首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
In bakers' yeast, in vivo telomerase activity requires a ribonucleoprotein (RNP) complex with at least four associated proteins (Est2p, Est1p, Est3p, and Cdc13p) and one RNA species (Tlc1). The function of telomerase in maintaining chromosome ends, called telomeres, is tightly regulated and linked to the cell cycle. However, the mechanisms that regulate the expression of individual components of telomerase are poorly understood. Here we report that yeast RNase III (Rnt1p), a double-stranded RNA-specific endoribonuclease, regulates the expression of telomerase subunits and is required for maintaining normal telomere length. Deletion or inactivation of RNT1 induced the expression of Est1, Est2, Est3, and Tlc1 RNAs and increased telomerase activity, leading to elongation of telomeric repeat tracts. In silico analysis of the different RNAs coding for the telomerase subunits revealed a canonical Rnt1p cleavage site near the 3' end of Est1 mRNA. This predicted structure was cleaved by Rnt1p and its disruption abolished cleavage in vitro. Mutation of the Rnt1p cleavage signal in vivo impaired the cell cycle-dependent degradation of Est1 mRNA without affecting its steady-state level. These results reveal a new mechanism that influences telomeres length by controlling the expression of the telomerase subunits.  相似文献   

5.
Members of the double-stranded RNA (dsRNA) specific RNase III family are known to use a conserved dsRNA-binding domain (dsRBD) to distinguish RNA A-form helices from DNA B-form ones, however, the basis of this selectivity and its effect on cleavage specificity remain unknown. Here, we directly examine the molecular requirements for dsRNA recognition and cleavage by the budding yeast RNase III (Rnt1p), and compare it to both bacterial RNase III and fission yeast RNase III (Pac1). We synthesized substrates with either chemically modified nucleotides near the cleavage sites, or with different DNA/RNA combinations, and investigated their binding and cleavage by Rnt1p. Substitution for the ribonucleotide vicinal to the scissile phosphodiester linkage with 2'-deoxy-2'-fluoro-beta-d-ribose (2' F-RNA), a deoxyribonucleotide, or a 2'-O-methylribonucleotide permitted cleavage by Rnt1p, while the introduction of a 2', 5'-phosphodiester linkage permitted binding, but not cleavage. This indicates that the position of the phosphodiester link with respect to the nuclease domain, and not the 2'-OH group, is critical for cleavage by Rnt1p. Surprisingly, Rnt1p bound to a DNA helix capped with an NGNN tetraribonucleotide loop indicating that the binding of at least one member of the RNase III family is not restricted to RNA. The results also suggest that the dsRBD may accommodate B-form DNA duplexes. Interestingly, Rnt1p, but not Pac1 nor bacterial RNase III, cleaved the DNA strand of a DNA/RNA hybrid, indicating that A-form RNA helix is not essential for cleavage by Rnt1p. In contrast, RNA/DNA hybrids bound to, but were not cleaved by Rnt1p, underscoring the critical role for the nucleotide located at 3' end of the tetraloop and suggesting an asymmetrical mode of substrate recognition. In cell extracts, the native enzyme effectively cleaved the DNA/RNA hybrid, indicating much broader Rnt1p substrate specificity than previously thought. The discovery of this novel RNA-dependent deoxyribonuclease activity has potential implications in devising new antiviral strategies that target actively transcribed DNA.  相似文献   

6.
7.
Yeast Rnt1p is a member of the double-stranded RNA (dsRNA) specific RNase III family of endoribonucleases involved in RNA processing and RNA interference (RNAi). Unlike other RNase III enzymes, which recognize a variety of RNA duplexes, Rnt1p cleaves specifically RNA stems capped with the conserved AGNN tetraloop. This unusual substrate specificity challenges the established dogma for substrate selection by RNase III and questions the dsRNA contribution to recognition by Rnt1p. Here we show that the dsRNA sequence adjacent to the tetraloop regulates Rnt1p cleavage by interfering with RNA binding. In context, sequences surrounding the cleavage site directly influence the cleavage efficiency. Introduction of sequences that stabilize the RNA helix enhanced binding while reducing the turnover rate indicating that, unlike the tetraloop, Rnt1p binding to the dsRNA helix may become rate-limiting. These results suggest that Rnt1p activity is strictly regulated by a combination of primary and tertiary structural elements allowing a substrate-specific binding and cleavage efficiency.  相似文献   

