首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Dengue virus (DENV) infection is a growing public health threat with more than one-third of the world's population at risk. Non-structural protein 4A (NS4A), one of the least characterized viral proteins, is a highly hydrophobic transmembrane protein thought to induce the membrane alterations that harbor the viral replication complex. The NS4A N-terminal (amino acids 1–48), has been proposed to contain an amphipathic α-helix (AH). Mutations (L6E; M10E) designed to reduce the amphipathic character of the predicted AH, abolished viral replication and reduced NS4A oligomerization. Nuclear magnetic resonance (NMR) spectroscopy was used to characterize the N-terminal cytoplasmic region (amino acids 1–48) of both wild type and mutant NS4A in the presence of SDS micelles. Binding of the two N-terminal NS4A peptides to liposomes was studied as a function of membrane curvature and lipid composition. The NS4A N-terminal was found to contain two AHs separated by a non-helical linker. The above mentioned mutations did not significantly affect the helical secondary structure of this domain. However, they reduced the affinity of the N-terminal NS4A domain for lipid membranes. Binding of wild type NS4A(1–48) to liposomes is highly dependent on membrane curvature.  相似文献   

2.
The transmembrane NS4B protein of dengue virus (DENV) is a validated antiviral target that plays important roles in viral replication and invasion of innate immune response. The first 125 amino acids of DENV NS4B are sufficient for inhibition of alpha/beta interferon signaling. Resistance mutations to NS4B inhibitors are all mapped to the first 125 amino acids. In this study, we expressed and purified a protein representing the first 125 amino acids of NS4B (NS4B1–125). This recombinant NS4B1–125 protein was reconstituted into detergent micelles. Solution NMR spectroscopy demonstrated that there are five helices (α1 to α5) present in NS4B1–125. Dynamic studies, together with a paramagnetic relaxation enhancement experiment demonstrated that four helices, α2, α3, α4, and α5 are embedded in the detergent micelles. Comparison of wild type and V63I mutant (a mutation that confers resistance to NS4B inhibitor) NS4B1–125 proteins demonstrated that V63I mutation did not cause significant conformational changes, however, V63 may have a molecular interaction with residues in the α5 transmembrane domain under certain conditions. The structural and dynamic information obtained in study is helpful to understand the structure and function of NS4B.  相似文献   

3.
Nonstructural protein 4A (NS4A) of Dengue virus (DENV) is a membrane protein involved in rearrangements of the endoplasmic reticulum membrane that are required for formation of replication vesicles. NS4A is composed most likely of three membrane domains. The N- and C-terminal domains are supposed to traverse the lipid membrane whereas the central one is thought to reside on the membrane surface, thus forming a u-shaped protein. All three membrane domains are proposed to be helical by secondary structure prediction programs. After performing multi nanosecond molecular dynamics (MD) simulations at various temperatures (300, 310, and 315.15?K) with each of the individual domains, they are used in a docking approach to define putative association motifs of the transmembrane domains (TMDs). Two structures of the u-shaped protein are generated by separating two assembled TMDs linking them with the membrane-attached domain. Lipid undulation is monitored with the structures embedded in a fully hydrated lipid bilayer applying multiple 200?ns MD simulations at 310?K. An intact structure of the protein supports membrane undulation. The strong unwinding of the helices in the domain-linking section of one of the structures lowers its capability to induce membrane curvature. Unwinding of the link region is due to interactions of two tryptophan residues, Trp-96 and 104. These results provide first insights into the membrane-altering properties of DENV NS4A.  相似文献   

