首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enteropathogenic Escherichia coli (EPEC) secretes many Esps (E. coli-secreted proteins) and effectors via the type III secretion (TTS) system. We previously identified a novel needle complex (NC) composed of a basal body and a needle structure containing an expandable EspA sheath-like structure as a central part of the EPEC TTS apparatus. To further investigate the structure and protein components of the EPEC NC, we purified it in successive centrifugal steps. Finally, NCs with long EspA sheath-like structures could be separated from those with short needle structures on the basis of their densities. Although the highly purified NC appeared to lack an inner ring in the basal body, its core structure, composed of an outer ring and a central rod, was observed by transmission electron microscopy. Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry, Western blot, and immunoelectron microscopic analyses revealed that EscC was a major protein component of the outer ring in the core basal body. To investigate the mechanisms of assembly of the basal body, interactions between the presumed components of the EPEC TTS apparatus were analyzed by a glutathione S-transferase pulldown assay. The EscC outer ring protein was associated with both the EscF needle protein and EscD, a presumed inner membrane protein. EscF was also associated with EscJ, a presumed inner ring protein. Furthermore, escC, escD, and escJ mutant strains were unable to produce the TTS apparatus, and thereby the secretion of the Esp proteins and Tir effector was abolished. These results indicate that EscC, EscD, and EscJ are required for the formation of the TTS apparatus.  相似文献   

2.
The virulence of many Gram-negative pathogens is associated with type III secretion systems (T3SSs), which deliver virulence effector proteins into the cytoplasm of host cells. Components of enteropathogenic Escherichia coli (EPEC) T3SS are encoded within the locus of enterocyte effacement (LEE). While most LEE-encoded T3SS proteins in EPEC have assigned names and functions, a few of them remain poorly characterized. Here, we studied a small LEE-encoded protein, Orf15, that shows no homology to other T3SS/flagellar proteins and is only present in attaching and effacing pathogens, including enterohemorrhagic E. coli and Citrobacter rodentium. Our findings demonstrated that it is essential for type III secretion (T3S) and that it is localized to the periplasm and associated with the inner membrane. Membrane association was driven by the N-terminal 19 amino acid residues, which were also shown to be essential for T3S. Consistent with its localization, Orf15 was found to interact with the EPEC T3SS outer membrane ring component, EscC, which was previously shown to be embedded within the outer membrane and protruding into the periplasmic space. Interestingly, we found that the predicted coiled-coil structure of Orf15 is critical for the protein's function. Overall, our findings suggest that Orf15 is a structural protein that contributes to the structural integrity of the T3S complex, and therefore we propose to rename it EscA.  相似文献   

3.
The type III secretion system (T3SS) ATPase is the conserved and essential inner-membrane component involved in the initial stages of selective secretion of specialized T3SS virulence effector proteins from the bacterial cytoplasm through to the infected host cell, a process crucial to subsequent pathogenicity. Here we present the 1.8-A-resolution crystal structure of the catalytic domain of the prototypical T3SS ATPase EscN from enteropathogenic Escherichia coli (EPEC). Along with in vitro and in vivo mutational analysis, our data show that the T3SS ATPases share similarity with the F1 ATPases but have important structural and sequence differences that dictate their unique secretory role. We also show that T3SS ATPase activity is dependent on EscN oligomerization and describe the molecular features and possible functional implications of a hexameric ring model.  相似文献   

4.
The T3SS (type III secretion system) is a multi-protein complex that plays a central role in the virulence of many gram-negative bacterial pathogens. This apparatus spans both bacterial membranes and transports virulence factors from the bacterial cytoplasm into eukaryotic host cells. The T3SS exports substrates in a hierarchical and temporal manner. The first secreted substrates are the rod/needle proteins which are incorporated into the T3SS apparatus and are required for the secretion of later substrates, the translocators and effectors. In the present study, we provide evidence that rOrf8/EscI, a poorly characterized locus of enterocyte effacement-encoded protein, functions as the inner rod protein of the T3SS of EPEC (enteropathogenic Escherichia coli). We demonstrate that EscI is essential for type III secretion and is also secreted as an early substrate of the T3SS. We found that EscI interacts with EscU, the integral membrane protein that is linked to substrate specificity switching, implicating EscI in the substrate-switching event. Furthermore, we showed that EscI self-associates and interacts with the outer membrane secretin EscC, further supporting its function as an inner rod protein. Overall, the results of the present study suggest that EscI is the YscI/PrgJ/MxiI homologue in the T3SS of attaching and effacing pathogens.  相似文献   