8.
9.
Nagel R  Ares M 《RNA (New York, N.Y.)》2000,6(8):1142-1156
Rnt1p is an RNase III homolog from budding yeast, required for processing snRNAs, snoRNAs, and rRNA. Numerous Rnt1p RNA substrates share potential to form a duplex structure with a terminal four-base loop with the sequence AGNN. Using a synthetic RNA modeled after the 25S rRNA 3' ETS cleavage site we find that the AGNN loop is an important determinant of substrate selectivity. When this loop sequence is altered, the rate of Rnt1p cleavage is reduced. The reduction in cleavage rate can be attributed to reduced binding of the mutant substrate as measured by a gel-shift assay. Deletion of the nonconserved N-terminal domain of Rnt1p does not affect cleavage site choice or the ability of the enzyme to distinguish substrates that contain the AGNN loop, indicating that this region is not required for selective cleavage. Strikingly, a recombinant fragment of Rnt1p containing little more than the dsRBD is able to discriminate between wild-type and mutant loop sequences in a binding assay. We propose that a major determinant of AGNN loop recognition by Rnt1p is present in its dsRBD.  相似文献   

10.
Bacterial double-stranded RNA-specific RNase III recognizes the A-form of an RNA helix with little sequence specificity. In contrast, baker yeast RNase III (Rnt1p) selectively recognizes NGNN tetraloops even when they are attached to a B-form DNA helix. To comprehend the general mechanism of RNase III substrate recognition, we mapped the Rnt1p binding signal and directly compared its substrate specificity to that of both Escherichia coli RNase III and fission yeast RNase III (PacI). Rnt1p bound but did not cleave long RNA duplexes without NGNN tetraloops, whereas RNase III indiscriminately cleaved all RNA duplexes. PacI cleaved RNA duplexes with some preferences for NGNN-capped RNA stems under physiological conditions. Hydroxyl radical footprints indicate that Rnt1p specifically interacts with the NGNN tetraloop and its surrounding nucleotides. In contrast, Rnt1p interaction with GAAA-capped hairpins was weak and largely unspecific. Certain duality of substrate recognition was exhibited by PacI but not by bacterial RNase III. E. coli RNase III recognized RNA duplexes longer than 11 bp with little specificity, and no specific features were required for cleavage. On the other hand, PacI cleaved long, but not short, RNA duplexes with little sequence specificity. PacI cleavage of RNA stems shorter than 27 bp was dependent on the presence of an UU-UC internal loop two nucleotides upstream of the cleavage site. These observations suggest that yeast RNase IIIs have two recognition mechanisms, one that uses specific structural features and another that recognizes general features of the A-form RNA helix.  相似文献   

11.
12.
13.
RNase III enzymes form a conserved family of proteins that specifically cleave double-stranded (dsRNA). These proteins are involved in a variety of cellular functions, including the processing of many non-coding RNAs, mRNA decay, and RNA interference. Yeast RNase III (Rnt1p) selects its substrate by recognizing the structure generated by a conserved NGNN tetraloop (G2-loop). Mutations of the invariant guanosine stringently inhibit binding and cleavage of all known Rnt1p substrates. Surprisingly, we have found that the 5' end of small nucleolar RNA 48 is processed by Rnt1p in the absence of a G2-loop. Instead, biochemical and structural analyses revealed that cleavage, in this case, is directed by a hairpin capped with an AAGU tetraloop, with a preferred adenosine in the first position (A1-loop). Chemical probing indicated that A1-loops adopt a distinct structure that varies at the 3' end where Rnt1p interacts with G2-loops. Consistently, chemical footprinting and chemical interference assays indicate that Rnt1p binds to G2 and A1-loops using different sets of nucleotides. Also, cleavage and binding assays showed that the N-terminal domain of Rnt1p aids selection of A1-capped hairpins. Together, the results suggest that Rnt1p recognizes at least two distinct classes of tetraloops using flexible protein RNA interactions. This underscores the capacity of double-stranded RNA binding proteins to use several recognition motifs for substrate identification.  相似文献   