4.
Proteins NS4A and NS4B from Dengue Virus (DENV) are highly hydrophobic transmembrane proteins which are responsible, at least in part, for the membrane arrangements leading to the formation of the viral replication complex, essential for the viral life cycle. In this work we have identified the membranotropic regions of DENV NS4A and NS4B proteins by performing an exhaustive study of membrane rupture induced by NS4A and NS4B peptide libraries on simple and complex model membranes as well as their ability to modulate the phospholipid phase transitions P(β')-L(α) of DMPC and L(β)-L(α)/L(α)-H(II) of DEPE. Protein NS4A presents three membrane active regions coincident with putative transmembrane segments, whereas NS4B presented up to nine membrane active regions, four of them presumably putative transmembrane segments. These data recognize the existence of different membrane-active segments on these proteins and support their role in the formation of the replication complex and therefore directly implicated in the DENV life cycle.  相似文献   

5.
Dengue virus (DV) is a positive sense RNA virus replicating in the cytoplasm in membranous compartments that are induced by viral infection. The non-structural protein (NS) 4A is one of the least characterized DV proteins. It is highly hydrophobic with its C-terminal region (designated 2K fragment) serving as a signal sequence for the translocation of the adjacent NS4B into the endoplasmic reticulum (ER) lumen. In this report, we demonstrate that NS4A associates with membranes via 4 internal hydrophobic regions, which are all able to mediate membrane targeting of a cytosolic reporter protein. We also developed a model for the membrane topology of NS4A in which the N-terminal third of NS4A localizes to the cytoplasm, while the remaining part contains three transmembrane segments, with the C-terminal end localized in the ER lumen. Subcellular localization experiments in DV-infected cells revealed that NS4A resides primarily in ER-derived cytoplasmic dot-like structures that also contain dsRNA and other DV proteins, suggesting that NS4A is a component of the membrane-bound viral replication complex (RC). Interestingly, the individual expression of DV NS4A lacking the 2K fragment resulted in the induction of cytoplasmic membrane alterations resembling virus-induced structures, whereas expression of full-length NS4A does not induce comparable membrane alterations. Thus, proteolytic removal of the 2K peptide appears to be important for induction of membrane alterations that may harbor the viral RC. These results shed new light on the role of NS4A in the DV replication cycle and provide a model of how this protein induces membrane rearrangements and how this property may be regulated.  相似文献   

6.
Dengue virus (DENV) interacts with host cellular factors to construct a more favorable environment for replication, and the interplay between DENV and the host cellular cytoskeleton may represent one of the potential antiviral targeting sites. However, the involvement of cellular vimentin intermediate filaments in DENV replication has been explored less. Here, we revealed the direct interaction between host cellular vimentin and DENV nonstructural protein 4A (NS4A), a known component of the viral replication complex (RC), during DENV infection using tandem affinity purification, coimmunoprecipitation, and scanning electron microscopy. Furthermore, the dynamics of vimentin-NS4A interaction were demonstrated by using confocal three-dimensional (3D) reconstruction and proximity ligation assay. Most importantly, we report for the first time the discovery of the specific region of NS4A that interacts with vimentin lies within the first 50 amino acid residues at the cytosolic N-terminal domain of NS4A (N50 region). Besides identifying vimentin-NS4A interaction, vimentin reorganization and phosphorylation by calcium calmodulin-dependent protein kinase II occurs during DENV infection, signifying that vimentin reorganization is important in maintaining and supporting the DENV RCs. Interestingly, we found that gene silencing of vimentin by small interfering RNA induced a significant alteration in the distribution of RCs in DENV-infected cells. This finding further supports the crucial role of intact vimentin scaffold in localizing and concentrating DENV RCs at the perinuclear site, thus facilitating efficient viral RNA replication. Collectively, our findings implicate the biological and functional significance of vimentin during DENV replication, as we propose that the association of DENV RCs with vimentin is mediated by DENV NS4A.  相似文献   

