首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthetic peptides composed of multiples of the consensus heparin-binding Cardin and Weintraub sequences AKKARA and ARKKAAKA are antimicrobial. Replacement of lysine and arginine by histidine in these peptides completely abrogates their antimicrobial and heparin-binding activities at neutral pH. However, the antibacterial activity against Gram-negative (Escherichia coli, Pseudomonas aeruginosa) and Gram-positive bacteria (Bacillus subtilis and Staphylococcus aureus) as well as the fungus Candida albicans, was restored at acidic conditions (pH 5.5). Fluorescence microscopy and FACS analysis showed that the binding of the histidine-rich peptides to E. coli and Candida was significantly enhanced at pH 5.5. Likewise, fluorescence studies for assessment of membrane permeation as well as electron microscopy analysis of peptide-treated bacteria, paired with studies of peptide effects on liposomes, demonstrated that the peptides induce membrane lysis only at acidic pH. No discernible hemolysis was noted for the histidine-rich peptides. Similar pH-dependent antimicrobial activities were demonstrated for peptides derived from histidine-rich and heparin-binding regions of human kininogen and histidine-rich glycoprotein. The results demonstrate that the presence of an acidic environment is an important regulator of the activity of histidine-rich antimicrobial peptides.  相似文献   

2.
Antimicrobial peptides produced by multicellular organisms as part of their innate system of defense against microorganisms are currently considered potential alternatives to conventional antibiotics in case of infection by multiresistant bacteria. However, while the mode of action of antimicrobial peptides is relatively well described, resistance mechanisms potentially induced or selected by these peptides are still poorly understood. In this work, we studied the mechanisms of action and resistance potentially induced by ApoEdpL-W, a new antimicrobial peptide derived from human apolipoprotein E. Investigation of the genetic response of Escherichia coli upon exposure to sublethal concentrations of ApoEdpL-W revealed that this antimicrobial peptide triggers activation of RcsCDB, CpxAR, and σE envelope stress pathways. This genetic response is not restricted to ApoEdpL-W, since several other antimicrobial peptides, including polymyxin B, melittin, LL-37, and modified S4 dermaseptin, also activate several E. coli envelope stress pathways. Finally, we demonstrate that induction of the CpxAR two-component system directly contributes to E. coli tolerance toward ApoEdpL-W, polymyxin B, and melittin. These results therefore show that E. coli senses and responds to different antimicrobial peptides by activation of the CpxAR pathway. While this study further extends the understanding of the array of peptide-induced stress signaling systems, it also provides insight into the contribution of Cpx envelope stress pathway to E. coli tolerance to antimicrobial peptides.  相似文献   

3.
Hemoglobin is an animal protein described as a source of biologically active peptides. Peptic digestion of bovine hemoglobin alpha-chain allowed obtaining peptide fractions with antimicrobial activity. These peptides were purified by reverse-phase High-Performance Liquid Chromatography (HPLC) and characterized by mass spectrometry. The minimal inhibitory concentration and mode of action of these peptides were studied against five bacterial strains including Escherichia coli and Salmonella enteritidis as Gram-negative bacteria and Listeria innocua, Micrococcus luteus and Staphylococcus aureus as Gram-positive bacteria. The action aforementioned peptides were studied on artificial membranes as well. The most active peptides resulted to be the short ones. Consequently, the minimal peptidic sequence necessary for the antibacterial activity was clearly determined: KYR.  相似文献   

4.
Flexible sequence-random polymers containing cationic and lipophilic subunits that act as functional mimics of host-defense peptides have recently been reported. We used bacteria and lipid vesicles to study one such polymer, having an average length of 21 residues, that is active against both Gram-positive and Gram-negative bacteria. At low concentrations, this polymer is able to permeabilize model anionic membranes that mimic the lipid composition of Escherichia coli, Staphylococcus aureus, or Bacillus subtilis but is ineffective against model zwitterionic membranes, which explains its low hemolytic activity. The polymer is capable of binding to negatively charged vesicles, inducing segregation of anionic lipids. The appearance of anionic lipid-rich domains results in formation of phase-boundary defects through which leakage can occur. We had earlier proposed such a mechanism of membrane disruption for another antimicrobial agent. Experiments with the mutant E. coli ML-35p indicate that permeabilization is biphasic: at low concentrations, the polymer permeabilizes the outer and inner membranes; at higher polymer concentrations, permeabilization of the outer membrane is progressively diminished, while the inner membrane remains unaffected. Experiments with wild-type E. coli K12 show that the polymer blocks passage of solutes into the intermembrane space at high concentrations. Cell membrane integrity in E. coli K12 and S. aureus exhibits biphasic dependence on polymer concentration. Isothermal titration calorimetry indicates that the polymer associates with the negatively charged lipopolysaccharide of Gram-negative bacteria and with the lipoteichoic acid of Gram-positive bacteria. We propose that this polymer has two mechanisms of antibacterial action, one predominating at low concentrations of polymer and the other predominating at high concentrations.  相似文献   