5.
Synaptotagmin I (Syt I), a proposed major Ca(2+) sensor in the central nervous system, has been hypothesized as functioning in an oligomerized state during neurotransmitter release. We previously showed that Syts I, II, VII, and VIII form a stable SDS-resistant, beta-mercaptoethanol-insensitive, and Ca(2+)-independent oligomer surrounding the transmembrane domain (Fukuda, M., and Mikoshiba, K. (2000) J. Biol. Chem. 275, 28180-28185), but little is known about the molecular mechanism of the Ca(2+)-independent oligomerization by the synaptotagmin family. In this study, we analyzed the Ca(2+)-independent oligomerization properties of Syt I and found that it shows two distinct forms of self-oligomerization activity: stable SDS-resistant self-oligomerization activity and relatively unstable SDS-sensitive self-oligomerization activity. The former was found to be mediated by a post-translationally modified (i.e. fatty-acylated) cysteine (Cys) cluster (Cys-74, Cys-75, Cys-77, Cys-79, and Cys-82) at the interface between the transmembrane and spacer domains of Syt I. We also show that the number of Cys residues at the interface between the transmembrane and spacer domains determines the SDS- resistant oligomerizing capacity of each synaptotagmin isoform: Syt II, which contains seven Cys residues, showed the strongest SDS-resistant oligomerizing activity in the synaptotagmin family, whereas Syt XII, which has no Cys residues, did not form any SDS-resistant oligomers. The latter SDS-sensitive self-oligomerization of Syt I is mediated by the spacer domain, because deletion of the whole spacer domain, including the Cys cluster, abolished it, whereas a Syt I(CA) mutant carrying Cys to Ala substitutions still exhibited self-oligomerization. Based on these results, we propose that the oligomerization of the synaptotagmin family is regulated by two distinct mechanisms: the stable SDS-resistant oligomerization is mediated by the modified Cys cluster, whereas the relatively unstable (SDS-sensitive) oligomerization is mediated by the environment of the spacer domain.  相似文献   

6.
The type III secretion system (TTSS) is a macromolecular structure that spans the cell wall of Gram-negative bacterial pathogens, enabling delivery of virulence effector proteins directly to the membranes and cytosol of host eukaryotic cells. TTSS consists of a conserved needle complex (NC) that is composed of sets of inner and outer membranes rings connected by a periplasmic rod. Enteropathogenic Escherichia coli (EPEC) is an extracellular diarrhoeagenic pathogen that uses TTSS to induce actin polymerization and colonizes the intestinal epithelium. In EPEC, EscJ is predicted to be targeted to the periplasm, in a sec-dependent manner, and to bridge the TTSS membrane-associated rings. In this study we determined the global fold of EscJ using Nuclear Magnetic Resonance spectroscopy. We show that EscJ comprises two subdomains (D1 - amino acid residues 1-55 in the mature protein, and D2 - amino acid residues 90-170), each comprising a three-stranded beta-sheet flanked by two alpha-helices. A flexible region (residues 60-85) couples the structured regions D1 and D2. Periplasmic overexpression of EscJ(D1) and EscJ(D2) in a single escJ mutant bacterium failed to restore protein secretion activity, suggesting that the flexible linker is essential for the rod function. In contrast, periplasmic overexpression of EscJ(D1) and EscJ(D2) in the same wild-type bacterium had a dominant-negative phenotype suggesting defective assembly of the TTSS and protein translocation.  相似文献   

