that, among potential IRB, only the Geobacteraceae were well correlated with Fe(II) and As concentrations. Our results indicate high environmental heterogeneity, and thus high spatial variability, in thedistribution of potential IRB in the riverine alluvial aquifersnear the Mankyeong River.  相似文献   

3.
The microbial communities of high‐latitude ecosystems are expected to experience rapid changes over the next century due to climate warming and increased deposition of reactive nitrogen, changes that will likely affect microbial community structure and function. In moist acidic tundra (MAT) soils on the North Slope of the Brooks Range, Alaska, substantial losses of C and N were previously observed after long‐term nutrient additions. To analyse the role of microbial communities in these losses, we utilized 16S rRNA gene tag pyrosequencing coupled with community‐level physiological profiling to describe changes in MAT bacterial communities after short‐ and long‐term nutrient fertilization in four sets of paired control and fertilized MAT soil samples. Bacterial diversity was lower in long‐term fertilized plots. The Acidobacteria were one of the most abundant phyla in all soils and distinct differences were noted in the distributions of Acidobacteria subgroups between mineral and organic soil layers that were also affected by fertilization. In addition, Alpha‐ and Gammaproteobacteria were more abundant in long‐term fertilized samples compared with control soils. The dramatic increase in sequences within the Gammaproteobacteria identified as Dyella spp. (order Xanthomonadales) in the long‐term fertilized samples was confirmed by quantitative PCR (qPCR) in several samples. Long‐term fertilization was also correlated with shifts in the utilization of specific substrates by microbes present in the soils. The combined data indicate that long‐term fertilization resulted in a significant change in microbial community structure and function linked to changes in carbon and nitrogen availability and shifts in above‐ground plant communities.  相似文献   

4.
While microbial activities in environmental systems play a key role in the utilization and cycling of essential elements and compounds, microbial activity and growth frequently fluctuates in response to environmental stimuli and perturbations. To investigate these fluctuations within a saturated aquifer system, we monitored a carbon-stimulated in situ Geobacter population while iron reduction was occurring, using 16S rRNA abundances and high-resolution tandem mass spectrometry proteome measurements. Following carbon amendment, 16S rRNA analysis of temporally separated samples revealed the rapid enrichment of Geobacter-like environmental strains with strong similarity to G. bemidjiensis. Tandem mass spectrometry proteomics measurements suggest high carbon flux through Geobacter respiratory pathways, and the synthesis of anapleurotic four carbon compounds from acetyl-CoA via pyruvate ferredoxin oxidoreductase activity. Across a 40-day period where Fe(III) reduction was occurring, fluctuations in protein expression reflected changes in anabolic versus catabolic reactions, with increased levels of biosynthesis occurring soon after acetate arrival in the aquifer. In addition, localized shifts in nutrient limitation were inferred based on expression of nitrogenase enzymes and phosphate uptake proteins. These temporal data offer the first example of differing microbial protein expression associated with changing geochemical conditions in a subsurface environment.  相似文献   

5.
In this study, we examined the influence of different nitrogen (N) application rates (0, 168, 240, 270 and 312 kg N ha-1) on soil properties, maize (Zea mays L.) yields and microbial communities of three types of soils (clay, alluvial and sandy soils). Phospholipid fatty acid analysis was used to characterize soil microbial communities. Results indicated that N fertilization significantly decreased microbial biomass in both clay and sandy soils regardless of application rate. These decreases were more likely a result of soil pH decreases induced by N fertilization, especially in the sandy soils. This is supported by structural equation modeling and redundancy analysis results. Nitrogen fertilization also led to significant changes in soil microbial community composition. However, the change differences were gradually dismissed with increase in N application rate. We also observed that N fertilization increased maize yields to the same level regardless of application rate. This suggests that farmers could apply N fertilizers at a lower rate (i.e. 168 kg N ha-1), which could achieve high maize yield on one hand while maintain soil microbial functions on the other hand.  相似文献   