5.
The effects of varying the cationic sequence of oligotryptophan-tagged antimicrobial peptides were investigated in terms of peptide adsorption to model lipid membranes, liposome leakage induction, and antibacterial potency. Heptamers of lysine (K7) and arginine (R7) were lytic against Escherichia coli bacteria at low ionic strength. In parallel, both peptides adsorbed on to bilayers formed by E. coli phospholipids, and caused leakage in the corresponding liposomes. K7 was the more potent of the two peptides in causing liposome leakage, although the adsorption of this peptide on E. coli membranes was lower than that of R7. The bactericidal effect, liposome lysis, and membrane adsorption were all substantially reduced at physiological ionic strength. When a tryptophan pentamer tag was linked to the C-terminal end of these peptides, substantial peptide adsorption, membrane lysis, and bacterial killing were observed also at high ionic strength, and also for a peptide of lower cationic charge density (KNKGKKN-W5). Strikingly, the order of membrane lytic potential of the cationic peptides investigated was reversed when tagged. This and other aspects of peptide behavior and adsorption, in conjunction with effects on liposomes and bacteria, suggest that tagged and untagged peptides act by different lytic mechanisms, which to some extent counterbalance each other. Thus, while the untagged peptides act by generating negative curvature strain in the phospholipid membrane, the tagged peptides cause positive curvature strain. The tagged heptamer of arginine, R7W5, was the best candidate for E. coli membrane lysis at physiological salt conditions and proved to be an efficient antibacterial agent.  相似文献   

6.
We screened an endoparasitic wasp (Pteromalus puparum) cDNA library for DNA sequences having antimicrobial activity using a vital dye exclusion assay. Two dozens of clones were isolated that inhibited the growth of host Escherichia coli cells due to expression of the cloned genes. Three peptides (PP13, PP102 and PP113) were synthesized chemically based on the amino acid sequences deduced from these clones and assayed for their antimicrobial activity. These peptides have net positive charges and are active against both Gram‐negative and ‐positive bacteria, but are not active against fungi tested. Their hemolytic activity on human red blood cells was measured, and no hemolytic activity was observed after 1‐h incubation at a concentration of 62.5 µM or below. A Blast search indicated that the three peptides have not been previously characterized as antimicrobial peptides (AMPs). Salt‐dependency studies revealed that the biocidal activity of these peptides against E. coli decreased with increasing concentration of NaCl. Transmission electron microscopic (TEM) examination of PP13‐treated E. coli cells showed extensive damage of cell membranes. The CD spectroscopy studies noted that the enhanced α‐helical characteristics of PP13 strongly contribute to its higher antimicrobial properties. These results demonstrate the feasibility to identify novel AMPs by screening the expressional cDNA library. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

7.
Infections caused by Gram-negative bacteria, Escherichia coli and Pseudomonas aeruginosa foremost among them, constitute a major worldwide health problem. Bioinformatics methodologies are being used to rationally design new antimicrobial peptides, a potential alternative for treating these infections. One of the algorithms used to develop antimicrobial peptides is the Joker, which was used to design the peptide PaDBS1R6. This study evaluates the antibacterial activities of PaDBS1R6 in vitro and in vivo, characterizes the peptide interaction to target membranes, and investigates the PaDBS1R6 structure in contact with mimetic vesicles. Moreover, we demonstrate that PaDBS1R6 exhibits selective antimicrobial activity against Gram-negative bacteria. In the presence of negatively charged and zwitterionic lipids the structural arrangement of PaDBS1R6 transits from random coil to α-helix, as characterized by circular dichroism. The tertiary structure of PaDBS1R6 was determined by NMR in zwitterionic dodecylphosphocholine (DPC) micelles. In conclusion, PaDBS1R6 is a candidate for the treatment of nosocomial infections caused by Gram-negative bacteria, as template for producing other antimicrobial agents.  相似文献   