7.
The type VI secretion system (T6SS) is a multiprotein complex used by bacteria to deliver effectors into target cells. The T6SS comprises a bacteriophage-like contractile tail structure anchored to the cell envelope by a membrane complex constituted of the TssJ outer-membrane lipoprotein and the TssL and TssM inner-membrane proteins. TssJ establishes contact with the periplasmic domain of TssM whereas the transmembrane segments of TssM and its cytoplasmic domain interact with TssL. TssL protrudes in the cytoplasm but is anchored by a C-terminal transmembrane helix (TMH). Here, we show that TssL TMH dimerization is required for the stability of the protein and for T6SS function. Using the TOXCAT assay and point mutations of the 23 residues of the TssL TMH, we identified Thr194 and Trp199 as necessary for TssL TMH dimerization. NMR hydrogen–deuterium exchange experiments demonstrated the existence of a dimer with the presence of Trp185 and Trp199 at the interface. A structural model based on molecular dynamic simulations shows that TssL TMH dimer formation involves π–π interactions resulting from the packing of the two Trp199 rings at the C-terminus and of the six aromatic rings of Tyr184, Trp185 and Trp188 at the N-terminus of the TMH.  相似文献   

8.
Many bacterial pathogens use type three secretion systems (T3SS) to inject virulence factors, named effectors, directly into the cytoplasm of target eukaryotic cells. Most of the T3SS components are conserved among plant and animal pathogens, suggesting a common mechanism of recognition and secretion of effectors. However, no common motif has yet been identified for effectors allowing T3SS recognition. In this work, we performed a biochemical and structural characterization of the Salmonella SopB/SigE chaperone/effector complex by small-angle X-ray scattering (SAXS). Our results showed that the SopB/SigE complex is assembled in dynamic homohexameric-ring-shaped structures with an internal tunnel. In this ring, the chaperone maintains a disordered N-terminal end of SopB molecules, in a good position to be reached and processed by the T3SS. This ring dimensionally fits the ring-organized molecules of the injectisome, including ATPase hexameric rings; this organization suggests that this structural feature is important for ATPase recognition by T3SS. Our work constitutes the first evidence of the oligomerization of an effector, analogous to the organization of the secretion machinery, obtained in solution. As effectors share neither sequence nor structural identity, the quaternary oligomeric structure could constitute a strategy evolved to promote the specificity and efficiency of T3SS recognition.  相似文献   

9.
The type VI secretion system (T6SS) is a widespread protein secretion system found in many Gram-negative bacteria. T6SSs are highly regulated by various regulatory systems at multiple levels, including post-translational regulation via threonine (Thr) phosphorylation. The Ser/Thr protein kinase PpkA is responsible for this Thr phosphorylation regulation, and the forkhead-associated (FHA) domain-containing Fha-family protein is the sole T6SS phosphorylation substrate identified to date. Here we discovered that TssL, the T6SS inner-membrane core component, is phosphorylated and the phosphorylated TssL (p-TssL) activates type VI subassembly and secretion in a plant pathogenic bacterium, Agrobacterium tumefaciens. Combining genetic and biochemical approaches, we demonstrate that TssL is phosphorylated at Thr 14 in a PpkA-dependent manner. Further analysis revealed that the PpkA kinase activity is responsible for the Thr 14 phosphorylation, which is critical for the secretion of the T6SS hallmark protein Hcp and the putative toxin effector Atu4347. TssL phosphorylation is not required for the formation of the TssM-TssL inner-membrane complex but is critical for TssM conformational change and binding to Hcp and Atu4347. Importantly, Fha specifically interacts with phosphothreonine of TssL via its pThr-binding motif in vivo and in vitro and this interaction is crucial for TssL interaction with Hcp and Atu4347 and activation of type VI secretion. In contrast, pThr-binding ability of Fha is dispensable for TssM structural transition. In conclusion, we discover a novel Thr phosphorylation event, in which PpkA phosphorylates TssL to activate type VI secretion via its direct binding to Fha in A. tumefaciens. A model depicting an ordered TssL phosphorylation-induced T6SS assembly pathway is proposed.  相似文献   

