共查询到20条相似文献,搜索用时 0 毫秒
1.
G蛋白偶联受体二聚化研究进展 总被引:1,自引:0,他引:1
G蛋白偶联受体是细胞膜受体最大的家族,参与调节多种生理过程,在信号识别及转导中具有重要作用,传统观点认为G蛋白偶联受体作为单体起作用,近年来,越来越多的证据表明,G蛋白偶联受体不仅能以二聚体形式存在,而且在细胞信号转导中起重要作用,尤其是对阿片受体异源二聚体的研究,推动了这一领域的研究。本文综述了G蛋白偶联受体二聚化研究进展,以及同源和异源二聚体的结构与功能。 相似文献
2.
3.
Xuechen Lv Junlin Liu Qiaoyun Shi Qiwen Tan Dong Wu John J. Skinner Angela L. Walker Lixia Zhao Xiangxiang Gu Na Chen Lu Xue Pei Si Lu Zhang Zeshi Wang Vsevolod Katritch Zhi-jie Liu Raymond C. Stevens 《蛋白质与细胞》2016,7(5):325
G protein-coupled receptors (GPCRs) are involved in all humanphysiological systems where they are responsible for transducing extracellular signals into cells. GPCRs signal in response to a diverse array of stimuli including light, hormones, and lipids, where these signals affect downstream cascades to impact both health and disease states. Yet, despite their importance as therapeutic targets, detailed molecular structures of only 30 GPCRs have been determined to date. A key challenge to their structure determination is adequate protein expression. Here we report the quantification of protein expression in an insect cell expression system for all 826humanGPCRs using two different fusion constructs. Expression characteristics are analyzed in aggregate and among each of the five distinct subfamilies. These data can be used to identify trends related to GPCR expression between different fusion constructs and between different GPCR families, and to prioritize lead candidates for future structure determination feasibility. 相似文献
4.
植物病原丝状真菌G蛋白偶联受体的研究进展 总被引:1,自引:0,他引:1
通过对丝状真菌G蛋白偶联受体(GPCR)的结构、分类以及功能方面进行综述,以期明确丝状真菌与其他模式生物GPCR之间的关系。基于已报道的模式生物及丝状真菌等不同生物中的GPCR,通过SMART保守结构域分析,以及利用Clustal X、MEGA等软件对上述GPCR进行遗传关系分析。明确丝状真菌典型GPCR具有七跨膜结构域,新型GPCR则含有PIPK、RGS等保守结构域,明确不同学者对于GPCR的分类情况,以及新型GPCR所具有的特殊功能,明确模式生物GPCR、丝状真菌GPCR分别各自聚类。丝状真菌中GPCR的数量较模式生物少,不同分类单元中真菌之间GPCR的数量也不尽相同,同时,丝状真菌GPCR除具有典型的七跨膜结构域外,还含有一些其他保守的结构域,上述研究为进一步开展其功能研究提供重要的理论基础。 相似文献
5.
Formyl peptide receptors: a promiscuous subfamily of G protein-coupled receptors controlling immune responses 总被引:3,自引:0,他引:3
The formyl peptide receptor (FPR) family is involved in host defence against pathogens, but also in sensing internal molecules that may constitute signals of cellular dysfunction. It includes three subtypes in human and other primates. FPR responds to formyl peptides derived from bacterial and mitochondrial proteins. FPRL1 displays a large array of exogenous and endogenous ligands, including the chemokine variant sCKβ8-1, the neuroprotective peptide humanin, and lipoxin A4. Two high affinity agonists (F2L and humanin) were recently described for FPRL2. In mouse, eight FPR-related receptors have been described. Fpr1 is the ortholog of human FPR, while fpr2 appears to share many ligands with human FPRL1. Altogether, the physiological role of the FPR family is still incompletely understood, due in part to the large variety of ligands, the redundancy with other chemoattractant agents, and the lack of clear orthologs between human and mouse receptors. Newly developed tools will allow to study further this family of receptors. 相似文献
6.