8.
UyCT peptides are antimicrobial peptides isolated from the venom of the Australian scorpion. The activity of the UyCT peptides against Gram positive and Gram negative bacteria and red blood cells was determined. The membrane interactions of these peptides were evaluated by dye release (DR) of the fluorophore calcein from liposomes and isothermal titration calorimetry (ITC); and their secondary structure was determined by circular dichroism (CD). Three different lipid systems were used to mimic red blood cells, Escherichia coli and Staphylococcus aureus membranes. UyCT peptides exhibited broad spectrum antimicrobial activity with low MIC for S. aureus and multi-drug resistant Gram negative strains. Peptide combinations showed some synergy enhancing their potency but not hemolytic activity. The UyCT peptides adopted a helical structure in lipid environments and DR results confirmed that the mechanism of action is by disrupting the membrane. ITC data indicated that UyCT peptides preferred prokaryotic rather than eukaryotic membranes. The overall results suggest that UyCT peptides could be pharmaceutical leads for the treatment of Gram negative multiresistant bacterial infections, especially against Acinetobacter baumanni, and candidates for peptidomimetics to enhance their potency and minimize hemolysis. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.  相似文献   

9.
The peptide named codesane (COD), consisting of 18 amino acid residues and isolated from the venom of wild bee Colletes daviesanus (Hymenoptera : Colletidae), falls into the category of cationic α‐helical amphipathic antimicrobial peptides. In our investigations, synthetic COD exhibited antimicrobial activity against Gram‐positive and Gram‐negative bacteria and Candida albicans but also noticeable hemolytic activity. COD and its analogs (collectively referred to as CODs) were studied for the mechanism of their action. The interaction of CODs with liposomes led to significant leakage of calcein entrapped in bacterial membrane‐mimicking large unilamellar vesicles made preferentially from anionic phospholipids while no calcein leakage was observed from zwitterionic liposomes mimicking membranes of erythrocytes. The preference of CODs for anionic phospholipids was also established by the blue shift in the tryptophan emission spectra maxima when the interactions of tryptophan‐containing COD analogs with liposomes were examined. Those results were in agreement with the antimicrobial and hemolytic activities of CODs. Moreover, we found that the studied peptides permeated both the outer and inner cytoplasmic membranes of Escherichia coli. This was determined by measuring changes in the fluorescence of probe N‐phenyl‐1‐naphthylamine and detecting cytoplasmic β‐galactosidase released during the interaction of peptides with E. coli cells. Transmission electron microscopy revealed that treatment of E. coli with one of the COD analogs caused leakage of bacterial content mainly from the septal areas of the cells. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

10.
Novel synthetic mimics of antimicrobial peptides have been developed to exhibit structural properties and antimicrobial activity similar to those of natural antimicrobial peptides (AMPs) of the innate immune system. These molecules have a number of potential advantages over conventional antibiotics, including reduced bacterial resistance, cost-effective preparation, and customizable designs. In this study, we investigate a family of nylon-3 polymer-based antimicrobials. By combining vesicle dye leakage, bacterial permeation, and bactericidal assays with small-angle X-ray scattering (SAXS), we find that these polymers are capable of two interdependent mechanisms of action: permeation of bacterial membranes and binding to intracellular targets such as DNA, with the latter necessarily dependent on the former. We systemically examine polymer-induced membrane deformation modes across a range of lipid compositions that mimic both bacteria and mammalian cell membranes. The results show that the polymers' ability to generate negative Gaussian curvature (NGC), a topological requirement for membrane permeation and cellular entry, in model Escherichia coli membranes correlates with their ability to permeate membranes without complete membrane disruption and kill E. coli cells. Our findings suggest that these polymers operate with a concentration-dependent mechanism of action: at low concentrations permeation and DNA binding occur without membrane disruption, while at high concentrations complete disruption of the membrane occurs. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.  相似文献   