7.
Flavivirus non-structural protein 4A (NS4A) induces membrane rearrangements to form viral replication complex and functions as interferon antagonist. However, other non-structural roles of NS4A protein in relation to virus life-cycle are poorly defined. This study elucidated if dengue virus (DENV) NS4A protein interacts with host proteins and contributes to viral pathogenesis by screening human liver cDNA yeast-two-hybrid library. Our study identified polypyrimidine tract-binding protein (PTB) as a novel interacting partner of DENV NS4A protein. We reported for the first time that PTB influenced DENV production. Gene-silencing studies showed that PTB did not have an effect on DENV entry and DENV RNA translation. Further functional studies revealed that PTB influenced DENV production by modulating negative strand RNA synthesis. This is the first study that enlightens the interaction of DENV NS4A protein with PTB, in addition to demonstrating the novel role of PTB in relation to mosquito-borne flavivirus life-cycle.  相似文献   

8.
Hepatitis C virus (HCV) NS4B protein is a transmembrane highly hydrophobic protein responsible for many key aspects of the viral replication process. The C-terminal part of NS4B is essential for replication and is a potential target for HCV replication inhibitors. In this work we have carried out a study of the binding to and interaction with model biomembranes of a peptide corresponding to the C-terminal domain of NS4B, NS4B(Cter). We show that NS4B(Cter) partitions into phospholipid membranes, is capable of rupturing membranes even at very low peptide-to-lipid ratios and its membrane-activity is modulated by lipid composition. NS4B(Cter) is located in a shallow position in the membrane but it is able to affect the lipid environment from the membrane surface down to the hydrophobic core. Our results identify the C-terminal region of the HCV NS4B protein as a membrane interacting domain, and therefore directly implicated in the HCV life cycle and possibly in the formation of the membranous web.  相似文献   

9.
Nonstructural protein 5A (NS5A) is a membrane-associated essential component of the hepatitis C virus (HCV) replication complex. An N-terminal amphipathic alpha helix mediates in-plane membrane association of HCV NS5A and at the same time is likely involved in specific protein-protein interactions required for the assembly of a functional replication complex. The aim of this study was to identify the determinants for membrane association of NS5A from the related GB viruses and pestiviruses. Although primary amino acid sequences differed considerably, putative membrane anchor domains with amphipathic features were predicted in the N-terminal domains of NS5A proteins from these viruses. Confocal laser scanning microscopy, as well as membrane flotation analyses, demonstrated that NS5As from GB virus B (GBV-B), GBV-C, and bovine viral diarrhea virus, the prototype pestivirus, display membrane association characteristics very similar to those of HCV NS5A. The N-terminal 27 to 33 amino acid residues of these NS5A proteins were sufficient for membrane association. Circular dichroism analyses confirmed the capacity of these segments to fold into alpha helices upon association with lipid-like molecules. Despite structural conservation, only very limited exchanges with sequences from related viruses were tolerated in the context of functional HCV RNA replication, suggesting virus-specific interactions of these segments. In conclusion, membrane association of NS5A by an N-terminal amphipathic alpha helix is a feature shared by HCV and related members of the family Flaviviridae. This observation points to conserved roles of the N-terminal amphipathic alpha helices of NS5A in replication complex formation.  相似文献   

10.
Flavivirus NS1 is a nonstructural glycoprotein that is expressed on the cell surface and secreted into the extracellular space. Despite its transit through the secretory pathway, NS1 is an essential gene linked to early viral RNA replication. How this occurs has remained a mystery given the disparate localization of NS1 and the viral RNA replication complex, as the latter is present on the cytosolic face of the endoplasmic reticulum (ER). We recently identified an N-terminal di-amino acid motif in NS1 that modulates protein targeting and affected viral replication. Exchange of two amino acids at positions 10 and 11 from dengue virus (DENV) into West Nile virus (WNV) NS1 (RQ10NK) changed its relative surface expression and secretion and attenuated infectivity. However, the phenotype of WNV containing NS1 RQ10NK was unstable, as within two passages heterogeneous plaque variants were observed. Here, using a mutant WNV encoding the NS1 RQ10NK mutation, we identified a suppressor mutation (F86C) in NS4B, a virally encoded transmembrane protein with loops on both the luminal and cytoplasmic sides of the ER membrane. Introduction of NS4B F86C specifically rescued RNA replication of mutant WNV but did not affect the wild-type virus. Mass spectrometry and coimmunoprecipitation studies established a novel physical interaction between NS1 and NS4B, suggesting a mechanism for how luminal NS1 conveys signals to the cytoplasm to regulate RNA replication.  相似文献   