10.
Like many Gram-negative pathogens, Shigella rely on a type three secretion system (T3SS) for injection of effector proteins directly into eukaryotic host cells to initiate and sustain infection. Protein secretion through the needle-like type three secretion apparatus (T3SA) requires ATP hydrolysis by the T3SS ATPase Spa47, making it a likely target for in vivo regulation of T3SS activity and an attractive target for small molecule therapeutics against shigellosis. Here, we developed a model of an activated Spa47 homo-hexamer, identifying two distinct regions at each protomer interface that we hypothesized to provide intermolecular interactions supporting Spa47 oligomerization and enzymatic activation. Mutational analysis and a series of high-resolution crystal structures confirm the importance of these residues, as many of the engineered mutants are unable to form oligomers and efficiently hydrolyze ATP in vitro. Furthermore, in vivo evaluation of Shigella virulence phenotype uncovered a strong correlation between T3SS effector protein secretion, host cell membrane disruption, and cellular invasion by the tested mutant strains, suggesting that perturbation of the identified interfacial residues/interactions influences Spa47 activity through preventing oligomer formation, which in turn regulates Shigella virulence. The most impactful mutations are observed within the conserved Site 2 interface where the native residues support oligomerization and likely contribute to a complex hydrogen bonding network that organizes the active site and supports catalysis. The critical reliance on these conserved residues suggests that aspects of T3SS regulation may also be conserved, providing promise for the development of a cross-species therapeutic that broadly targets T3SS ATPase oligomerization and activation.  相似文献   

11.
Bacteria expressing type III secretion systems (T3SS) have been responsible for the deaths of millions worldwide, acting as key virulence elements in diseases ranging from plague to typhoid fever. The T3SS is composed of a basal body, which traverses both bacterial membranes, and an external needle through which effector proteins are secreted. We report multiple crystal structures of two proteins that sit at the tip of the needle and are essential for virulence: IpaD from Shigella flexneri and BipD from Burkholderia pseudomallei. The structures reveal that the N-terminal domains of the molecules are intramolecular chaperones that prevent premature oligomerization, as well as sharing structural homology with proteins involved in eukaryotic actin rearrangement. Crystal packing has allowed us to construct a model for the tip complex that is supported by mutations designed using the structure.  相似文献   

12.
The type VI secretion system (T6SS) is a bacterial macromolecular machine widely distributed in Gram-negative bacteria, which transports effector proteins into eukaryotic host cells or other bacteria. Membrane complexes and a central tubular structure, which resembles the tail of contractile bacteriophages, compose the T6SS. One of the proteins forming this tube is the hemolysin co-regulated protein (Hcp), which acts as virulence factor, as transporter of effectors and as a chaperone. In this study, we present the structure of Hcp from Acinetobacter baumannii, together with functional and oligomerization studies. The structure of this protein exhibits a tight β barrel formed by two β sheets and flanked at one side by a short α-helix. Six Hcp molecules associate to form a donut-shaped hexamer, as observed in both the crystal structure and solution. These results emphasize the importance of this oligomerization state in this family of proteins, despite the low similarity of sequence among them. The structure presented in this study is the first one for a protein forming part of a functional T6SS from A. baumannii. These results will help us to understand the mechanism and function of this secretion system in this opportunistic nosocomial pathogen.  相似文献   