11.
Chionodracine (Cnd) is a 22-residue peptide of the piscidin family expressed in the gills of the Chionodraco hamatus as protection from bacterial infections. Here, we report the effects of synthetic Cnd on both Psychrobacter sp. TAD1 and Escherichia coli bacteria, as well as membrane models. We found that Cnd perforates the inner and outer membranes of Psychrobacter sp. TAD1, making discrete pores that cause the cellular content to leak out. Membrane disruption studies using intrinsic and extrinsic fluorescence spectroscopy revealed that Cnd behaves similarly to other piscidins, with comparable membrane partition coefficients. Membrane accessibility assays and structural studies using NMR in detergent micelles show that Cnd adopts a canonical topology of antimicrobial helical peptides, with the hydrophobic face toward the lipid environment and the hydrophilic face toward the bulk solvent. The analysis of Cnd free energy of binding to vesicles with different lipid contents indicates a preference for charged phospholipids and a more marked binding to native E. coli extracts. Taken with previous studies on piscidin-like peptides, we conclude that Cnd first adsorbs to the membrane, and then forms pores together with membrane fragmentation. Since Cnd has only marginal hemolytic activity, it constitutes a good template for developing new antimicrobial agents.  相似文献   

12.
We investigated the mechanisms of two tryptophan-rich antibacterial peptides (KT2 and RT2) obtained in a previous optimization screen for increased killing of both Gram-negative and Gram-positive bacteria pathogens. At their minimal inhibitory concentrations (MICs), these peptides completely killed cells of multidrug-resistant, enterohemorrhagic pathogen Escherichia coli O157:H7 within 1–5 min. In addition, both peptides exhibited anti-biofilm activity at sub-MIC levels. Indeed, these peptides prevented biofilm formation and triggered killing of cells in mature E. coli O157:H7 biofilms at 1 μM. Both peptides bound to bacterial surface LPS as assessed using the dansyl-polymyxin displacement assay, and were able to interact with the lipids of liposomes as determined by observing a tryptophan blue shift. Interestingly, even though these peptides were highly antimicrobial, they did not induce pore formation or aggregates in bacterial cell membranes. Instead these peptides readily penetrated into bacterial cells as determined by confocal microscopy of labeled peptides. DNA binding assays indicated that both peptides bound to DNA with higher affinity than the positive control peptide buforin II. We propose that cationic peptides KT2 and RT2 bind to negatively-charged LPS to enable self-promoted uptake and, subsequently interact with cytoplasmic membrane phospholipids through their hydrophobic domains enabling translocation across the bacterial membrane and entry into cells within minutes and binding to DNA and other cytoplasmic membrane. Due to their dual antimicrobial and anti-biofilm activities, these peptides may find use as an alternative to (or in conjunction with) conventional antibiotics to treat acute infections caused by planktonic bacteria and chronic, biofilm-related infections.  相似文献   

13.
Plant and animal cells contain pools of endogenous peptides, which are the degradation products of functionally active proteins. It is known that these peptides can possess biological activity; however, the functions of most of them are unknown. The goal of the present study was to estimate the antimicrobial potential of endogenous peptides resulting from the degradation of functional proteins in cells of the moss Physcomitrella patens. Earlier, 117 peptides possessing an antimicrobial potential predicted in silico have been identified in the peptidomes of three types of P. patens cells by mass spectrometry. In the present work, the antimicrobial activity of six of these peptides toward the gram-positive bacteria Bacillus subtilis SHgw and Clavibacter michiganensis pv. michiganensis and gram-negative bacteria Escherichia coli K12 and Xanthomonas arboricola 3004 has been revealed. The results have shown that three of six peptides inhibit the growth of the phytopathogenic bacteria X. arboricola and C. m. pv. michiganensis; four peptides inhibit the growth of the gram-negative bacterium E. coli K12, and one peptide inhibits the growth of the gram-positive bacterium B. subtilis. It has been found that the peptides inhibiting the bacterial growth are predominantly the fragments of ribosomal proteins. The work confirms the potential of the biological activity of peptides that are the degradation products of functional proteins.  相似文献   