6.
Using culture-independent 16S rRNA gene-based methods, we previously observed that Geobacteraceae were a major component of the microbial communities in the iron-reducing aquifer polluted by the Banisveld landfill, The Netherlands. However, phylogenetic information does not tell about the functional potential of the detected Geobacteraceae, nor can phylogenetic information easily be used to establish the presence of other iron-reducers. Therefore, we enriched for iron-reducing consortia using a range of culturing media, with various electron donors and acceptors and varying incubation conditions (pH, temperature), and by applying dilution-to-extinction culturing. Enrichments and strains isolated from these enrichments were characterized by 16S rRNA gene-based methods. The number of culturable iron-reducers was less than 110 iron-reducing bacteria per gram of sediment. The Geobacter phylotype that was previously found to constitute a major part of the microbial communities in a part of the aquifer where organic matter was attenuated at a relatively high rate, was not isolated. The isolation of another Geobacter strain and Serratia, Clostridium, Rhodoferax and Desulfitobacteriumstrains suggest the presence of a diverse iron-reducing community. Physiological capabilities of the isolates are described and discussed in relation to the hydrogeochemistry and the high abundance of Geobacteraceae in the aquifer polluted by the Banisveld landfill.  相似文献   

7.
Less than 1 % of bacterial populations present in environmental samples are culturable, meaning that cultivation will lead to an underestimation of total cell counts and total diversity. However, it is less clear whether this is also true for specific well-defined groups of bacteria for which selective culture media is available. In this study, we use culture dependent and independent techniques to describe whether isolation of Pseudomonas spp. on selective nutrient-poor NAA 1:100 agar-medium can reflect the full diversity, found by pyrosequencing, of the total soil Pseudomonas community in an urban waste field trial experiment. Approximately 3,600 bacterial colonies were isolated using nutrient-poor NAA 1:100 medium from soils treated with different fertilizers; (i) high N-level sewage sludge (SA), (ii) high N-level cattle manure (CMA), and (iii) unfertilized control soil (U). Based on Pseudomonas specific quantitative-PCR and Pseudomonas CFU counts, less than 4 % of Pseudomonas spp. were culturable using NAA 1:100 medium. The Pseudomonas selectivity and specificity of the culture medium were evaluated by 454 pyrosequencing of 16S rRNA gene amplicons generated using Bacteria- and Pseudomonas-specific primers. Pyrosequencing results showed that most isolates were Pseudomonas and that the culturable fraction of Pseudomonas spp. reflects most clusters of the total Pseudomonas diversity in soil. This indicates that NAA 1:100 medium is highly selective for Pseudomonas species, and reveals the ability of NAA 1:100 medium to culture mostly the dominant Pseudomonas species in soil.  相似文献   

8.
Basin-fill aquifers of the Southwestern United States are associated with elevated concentrations of arsenic (As) in groundwater. Many private domestic wells in the Cache Valley Basin, UT, have As concentrations in excess of the U.S. EPA drinking water limit. Thirteen sediment cores were collected from the center of the valley at the depth of the shallow groundwater and were sectioned into layers based on redoxmorphic features. Three of the layers, two from redox transition zones and one from a depletion zone, were used to establish microcosms. Microcosms were treated with groundwater (GW) or groundwater plus glucose (GW+G) to investigate the extent of As reduction in relation to iron (Fe) transformation and characterize the microbial community structure and function by sequencing 16S rRNA and arsenate dissimilatory reductase (arrA) genes. Under the carbon-limited conditions of the GW treatment, As reduction was independent of Fe reduction, despite the abundance of sequences related to Geobacter and Shewanella, genera that include a variety of dissimilatory iron-reducing bacteria. The addition of glucose, an electron donor and carbon source, caused substantial shifts toward domination of the bacterial community by Clostridium-related organisms, and As reduction was correlated with Fe reduction for the sediments from the redox transition zone. The arrA gene sequencing from microcosms at day 54 of incubation showed the presence of 14 unique phylotypes, none of which were related to any previously described arrA gene sequence, suggesting a unique community of dissimilatory arsenate-respiring bacteria in the Cache Valley Basin.  相似文献   