We here present an improved and simplified assay to study signal transduction of the Gs class of G protein-coupled receptors (GPCRs). The assay is based on a single plasmid combining the genes for any Gs protein-coupled GPCR and the cAMP response element-related expression of enhanced yellow fluorescent protein. On transfection, stable human embryonic kidney 293 (HEK293) cell lines presented high assay sensitivity and an unprecedented signal-to-noise ratio of up to 300, even in the absence of trichostatin A. The robustness of the assay was demonstrated through the cloning of reporter gene cell lines with melanocortin 4 receptor (MC4R), the human type I pituitary adenylate cyclase-activating polypeptide receptor (hPAC1), and the two vasoactive intestinal peptide receptors (VPAC1 and VPAC2). 相似文献
7.
Tony Warne Maria J. Serrano-Vega Christopher G. Tate Gebhard F.X. Schertler 《Protein expression and purification》2009,65(2):204-213
Structure determination of G protein-coupled receptors is still in its infancy and many factors affect whether crystals are obtained and whether the diffraction is of sufficient quality for structure determination. We recently solved the structure of a thermostabilised turkey β1-adrenergic receptor by crystallization in the presence of the detergent octylthioglucoside. Three factors were essential for this success. Firstly, truncations were required at the N-terminus to give optimal expression. Secondly, 6 thermostabilising point mutations were incorporated to make the receptor sufficiently stable in short-chain detergents to allow crystallization. Thirdly, truncations at the C-terminus and within cytoplasmic loop 3, in combination with the removal of the palmitoylation site, were required to obtain well-diffracting crystals in octylthioglucoside. Here, we describe the strategy employed and the utility of thermostability assays in assessing how point mutations, truncations, detergents and ligands combine to develop a construct that forms diffraction-grade crystals. 相似文献
8.
Although the molecular mechanisms underlying psychiatric illnesses such as depression, bipolar disorder and schizophrenia remain incompletely understood, there is increasing clinical, pharmacologic, and genetic evidence that G protein-coupled receptors (GPCRs) play critical roles in these disorders and their treatments. This perspectives paper reviews and synthesizes the available data. Dysfunction of multiple neurotransmitter and neuropeptide GPCRs in frontal cortex and limbic-related regions, such as the hippocampus, hypothalamus and brainstem, likely underlies the complex clinical picture that includes cognitive, perceptual, affective and motoric symptoms. The future development of novel agents targeting GPCR signaling cascades remains an exciting prospect for patients refractory to existing therapeutics. 相似文献
9.
10.
G-protein coupled receptors (GPCRs) are important therapeutic targets for the treatment of human disease. Although GPCRs are highly successful drug targets, there are many challenges associated with the discovery and translation of small molecule ligands that target the endogenous ligand-binding site for GPCRs. Allosteric modulators are a class of ligands that target alternative binding sites known as allosteric sites and offer fresh opportunities for the development of new therapeutics. However, only a few allosteric modulators have been approved as drugs. Advances in GPCR structural biology enabled by the cryogenic electron microscopy (cryo-EM) revolution have provided new insights into the molecular mechanism and binding location of small molecule allosteric modulators. This review highlights the latest findings from allosteric modulator-bound structures of Class A, B, and C GPCRs with a focus on small molecule ligands. Emerging methods that will facilitate cryo-EM structures of more difficult ligand-bound GPCR complexes are also discussed. The results of these studies are anticipated to aid future structure-based drug discovery efforts across many different GPCRs. 相似文献
11.
Cotecchia S Stanasila L Diviani D Björklöf K Rossier O Fanelli F 《Biology of the cell / under the auspices of the European Cell Biology Organization》2004,96(5):327-333
The aim of a large number of studies on G protein-coupled receptors was centered on understanding the structural basis of their main functional properties. Here, we will briefly review the results obtained on the alpha1-adrenergic receptor subtypes belonging to the rhodopsin-like family of receptors. These findings contribute, on the one hand, to further understand the molecular basis of adrenergic transmission and, on the other, to provide some generalities on the structure-functional relationship of G protein-coupled receptors. 相似文献
12.