14.
Members of the RNase III family of double-stranded RNA (dsRNA) endonucleases are important enzymes of RNA metabolism in eukaryotic cells. Rnt1p is the only known member of the RNase III family of endonucleases in Saccharomyces cerevisiae. Previous studies have shown that Rnt1p cleaves dsRNA capped by a conserved AGNN tetraloop motif, which is a major determinant for Rnt1p binding and cleavage. The solution structure of the dsRNA-binding domain (dsRBD) of Rnt1p bound to a cognate RNA substrate revealed the structural basis for binding of the conserved tetraloop motif by alpha-helix 1 of the dsRBD. In this study, we have analyzed extensively the effects of mutations of helix 1 residues that contact the RNA. We show, using microarray analysis, that mutations of these amino acids induce substrate-specific processing defects in vivo. Cleavage kinetics and binding studies show that these mutations affect RNA cleavage and binding in vitro to different extents and suggest a function for some specific amino acids of the dsRBD in the catalytic positioning of the enzyme. Moreover, we show that 2'-hydroxyl groups of nucleotides of the tetraloop or adjacent base pairs predicted to interact with residues of alpha-helix 1 are important for Rnt1p cleavage in vitro. This study underscores the importance of a few amino acid contacts for positioning of a dsRBD onto its RNA target, and implicates the specific orientation of helix 1 on the RNA for proper positioning of the catalytic domain.  相似文献   

15.
Members of the RNase III family are found in all species examined with the exception of archaebacteria, where the functions of RNase III are carried out by the bulge-helix-bulge nuclease (BHB). In bacteria, RNase III contributes to the processing of many noncoding RNAs and directly cleaves several cellular and phage mRNAs. In eukaryotes, orthologs of RNase III participate in the biogenesis of many miRNAs and siRNAs, and this biogenesis initiates the degradation or translational repression of several mRNAs. However, the capacity of eukaryotic RNase IIIs to regulate gene expression by directly cleaving within the coding sequence of mRNAs remains speculative. Here we show that Rnt1p, a member of the RNase III family, selectively inhibits gene expression in baker's yeast by directly cleaving a stem-loop structure within the mRNA coding sequence. Analysis of mRNA expression upon the deletion of Rnt1p revealed an upregulation of the glucose-dependent repressor Mig2p. Mig2p mRNA became more stable upon the deletion of Rnt1p and resisted glucose-dependent degradation. In vitro, Rnt1p cleaved Mig2p mRNA and a silent mutation that disrupts Rnt1p signals blocked Mig2p mRNA degradation. These observations reveal a new RNase III-dependent mechanism of eukaryotic mRNA degradation.  相似文献   

16.
Sam M  Henras AK  Chanfreau G 《Biochemistry》2005,44(11):4181-4187
Rnt1p, the only known Saccharomyces cerevisiae RNase III double-stranded RNA endonuclease, plays important roles in the processing of precursors of ribosomal RNAs and small nuclear and nucleolar RNAs and in the surveillance of unspliced pre-mRNAs. Specificity of cleavage by Rnt1p relies on the presence of RNA tetraloop structures with the consensus sequence AGNN at the top of the target dsRNA. The sequences of 79 fungal RNase III substrates were inspected to identify additional conserved sequence elements or antideterminants that may contribute to Rnt1p recognition of the double-stranded RNA. Surprisingly, U-A sequences at the base pair adjacent to the conserved terminal tetraloop (closing base pair) were found to be absent from all but one inspected sequence. Analysis of chemically modified variants of the closing base pair showed that the presence of exocyclic groups in the major groove of purines 3' to the last nucleotide of the tetraloop inhibits Rnt1p cleavage without strongly inhibiting Rnt1p binding. We propose that these groups interfere with the recognition of the RNA substrate by the catalytic domain of Rnt1p. These results identify exocyclic groups of purines in the major groove downstream of the tetraloop as a major antideterminant in S. cerevisiae RNase III activity, and suggest a rationale for their apparent counter selection in RNA processing sites.  相似文献   

17.
Members of the double-stranded RNA-specific ribonuclease III (RNase III) family were shown to affect cell division and chromosome segregation, presumably through an RNA interference-dependent mechanism. Here, we show that in Saccharomyces cerevisiae, where the RNA interference machinery is not conserved, an orthologue of RNase III (Rnt1p) is required for progression of the cell cycle and nuclear division. The deletion of Rnt1p delayed cells in both G1 and G2/M phases of the cell cycle. Nuclear division and positioning at the bud neck were also impaired in Deltarnt1 cells. The cell cycle defects were restored by the expression of catalytically inactive Rnt1p, indicating that RNA cleavage is not essential for cell cycle progression. Rnt1p was found to exit from the nucleolus to the nucleoplasm in the G2/M phase, and perturbation of its localization pattern delayed the progression of cell division. A single mutation in the Rnt1p N-terminal domain prevented its accumulation in the nucleoplasm and slowed exit from mitosis without any detectable effects on RNA processing. Together, the data reveal a new role for a class II RNase III in the cell cycle and suggest that at least some members of the RNase III family possess catalysis-independent functions.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号