9.
This study was undertaken to examine the effects of forest fire on two important groups of N-cycling bacteria in soil, the nitrogen-fixing and ammonia-oxidizing bacteria. Sequence and terminal restriction fragment length polymorphism (T-RFLP) analysis of nifH and amoA PCR amplicons was performed on DNA samples from unburned, moderately burned, and severely burned soils of a mixed conifer forest. PCR results indicated that the soil biomass and proportion of nitrogen-fixing and ammonia-oxidizing species was less in soil from the fire-impacted sites than from the unburned sites. The number of dominant nifH sequence types was greater in fire-impacted soils, and nifH sequences that were most closely related to those from the spore-forming taxa Clostridium and Paenibacillus were more abundant in the burned soils. In T-RFLP patterns of the ammonia-oxidizing community, terminal restriction fragments (TRFs) representing amoA cluster 1, 2, or 4 Nitrosospira spp. were dominant (80 to 90%) in unburned soils, while TRFs representing amoA cluster 3A Nitrosospira spp. dominated (65 to 95%) in fire-impacted soils. The dominance of amoA cluster 3A Nitrosospira spp. sequence types was positively correlated with soil pH (5.6 to 7.5) and NH3-N levels (0.002 to 0.976 ppm), both of which were higher in burned soils. The decreased microbial biomass and shift in nitrogen-fixing and ammonia-oxidizing communities were still evident in fire-impacted soils collected 14 months after the fire.  相似文献   

10.
Anthropogenic nitrogen (N) deposition is an expanding problem that affects the functioning and composition of forest ecosystems, particularly the decomposition of forest litters. Legumes play an important role in the nitrogen cycle of forest ecosystems. Two litter types were chosen from Zijin Mountain in China: Robinia pseudoacacia leaves from a leguminous forest (LF) and Liquidambar formosana leaves from a non-leguminous forest (NF). The litter samples were mixed into original forest soils and incubated in microcosms. Then, they were treated by five forms of N addition: NH4 +, NO3 ?, urea, glycine, and a mixture of all four. During a 6-month incubation period, litter mass losses, soil microbial biomass, soil pH, and enzyme activities were investigated. Results showed that mixed N and NO3 ?-N addition significantly accelerated the litter decomposition rates of LF leaves, while mixed N, glycine-N, and urea-N addition significantly accelerated the litter decomposition rates of NF leaves. Litter decomposition rates and soil enzyme activities under mixed N addition were higher than those under single form of N additions in the two forest types. Nitrogen addition had no significant effects on soil pH and soil microbial biomass. The results indicate that nitrogen addition may alter microbial allocation to extracellular enzyme production without affecting soil microbial biomass, and then affected litter decomposition process. The results further reveal that mixed N is a more important factor in controlling litter decomposition process than single form of N, and may seriously affect soil N cycle and the release of carbon stored belowground.  相似文献   

11.
The diazotrophic communities in a rice paddy field were characterized by a molecular polyphasic approach including DNA/RNA-DGGE fingerprinting, real time RT-PCR analysis of nifH gene and the measurement of nitrogen fixation activities. The investigation was performed on a diurnal cycle and comparisons were made between bulk and rhizosphere / root soil as well as between fertilized / unfertilized soils. Real time RT-PCR showed no significant difference in the total quantity of nifH expression under the conditions investigated. The functional diversity and dynamics of the nifH gene expressing diazotroph community investigated using RT-PCR-DGGE revealed high diurnal variations, as well as variation between different soil types. Most of the sequence types recovered from the DGGE gels and clone libraries clustered within nifH Cluster I and III (65 different nifH sequences in total). Sequence types most similar to Azoarcus spp., Metylococcus spp., Rhizobium spp., Methylocystis spp., Desulfovibrio spp., Geobacter spp., Chlorobium spp., were abundant and indicate that these species may be responsible for the observed diurnal variation in the diazotrophic community structure in these rice field samples. Previously described diazotrophic cyanobacterial genera in rice fields, such as Nostoc and Cyanothece, were present in the samples but not detectable in RT-PCR assays.  相似文献   