13.
The efficiency of covalent labeling of a receptor by a photolabile analogue of its natural ligand is dependent on the spatial approximation of the probe and its target. Systematic application of intrinsic photoaffinity labeling to the secretin receptor, a prototypic Family B G protein-coupled receptor, demonstrated reduced efficiency of labeling for amino-terminal and mid-region sites of labeling relative to carboxyl-terminal sites. Reduction of pH from 7.4 to 5.5 and reduction of temperature from 25 °C to 4 °C improved the efficiency of covalent labeling of the receptor with these probes. This correlated with sites of labeling at the interface between the receptor amino terminus and the receptor core, a region containing histidine residues that have their ionization affected in this pH range. Application to the calcitonin receptor, another Family B G protein-coupled receptor, yielded analogous results. These results support the consistent mode of docking peptide ligands to this group of receptors. 相似文献
14.
G蛋白偶联受体(G protein-coupled receptor,GPCR)是含有七个跨膜螺旋的一类重要蛋白,是迄今为止发现的最大的多药物靶标受体超蛋白家族。例如,目前上市药物中有超过30%是以GPCR为靶点的。然而,与GPCR重要性形成强烈反差的是科学界对于其结构与功能的了解非常贫乏,主要原因是通过实验手段来获得GPCR的结构与功能信息极其困难。利用生物信息学方法从基因组规模的数据中识别GPCR并预测三维结构是可行途径之一。基于生物信息学的GPCR研究将为新型药物靶标的筛选和药物的开发提供一定的帮助。本文论述了几种较为典型的GPCR计算方法,并基于已有研究提出可能的创新性研究策略来解决GPCR蛋白识别、跨膜区定位、以及结构和功能预测等问题。 相似文献
15.
As the most frequent drug target, G protein-coupled receptors (GPCRs) are a large family of seven trans-membrane receptors that sense molecules outside the cell and activate inside signal transduction pathways. The activity and lifetime of activated receptors are regulated by receptor phosphorylation. Therefore, investigating the exact positions of phosphorylation sites in GPCRs sequence could provide useful clues for drug design and other biotechnology applications. Experimental identification of phosphorylation sites is expensive and laborious. Hence, there is significant interest in the development of computational methods for reliable prediction of phosphorylation sites from amino acid sequences. In this article, we presented a simple and effective method to recognize phosphorylation sites of human GPCRs by combining amino acid hydrophobicity and support vector machine. The prediction accuracy, sensitivity, specificity, Matthews correlation coefficient and area under the curve values for phosphoserine, phosphothreonine, and phosphotyrosine were 0.964, 0.790, 0.999, 0.866, 0.941; 0.954, 0.800, 0.985, 0.828, 0.958; and 0.976, 0.820, 0.993, 0.861, 0.959, respectively. The establishment of such a fast and accurate prediction method will speed up the pace of identifying proper GPCRs sites to facilitate drug discovery. 相似文献
16.
17.
G protein-coupled receptors (GPCRs) are seven-transmembrane-spanning proteins that mediate cellular and physiological responses. They are critical for cardiovascular function and are targeted for the treatment of hypertension and heart failure. Nevertheless, current therapies only target a small fraction of the cardiac GPCR repertoire, indicating that there are many opportunities to investigate unappreciated aspects of heart biology. Here, we offer an update on the contemporary view of GPCRs and the complexities of their signalling, and review the roles of the ‘classical’ GPCRs in cardiovascular physiology and disease. We then provide insights into other GPCRs that have been less extensively studied in the heart, including orphan, odorant and taste receptors. We contend that these novel cardiac GPCRs contribute to heart function in health and disease and thereby offer exciting opportunities to therapeutically modulate heart function. 相似文献
18.