13.
Translocation of virulence effector proteins through the type III secretion system (T3SS) is essential for the virulence of many medically relevant Gram‐negative bacteria. The T3SS ATPases are conserved components that specifically recognize chaperone–effector complexes and energize effector secretion through the system. It is thought that functional T3SS ATPases assemble into a cylindrical structure maintained by their N‐terminal domains. Using size‐exclusion chromatography coupled to multi‐angle light scattering and native mass spectrometry, we show that in the absence of the N‐terminal oligomerization domain the Salmonella T3SS ATPase InvC can form monomers and dimers in solution. We also present for the first time a 2.05 å resolution crystal structure of InvC lacking the oligomerization domain (InvCΔ79) and map the amino acids suggested for ATPase intersubunit interaction, binding to other T3SS proteins and chaperone–effector recognition. Furthermore, we validate the InvC ATP‐binding site by co‐crystallization of InvCΔ79 with ATPγS (2.65 å) and ADP (2.80 å). Upon ATP‐analogue recognition, these structures reveal remodeling of the ATP‐binding site and conformational changes of two loops located outside of the catalytic site. Both loops face the central pore of the predicted InvC cylinder and are essential for the function of the T3SS ATPase. Our results present a fine functional and structural correlation of InvC and provide further details of the homo‐oligomerization process and ATP‐dependent conformational changes underlying the T3SS ATPase activity.  相似文献   

14.
The Type III Secretion System (T3SS) is a macromolecular complex used by Gram-negative bacteria to secrete effector proteins from the cytoplasm across the bacterial envelope in a single step. For many pathogens, the T3SS is an essential virulence factor that enables the bacteria to interact with and manipulate their respective host. A characteristic structural feature of the T3SS is the needle complex (NC). The NC resembles a syringe with a basal body spanning both bacterial membranes and a long needle-like structure that protrudes from the bacterium. Based on the paradigm of a syringe-like mechanism, it is generally assumed that effectors and translocators are unfolded and secreted from the bacterial cytoplasm through the basal body and needle channel. Despite extensive research on T3SS, this hypothesis lacks experimental evidence and the mechanism of secretion is not fully understood. In order to elucidate details of the T3SS secretion mechanism, we generated fusion proteins consisting of a T3SS substrate and a bulky protein containing a knotted motif. Because the knot cannot be unfolded, these fusions are accepted as T3SS substrates but remain inside the NC channel and obstruct the T3SS. To our knowledge, this is the first time substrate fusions have been visualized together with isolated NCs and we demonstrate that substrate proteins are secreted directly through the channel with their N-terminus first. The channel physically encloses the fusion protein and shields it from a protease and chemical modifications. Our results corroborate an elementary understanding of how the T3SS works and provide a powerful tool for in situ-structural investigations in the future. This approach might also be applicable to other protein secretion systems that require unfolding of their substrates prior to secretion.  相似文献   

15.
Many Gram-negative bacteria that cause major diseases and mortality worldwide require the type III secretion system (T3SS) to inject virulence proteins into their hosts and cause infections. A structural component of the T3SS is the needle apparatus, which consists of a base, an external needle, and a tip complex. In Salmonella typhimurium, the external needle is assembled by the polymerization of the needle protein PrgI. On top of this needle sits a tip complex, which is partly formed by the tip protein SipD. How SipD interacts with PrgI during the assembly of the T3SS needle apparatus remains unknown. The central region of PrgI forms an α-helical hairpin, whereas SipD has a long central coiled-coil, which is a defining structural feature of other T3SS tip proteins as well. Using NMR paramagnetic relaxation enhancement, we have identified a specific region on the SipD coiled-coil that interacts directly with PrgI. We present a model of how SipD might dock at the tip of the needle based on our paramagnetic relaxation enhancement results, thus offering new insight about the mechanism of assembly of the T3SS needle apparatus.  相似文献   

16.
17.
Type III secretion systems (T3SSs) are multiprotein molecular devices used by many Gram-negative bacterial pathogens to translocate effector proteins into eukaryotic cells. A T3SS is also used for protein export in flagellar assembly, which promotes bacterial motility. The two systems are evolutionarily related, possessing highly conserved components in their export apparatuses. Enteropathogenic Escherichia coli (EPEC) employs a T3SS, encoded by genes in the locus of enterocyte effacement (LEE) pathogenicity island, to colonize the human intestine and cause diarrheal disease. In the present work, we investigated the role of the LEE-encoded EscO protein (previously Orf15 or EscA) in T3SS biogenesis. We show that EscO shares similar properties with the flagellar FliJ and the Yersinia YscO protein families. Our findings demonstrate that EscO is essential for secretion of all categories of T3SS substrates. Consistent with its central role in protein secretion, it was found to interact with the ATPase EscN and its negative regulator, EscL, of the export apparatus. Moreover, we show that EscO stimulates EscN enzymatic activity; however, it is unable to upregulate ATP hydrolysis in the presence of EscL. Remarkably, EscO partially restored the swimming defect of a Salmonella flagellar fliJ mutant and was able to stimulate the ATPase activity of FliI. Overall, our data indicate that EscO is the virulence counterpart of the flagellar FliJ protein.  相似文献   