12.
过量施肥对设施菜田土壤菌群结构及N2O产生的影响   总被引:1,自引:0,他引:1  
【背景】N_2O是一种很强的温室气体,其温室效应强度大约是CO_2的265倍。土壤氮肥施加量是影响N_2O排放的重要因素,而厌氧条件下微生物反硝化则是N_2O产生的重要途径。【目的】研究过量施肥条件下蔬菜大棚土壤菌群结构变化及其对N_2O气体排放的影响。【方法】利用自动化培养与实时气体检测系统(Robot)监测土壤厌氧培养过程中N_2O和N_2排放通量,比较过量施肥和减氮施肥模式下土壤N_2O排放模式的差异。通过Illumina二代测序平台对这2种不同施肥处理的土壤微生物群落进行高通量测序,研究不同施肥量对土壤菌群组成的影响。【结果】过量施肥土壤中硝酸盐的含量大约是减氮施肥土壤的2倍,通过添加硝酸盐使2种土壤的硝酸盐含量均为60 mg/kg或为200 mg/kg时,过量施肥土壤在厌氧培养前期N_2O气体的产生量及产生速度都明显高于减氮施肥土壤。另外,过量施肥导致土壤菌群结构发生显著改变,并且降低了土壤微生物的多样性。相对于减氮施肥,过量施肥方式富集了Rhodanobacter属的微生物。PICRUSt预测结果显示,传统施肥没有显著改变反硝化功能基因相对丰度。【结论】长期过量氮肥施用显著增加了土壤N_2O的排放,可能原因是施肥改变了包括氮转化相关微生物在内的土壤菌群组成,从而影响了土壤N_2O气体的形成与还原过程。  相似文献   

13.
The potential of biochar to improve numerous soil physical, chemical and biological properties is well known. However, previous research has concentrated on old and highly weathered tropical soils with poor fertility, while reports regarding the influence of biochar application on relatively young and fertile temperate prairie soils are limited. Furthermore, the mechanism(s) underlying biochar-induced effects on the plant availability of inorganic nitrogen (N) fertilizers and their relationship to greenhouse gas production is not well understood. The objective of this study was to determine the effect of a biochar soil amendment, produced by slow pyrolysis using shrub willow (Salix spp.) bioenergy feedstock, on CO2, N2O and CH4 fluxes by two contrasting marginal soils from Saskatchewan, Canada with and without added urea, over a 6-week incubation period. Biochar decreased soil N availability after 6 weeks only in the lower organic matter (Brown) soil, with no effect on the Black soil, regardless of fertilizer N addition, which was attributed to soil N immobilization by heterotrophs mineralizing the labile biochar-carbon. There appeared to be a synergistic effect when combining biochar and urea, evidenced by enhanced urease activity and higher initial nitrification rates compared to biochar or fertilization alone. The accelerated urea hydrolysis in the presence of biochar may increase NH3 volatilization losses associated with urea fertilization and, therefore, warrants further investigation. The decreased N2O emissions following biochar addition, with (both soils) or without (Black soil) fertilizer N, could be due to decreased ammonium and nitrate availability, along with changes in denitrification potential as related to improved aeration. Biochar significantly reduced the water-filled pore space, which concurrently increased CH4 consumption in both soils. The lack of biochar effect on CO2 emissions from either soil, with or without fertilizer N, suggests enhanced CO2 consumption by autotrophic nitrifiers. Biochar application appears to be an effective management approach for improving N2O and CH4 fluxes in temperate prairie soils.  相似文献   

14.
Arctic soils are increasingly susceptible to petroleum hydrocarbon contamination, as exploration and exploitation of the Arctic increase. Bioremediation in these soils is challenging due to logistical constraints and because soil temperatures only rise above 0°C for ∼2 months each year. Nitrogen is often added to contaminated soil in situ to stimulate the existing microbial community, but little is known about how the added nutrients are used by these microorganisms. Microbes vary widely in their ability to metabolize petroleum hydrocarbons, so the question becomes: which hydrocarbon-degrading microorganisms most effectively use this added nitrogen for growth? Using [15N]DNA-based stable isotope probing, we determined which taxonomic groups most readily incorporated nitrogen from the monoammonium phosphate added to contaminated and uncontaminated soil in Canadian Forces Station-Alert, Nunavut, Canada. Fractions from each sample were amplified with bacterial 16S rRNA and alkane monooxygenase B (alkB) gene-specific primers and then sequenced using lage-scale parallel-pyrosequencing. Sequence data was combined with 16S rRNA and alkB gene C quantitative PCR data to measure the presence of various phylogenetic groups in fractions at different buoyant densities. Several families of Proteobacteria and Actinobacteria that are directly involved in petroleum degradation incorporated the added nitrogen in contaminated soils, but it was the DNA of Sphingomonadaceae that was most enriched in 15N. Bacterial growth in uncontaminated soils was not stimulated by nutrient amendment. Our results suggest that nitrogen uptake efficiency differs between bacterial groups in contaminated soils. A better understanding of how groups of hydrocarbon-degraders contribute to the catabolism of petroleum will facilitate the design of more targeted bioremediation treatments.  相似文献   