14.
In the present study, the antimicrobial peptides BF2-A and BF2-C, two analogues of Buforin 2, were chemically synthesized and the activities were assayed. To elucidate the bactericidal mechanism of BF2-A/C and their different antimicrobial activities, the influence of peptides to E. coli cell membrane and targets of intracellular action were researched. Obviously, BF2-A and BF2-C did not induce the influx of PI into the E. coli cells, indicating nonmemebrane permeabilizing killing action. The FITC-labeled BF2-A/C could penetrate the E. coli cell membrane and BF2-C penetrated the cells more efficiently. Furthermore, BF2-A/C could bind to DNA and RNA respectively, and the affinity of BF2-C to DNA was powerful at least over 4 times than that of BF2-A. The present results implied that BF2-A and BF2-C inhibited the cellular functions by binding to DNA and RNA of cells after penetrating the cell membranes, resulting in the rapid cell death. The structure-activity relationship analysis of BF2-A/C revealed that the cell-penetrating efficiency and the affinity ability to DNA were critical factors for determining the antimicrobial potency of both peptides. The more efficient cell-penetrating and stronger affinity to DNA caused that BF2-C displayed more excellent antimicrobial activity and rapid killing kinetics than BF2-A.  相似文献   

15.
BackgroundHigh antimicrobial efficacy of short tryptophan-and arginine-rich peptides makes them good candidates in the fight against pathogens. Substitution of tryptophan and arginine by histidine could be used to modulate the peptides efficacy by optimizing their structures.MethodsThe peptide (RRWWRWWRR), reported to showed good antimicrobial efficacy, was used as template, seven new analogs being designed substituting tryptophan or arginine with histidine. The peptides' efficacy was tested against E. coli, B. subtilis and S. aureus. The cytotoxicity and hemolytic effect were evaluated and the therapeutic index was inferred for each peptide. Atomic force microscopy and molecular simulation were used to analyze the effects of peptides on bacterial membrane.ResultsThe substitution of tryptophan by histidine proved to strongly modulate the antimicrobial activity, mainly by changing the peptide-to-membrane binding energy. The substitution of arginine has low effect on the antimicrobial efficacy. The presence of histidine residue reduced the cytotoxic and hemolytic activity of the peptides in some cases maintaining the same efficacy against bacteria. The peptides' antimicrobial activity was correlated to the 3D-hydrophobic moment and to a simple structure-based packing parameter.ConclusionThe results show that some of these peptides have the potential to become good candidates to fight against bacteria. The substitution by histidine proved to fine tune the therapeutic index allowing the optimization of the peptide structure mainly by changing its binding energy and 3D-hydrophobic moment.General significanceThe short tryptophan reach peptides therapeutic index can be maximized using the histidine substitution to optimize their structure.  相似文献   

16.
RTA3 is an α-helical, amphipathic peptide with broad-spectrum activity against Gram-negative bacteria and low mammalian cell toxicity. RTA3 contains a cysteine residue, replacement of which with an alanine or serine (RTA3-C15S) virtually abolishes antimicrobial activity. Much of the activity of RTA3 can be recovered in RTA3-C15L, indicating that the C15 residue functions largely as a bulky hydrophobic side chain promoting target cell membrane interactions. The poorly active RTA3-C15S is a useful variant for assessing the mechanistic aspects of RTA3 activity. Binding and membrane perturbation in vesicles containing different proportions of negative surface charge are analyzed in terms of amino acid-specific free energy contributions to interfacial binding, which likely underlie variations in antimicrobial activity amongst RTA3 variants. Comparison with published free energy scales indicates that the reduced electrostatic contribution to binding to membranes having reduced negative surface charge can be compensated in RTA3 (but not RTA3-C15S) by a slightly deeper insertion of the C-terminus of the peptide to maximize hydrophobic contributions to binding. Analysis of inner membrane (IM)- and outer membrane (OM)-selective permeabilization of Escherichiacoli demonstrates a broad similarity between peptide effects on vesicles with low negative surface charge (20% negatively charged lipids), E.coli membrane perturbation, and antimicrobial activity, supporting a role for membrane perturbation in the killing mechanism of RTA3. The results demonstrate that large variations in antimicrobial activity on subtle changes in amino acid sequence in helical amphipathic peptides can be rationalized in terms of the thermodynamics of peptide binding to membranes, allowing a more systematic understanding of antimicrobial activity in these peptides.  相似文献   