11.
The development of novel therapeutic agents is essential for combating the increasing number of cases of dengue fever in endemic countries and among a large number of travelers from non-endemic countries. The dengue virus has three structural proteins and seven non-structural (NS) proteins. NS3 is a multifunctional protein with an N-terminal protease domain (NS3pro) that is responsible for proteolytic processing of the viral polyprotein, and a C-terminal region that contains an RNA triphosphatase, RNA helicase and RNA-stimulated NTPase domain that are essential for RNA replication. The serine protease domain of NS3 plays a central role in the replicative cycle of dengue virus. This review discusses the recent structural and biological studies on the NS2B-NS3 protease-helicase and considers the prospects for the development of small molecules as antiviral drugs to target this fascinating, multifunctional protein.  相似文献   

12.
Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) is a monotopic membrane protein anchored to the membrane by an N-terminal in-plane amphipathic alpha-helix. This membrane anchor is essential for the assembly of a functional viral replication complex. Although amino acid sequences differ considerably, putative membrane anchors with amphipathic features were predicted in NS5A from related Flaviviridae family members, in particular bovine viral diarrhea virus (BVDV), the prototype representative of the genus Pestivirus. We report here the NMR structure of the membrane anchor 1-28 of NS5A from BVDV in the presence of different membrane mimetic media. This anchor includes a long amphipathic alpha-helix of 21 residues interacting in-plane with the membrane interface and including a putative flexible region. Molecular dynamic simulation at a water-dodecane interface used to mimic the surface separating a lipid bilayer and an aqueous medium demonstrated the stability of the helix orientation and the location at the hydrophobic-hydrophilic interface. The flexible region of the helix appears to be required to allow the most favorable interaction of hydrophobic and hydrophilic side chain residues with their respective environment at the membrane interface. Despite the lack of amino acid sequence similarity, this amphipathic helix shares common structural features with that of the HCV counterpart, including a stable, hydrophobic N-terminal segment separated from the more hydrophilic C-terminal segment by a local, flexible region. These structural conservations point toward conserved roles of the N-terminal in-plane membrane anchors of NS5A in replication complex formation of HCV, BVDV, and other related viruses.  相似文献   

13.
The prion protein is usually pictured as globular structured C-terminal domain that is linked to an extended flexible N-terminal tail. However, in its physiological form, it is a glycoprotein tethered to the cell surface via a C-terminal GPI anchor. The low solubility of PrP even without GPI anchor and its strong tendency for aggregation has forced most structural investigations to be performed at low pH and mostly with N-terminally truncated variants. In the present study, we have used a synthetic peptide related to the PrP tetra-octarepeat region, i.e., the sequence (Pro-His-Gly-Gly-Gly-Trp-Gly-Gln)(4), for NMR structural analysis of its preferred conformation in DPC micelles as membrane mimic. Well-defined and identical loops are observed between the four octarepeats that are linked by flexible Gly-Gly-Gly sequences. Interaction with the micelles is mainly through the tryptophan residues that appear to act as anchors. Copper binding to the peptide in the presence of DPC micelles revealed marked conformational rearrangements although binding to the micelles is preserved. Interestingly, titration experiments point to cooperative effects for the four binding sites. A destabilization of the DPC micelles by the peptide parallels the destabilizing effect of the prion protein on membranes so that the octarepeat region appears to be very membrane-active. How the physico-chemical properties reported here are linked to the function and significance of the prion protein remains a puzzle as long as the functional mechanism of the prion protein is not precisely elucidated. Nevertheless, our results emphasize the strong influence of the (membrane) environment on the PrP properties.  相似文献   