15.
16.
In soil, Acidobacteria constitute on average 20% of all bacteria, are highly diverse, and are physiologically active in situ. However, their individual functions and interactions with higher taxa in soil are still unknown. Here, potential effects of land use, soil properties, plant diversity, and soil nanofauna on acidobacterial community composition were studied by cultivation-independent methods in grassland and forest soils from three different regions in Germany. The analysis of 16S rRNA gene clone libraries representing all studied soils revealed that grassland soils were dominated by subgroup Gp6 and forest soils by subgroup Gp1 Acidobacteria. The analysis of a large number of sites (n = 57) by 16S rRNA gene fingerprinting methods (terminal restriction fragment length polymorphism [T-RFLP] and denaturing gradient gel electrophoresis [DGGE]) showed that Acidobacteria diversities differed between grassland and forest soils but also among the three different regions. Edaphic properties, such as pH, organic carbon, total nitrogen, C/N ratio, phosphorus, nitrate, ammonium, soil moisture, soil temperature, and soil respiration, had an impact on community composition as assessed by fingerprinting. However, interrelations with environmental parameters among subgroup terminal restriction fragments (T-RFs) differed significantly, e.g., different Gp1 T-RFs correlated positively or negatively with nitrogen content. Novel significant correlations of Acidobacteria subpopulations (i.e., individual populations within subgroups) with soil nanofauna and vascular plant diversity were revealed only by analysis of clone sequences. Thus, for detecting novel interrelations of environmental parameters with Acidobacteria, individual populations within subgroups have to be considered.  相似文献   

17.
We report on the development and validation of a simple microarray method for the direct detection of intact 16S rRNA from unpurified soil extracts. Total RNAs from Geobacter chapellei and Desulfovibrio desulfuricans were hybridized to an oligonucleotide array consisting of universal and species-specific 16S rRNA probes. PCR-amplified products from Geobacter and Desulfovibrio were easily and specifically detected under a range of hybridization times, temperatures, and buffers. However, reproducible, specific hybridization and detection of intact rRNA could be accomplished only by using a chaperone-detector probe strategy. With this knowledge, assay conditions were developed for rRNA detection using a 2-h hybridization time at room temperature. Hybridization specificity and signal intensity were enhanced using fragmented RNA. Formamide was required in the hybridization buffer in order to achieve species-specific detection of intact rRNA. With the chaperone detection strategy, we were able to specifically hybridize and detect G. chapellei 16S rRNA directly from a total-RNA soil extract, without further purification or removal of soluble soil constituents. The detection sensitivity for G. chapellei 16S rRNA in soil extracts was at least 0.5 μg of total RNA, representing approximately 7.5 × 106 Geobacter cell equivalents of RNA. These results suggest that it is now possible to apply microarray technology to the direct detection of microorganisms in environmental samples, without using PCR.  相似文献   