18.
Type III secretion systems (T3SSs) are specialized macromolecular machines critical for bacterial virulence, and allowing the injection of bacterial effectors into host cells. The T3SS-dependent injection process requires the prior insertion of a protein complex, the translocon, into host cell membranes consisting of two-T3SS hydrophobic proteins, associated with pore-forming activity. In all described T3SS to date, a hydrophilic protein connects one hydrophobic component to the T3SS needle, presumably insuring the continuum between the hollow needle and the translocon. In the case of Enteropathogenic Escherichia coli (EPEC), the hydrophilic component EspA polymerizes into a filament connecting the T3SS needle to the translocon composed of the EspB and EspD hydrophobic proteins. Here, we identify EspA and EspD as targets of EspC, a serine protease autotransporter of Enterobacteriaceae (SPATE). We found that in vitro, EspC preferentially targets EspA associated with EspD, but was less efficient at proteolyzing EspA alone. Consistently, we found that EspC did not regulate EspA filaments at the surface of primed bacteria that was devoid of EspD, but controlled the levels of EspD and EspA secreted in vitro or upon cell contact. While still proficient for T3SS-mediated injection of bacterial effectors and cytoskeletal reorganization, an espC mutant showed increased levels of cell-associated EspA and EspD, as well as increased pore formation activity associated with cytotoxicity. EspP from enterohaemorrhagic E. coli (EHEC) also targeted translocator components and its activity was interchangeable with that of EspC, suggesting a common and important function of these SPATEs. These findings reveal a novel regulatory mechanism of T3SS-mediated pore formation and cytotoxicity control during EPEC/EHEC infection.  相似文献   

19.
Many gram-negative bacteria use the sophisticated type II secretion system (T2SS) to translocate a wide range of proteins from the periplasm across the outer membrane. The inner-membrane platform of the T2SS is the nexus of the system and orchestrates the secretion process through its interactions with the periplasmic filamentous pseudopilus, the dodecameric outer-membrane complex and a cytoplasmic secretion ATPase. Here, recent structural and biochemical information is reviewed to describe our current knowledge of the biogenesis and architecture of the T2SS and its mechanism of action.  相似文献   

20.
Type III secretion systems (T3SSs) are central virulence mechanisms used by a variety of Gram-negative bacteria to inject effector proteins into host cells. The needle polymer is an essential part of the T3SS that provides the effector proteins a continuous channel into the host cytoplasm. It has been shown for a few T3SSs that two chaperones stabilize the needle protein within the bacterial cytosol to prevent its premature polymerization. In this study, we characterized the chaperones of the enteropathogenic Escherichia coli (EPEC) needle protein EscF. We found that Orf2 and Orf29, two poorly characterized proteins encoded within the EPEC locus of enterocyte effacement (LEE), function as the needle protein cochaperones. Our finding demonstrated that both Orf2 and Orf29 are essential for type III secretion (T3S). In addition, we found that Orf2 and Orf29 associate with the bacterial membrane and form a complex with EscF. Orf2 and Orf29 were also shown to disrupt the polymerization of EscF in vitro. Prediction of the tertiary structures of Orf2 and Orf29 showed high structural homology to chaperones of other T3SS needle proteins. Overall, our data suggest that Orf2 and Orf29 function as the chaperones of the needle protein, and therefore, they have been renamed EscE and EscG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号