Syntheses and bioactivities of songorine derivatives as novel G protein-coupled receptor antagonists
Jiangming Wang Changhao Bian Yinan Wang Quan Shen Bin Bao Junting Fan Aixue Zuo Wenhui Wu Ruihua Guo 《Bioorganic & medicinal chemistry》2019,27(9):1903-1910
Songorine isolated from Aconitum brachypodum Diels possesses prominent activity of inhibiting G protein-coupled receptors (GPCRs) in the early screening process. In this paper, a series of Songorine derivatives were synthesized and their inhibitory activities on GPCRs were also evaluated by using the Double Antibody Sandwich ELISA (DAS-ELISA) in vitro. Among them, three derivatives (3a, 4, 7) exhibited significant inhibitory activity against GPCRs with IC50 values of 0.08–0.29?nM. Moreover, the structure-activity relationships (SARs) of songorine derivatives were discussed in detail. They have great potentials as novel GPCRs antagonists in the future. 相似文献
19.
Schmidt A Wiesner B Weisshart K Schulz K Furkert J Lamprecht B Rosenthal W Schülein R 《Traffic (Copenhagen, Denmark)》2009,10(1):2-15
The heptahelical G protein-coupled receptors (GPCRs) are internalized following agonist treatment and either recycle rapidly to the plasma membrane or enter the lysosomal degradation pathway. Many conventional GPCR recycling assays suffer from the fact that receptors arriving from the secretory pathway may interfere with recycling receptors. In this study, we introduce a new methodology to study post-endocytotic GPCR trafficking using fusions with the recently cloned Kaede protein. In contrast to the widely used green fluorescent protein, the fluorescence of Kaede can be converted from green to red using ultraviolet irradiation. Our methodology allows to study recycling of GPCRs microscopically in real-time bypassing problems with secretory pathway receptors. Initially, receptors are internalized using an agonist. Fluorescence signals in endosomes are switched, and trafficking of the receptors to the plasma membrane can be easily visualized by monitoring their new fluorescence. Using this methodology, we show that the corticotropin-releasing factor receptor type 1 belongs to the family of recycling GPCRs. Moreover, we demonstrate by fluorescence correlation spectroscopy that Kaede does not oligomerize when fused to membrane proteins, representing an additional advantage of this technique. The Kaede technology may be a powerful tool to study membrane protein trafficking in general. 相似文献
20.
Wistrand M Käll L Sonnhammer EL 《Protein science : a publication of the Protein Society》2006,15(3):509-521
G protein-coupled receptors (GPCRs) constitute a large superfamily involved in various types of signal transduction pathways triggered by hormones, odorants, peptides, proteins, and other types of ligands. The superfamily is so diverse that many members lack sequence similarity, although they all span the cell membrane seven times with an extracellular N and a cytosolic C terminus. We analyzed a divergent set of GPCRs and found distinct loop length patterns and differences in amino acid composition between cytosolic loops, extracellular loops, and membrane regions. We configured GPCRHMM, a hidden Markov model, to fit those features and trained it on a large dataset representing the entire superfamily. GPCRHMM was benchmarked to profile HMMs and generic transmembrane detectors on sets of known GPCRs and non-GPCRs. In a cross-validation procedure, profile HMMs produced an error rate nearly twice as high as GPCRHMM. In a sensitivity-selectivity test, GPCRHMM's sensitivity was about 15% higher than that of the best transmembrane predictors, at comparable false positive rates. We used GPCRHMM to search for novel members of the GPCR superfamily in five proteomes. All in all we detected 120 sequences that lacked annotation and are potentially novel GPCRs. Out of those 102 were found in Caenorhabditis elegans, four in human, and seven in mouse. Many predictions (65) belonged to Pfam domains of unknown function. GPCRHMM strongly rejected a family of arthropod-specific odorant receptors believed to be GPCRs. A detailed analysis showed that these sequences are indeed very different from other GPCRs. GPCRHMM is available at http://gpcrhmm.cgb.ki.se. 相似文献