17.
The drug-resistant bacterial strains' emergence increases day by day. This may be a result of biofilm presence, which protects bacteria from antimicrobial agents. Thus, new approaches must be used to control biofilm-related infections in healthcare settings. In such a study, biological silver nanoparticles were introduced in such a study as an anti-biofilm agent against multidrug-resistant E. coli U12 on urinary catheters. Seven different silver nanoparticles concentrations were tested for their antimicrobial activities. Also, anti-biofilm activities against E. coli U12 were tested. Using the dilution method, the silver nanoparticles concentration of 85 μg/ml was the MIC (Minimum Inhibitory Concentration) that had excellent biocompatibility and showed significant antibacterial activity against E. coli U12. Scanning electron microscopy (SEM) confirmed that the highest efficient dose of silver nanoparticles was 340 μg/ml at 144 h that reduced adhesion of E. coli U12 to the urinary catheter. E. coli U12 cells ruptured cell walls and cell membranes after being examined using transmission electron microscopy (TEM). Thus, biologically prepared silver nanoparticles could be used to coat medical devices since it is effective and promising to inhibit biofilm formation by impregnating urinary catheters with silver nanoparticles.  相似文献   

18.
Escherichia coli is the main etiological agent of urinary trait infections, able to form biofilms in indwelling devices, resulting in chronic infections which are refractory to antibiotics treatment. In this study, we investigated the antimicrobial and anti-biofilm properties exerted against E. coli ATCC 25922, by a set of peptoids and peptides modeled upon the peptide GN-2, previously reported as a valid antimicrobial agent. The putative antimicrobials were designed to evaluate the effect of cationicity, hydrophobicity and their partitioning on the overall properties against planktonic cells and biofilms as well as on LPS binding, permeabilization of Gram-negative bacteria membranes and hemolysis. The data demonstrated that peptides are stronger antimicrobials than the analogue peptoids which in return have superior anti-biofilm properties. In this study, we present evidence that peptides antimicrobial activity correlates with enhanced LPS binding and hydrophobicity but is not affected by partitioning. The data demonstrated that the enhanced anti-biofilm properties of the peptoids are associated with decreased hydrophobicity and increased penetration of the inner membrane, compared to that of their peptide counterpart, suggesting that the characteristic flexibility of peptoids or their lack of H-bonding donors in their backbone, would play a role in their ability to penetrate bacterial membranes.  相似文献   

19.
A high throughput method for screening cDNA libraries has been developed to identify putative antimicrobial peptides (AMPs). It is based on a rapid dye inclusion assay for assessing antagonism of bacterial viability. Colonies are grown on a membrane on a permissive medium until full colony size is reached. The membrane, supporting the array of colonies, is transferred onto an inductive medium containing a vital dye. Upon expression of any antagonizing peptides, the cell membrane becomes compromised allowing dye infusion to permit visual identification of deleterious peptides.Our approach was validated by screening a synthetic oligonucleotide library expressed in Escherichia coli. A random oligonucleotide library, containing inserts of up to 75 nucleotides in length was constructed and expressed in E. coli. From a potential pool of 100 000 peptides, in a single round of screening, three were found to be antimicrobial: L1, L3, and L8. Peptide L1 was shown to have a concentration-dependent bactericidal effect against Gram-negative E. coli and moderate biostatic activity against the Gram-positive bacteria Listeria monocytogenes. L8 was found to have bacteriostatic, and possibly bactericidal effect against E. coli, Pseudomonas aeruginosa and Salmonella typhimurium. These results validated this high throughput AMP identification assay based on filter bound colony array libraries and vital dye inclusion.  相似文献   

20.
The IQ-motif is an amphipathic, often positively charged, α-helical, calmodulin binding sequence found in a number of eukaryote signalling, transport and cytoskeletal proteins. They share common biophysical characteristics with established, cationic α-helical antimicrobial peptides, such as the human cathelicidin LL-37. Therefore, we tested eight peptides encoding the sequences of IQ-motifs derived from the human cytoskeletal scaffolding proteins IQGAP2 and IQGAP3. Some of these peptides were able to inhibit the growth of Escherichia coli and Staphylococcus aureus with minimal inhibitory concentrations (MIC) comparable to LL-37. In addition some IQ-motifs had activity against the fungus Candida albicans. This antimicrobial activity is combined with low haemolytic activity (comparable to, or lower than, that of LL-37). Those IQ-motifs with anti-microbial activity tended to be able to bind to lipopolysaccharide. Some of these were also able to permeabilise the cell membranes of both Gram positive and Gram negative bacteria. These results demonstrate that IQ-motifs are viable lead sequences for the identification and optimisation of novel anti-microbial peptides. Thus, further investigation of the anti-microbial properties of this diverse group of sequences is merited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号