18.
Exotic plants invading new habitats frequently initiate broad changes in ecosystem functioning. Sorghum halepense is an invasive grass capable of growing in nitrogen (N)-poor tallgrass prairie soils that creates near monocultures in once phylogenetically diverse-communities. The biogeochemistry of soils invaded by S. halepense was compared to that of un-invaded native prairie soils. Invaded soils contained two to four times greater concentrations of alkaline metals, micronutrients, and essential plant nutrients than native prairie soils. The notable exception was Ca+2, which was always significantly lower in invaded soils. The N-content of S. halepense above-ground biomass was 6.4 mg g?1 (320 mg N plant?1) and suggested a supplemental N source supporting plant growth. Altered soil biogeochemistry in invaded areas coupled with high above-ground biomass in N-poor soils suggested N2-fixing activity associated with S. halepense. Nitrogenase activity of plant tissues indicated that N2-fixation was occurring in, and largely restricted to, S. halepense rhizomes and roots. A culture approach was used to isolate these N2-fixing bacteria from plant tissues, and 16S rRNA gene sequencing was used to identify these bacterial isolates. Nitrogenase activity of bacterial isolates indicated several were capable of N2-fixation. In addition to N2-fixation, other roles involved in promoting plant growth, namely mobilizing phosphorus and iron chelation, are known for closest matching relatives of the bacterial isolates identified in this work. Our results indicate that these plant growth-promoting bacteria may enhance the ability of S. halepense to invade and persist by altering fundamental ecosystem properties via significant changes in soil biogeochemistry.  相似文献   

19.
Terrestrial ecosystems are receiving elevated inputs of nitrogen (N) from anthropogenic sources and understanding how these increases in N availability affect soil microbial communities is critical for predicting the associated effects on belowground ecosystems. We used a suite of approaches to analyze the structure and functional characteristics of soil microbial communities from replicated plots in two long-term N fertilization experiments located in contrasting systems. Pyrosequencing-based analyses of 16S rRNA genes revealed no significant effects of N fertilization on bacterial diversity, but significant effects on community composition at both sites; copiotrophic taxa (including members of the Proteobacteria and Bacteroidetes phyla) typically increased in relative abundance in the high N plots, with oligotrophic taxa (mainly Acidobacteria) exhibiting the opposite pattern. Consistent with the phylogenetic shifts under N fertilization, shotgun metagenomic sequencing revealed increases in the relative abundances of genes associated with DNA/RNA replication, electron transport and protein metabolism, increases that could be resolved even with the shallow shotgun metagenomic sequencing conducted here (average of 75 000 reads per sample). We also observed shifts in the catabolic capabilities of the communities across the N gradients that were significantly correlated with the phylogenetic and metagenomic responses, indicating possible linkages between the structure and functioning of soil microbial communities. Overall, our results suggest that N fertilization may, directly or indirectly, induce a shift in the predominant microbial life-history strategies, favoring a more active, copiotrophic microbial community, a pattern that parallels the often observed replacement of K-selected with r-selected plant species with elevated N.  相似文献   

20.
The control of soil moisture, vegetation type, and prior land use on soil health parameters of perennial grass cropping systems on marginal lands is not well known. A fallow wetness-prone marginal site in New York (USA) was converted to perennial grass bioenergy feedstock production. Quadruplicate treatments were fallow control, reed canarygrass (Phalaris arundinaceae L. Bellevue) with nitrogen (N) fertilizer (75 kg N ha?1), switchgrass (Panicum virgatum L. Shawnee), and switchgrass with N fertilizer (75 kg N ha?1). Based on periodic soil water measurements, permanent sampling locations were assigned to various wetness groups. Surface (0–15 cm) soil organic carbon (SOC), active carbon, wet aggregate stability, pH, total nitrogen (TN), root biomass, and harvested aboveground biomass were measured annually (2011–2014). Multi-year decreases in SOC, wet aggregate stability, and pH followed plowing in 2011. For all years, wettest soils had the greatest SOC and active carbon, while driest soils had the greatest wet aggregate stability and lowest pH. In 2014, wettest soils had significantly (p?<?0.0001) greater SOC and TN than drier soils, and fallow soils had 14 to 20% greater SOC than soils of reed canarygrass + N, switchgrass, and switchgrass + N. Crop type and N fertilization did not result in significant differences in SOC, active carbon, or wet aggregate stability. Cumulative 3-year aboveground biomass yields of driest switchgrass + N soils (18.8 Mg ha?1) were 121% greater than the three wettest switchgrass (no N) treatments. Overall, soil moisture status must be accounted for when assessing soil dynamics during feedstock establishment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号