14.
A common feature associated with the replication of most RNA viruses is the formation of a unique membrane environment encapsulating the viral replication complex. For their part, flaviviruses are no exception, whereupon infection causes a dramatic rearrangement and induction of unique membrane structures within the cytoplasm of infected cells. These virus-induced membranes, termed paracrystalline arrays, convoluted membranes, and vesicle packets, all appear to have specific functions during replication and are derived from different organelles within the host cell. The aim of this study was to identify which protein(s) specified by the Australian strain of West Nile virus, Kunjin virus (KUNV), are responsible for the dramatic membrane alterations observed during infection. Thus, we have shown using immunolabeling of ultrathin cryosections of transfected cells that expression of the KUNV polyprotein intermediates NS4A-4B and NS2B-3-4A, as well as that of individual NS4A proteins with and without the C-terminal transmembrane domain 2K, resulted in different degrees of rearrangement of cytoplasmic membranes. The formation of the membrane structures characteristic for virus infection required coexpression of an NS4A-NS4B cassette with the viral protease NS2B-3pro which was shown to be essential for the release of the individual NS4A and NS4B proteins. Individual expression of NS4A protein retaining the C-terminal transmembrane domain 2K resulted in the induction of membrane rearrangements most resembling virus-induced structures, while removal of the 2K domain led to a less profound membrane rearrangement but resulted in the redistribution of the NS4A protein to the Golgi apparatus. The results show that cleavage of the KUNV polyprotein NS4A-4B by the viral protease is the key initiation event in the induction of membrane rearrangement and that the NS4A protein intermediate containing the uncleaved C-terminal transmembrane domain plays an essential role in these membrane rearrangements.  相似文献   

15.
An understanding of the folding states of α-helical membrane proteins in detergent systems is important for functional and structural studies of these proteins. Here, we present a rapid and simple method for identification of the folding topology and assembly of transmembrane helices using paramagnetic perturbation in nuclear magnetic resonance spectroscopy. By monitoring the perturbation of signals from glycine residues located at specific sites, the folding topology and the assembly of transmembrane helices of membrane proteins were easily identified without time-consuming backbone assignment. This method is validated with Mistic (membrane-integrating sequence for translation of integral membrane protein constructs) of known structure as a reference protein. The folding topologies of two bacterial histidine kinase membrane proteins (SCO3062 and YbdK) were investigated by this method in dodecyl phosphocholine (DPC) micelles. Combing with analytical ultracentrifugation, we identified that the transmembrane domain of YbdK is present as a parallel dimer in DPC micelle. In contrast, the interaction of transmembrane domain of SCO3062 is not maintained in DPC micelle due to disruption of native structure of the periplasmic domain by DPC micelle.  相似文献   

16.
17.
Flavivirus RNA replication occurs within a replication complex (RC) that assembles on ER membranes and comprises both non-structural (NS) viral proteins and host cofactors. As the largest protein component within the flavivirus RC, NS5 plays key enzymatic roles through its N-terminal methyltransferase (MTase) and C-terminal RNA-dependent-RNA polymerase (RdRp) domains, and constitutes a major target for antivirals. We determined a crystal structure of the full-length NS5 protein from Dengue virus serotype 3 (DENV3) at a resolution of 2.3 Å in the presence of bound SAH and GTP. Although the overall molecular shape of NS5 from DENV3 resembles that of NS5 from Japanese Encephalitis Virus (JEV), the relative orientation between the MTase and RdRp domains differs between the two structures, providing direct evidence for the existence of a set of discrete stable molecular conformations that may be required for its function. While the inter-domain region is mostly disordered in NS5 from JEV, the NS5 structure from DENV3 reveals a well-ordered linker region comprising a short 310 helix that may act as a swivel. Solution Hydrogen/Deuterium Exchange Mass Spectrometry (HDX-MS) analysis reveals an increased mobility of the thumb subdomain of RdRp in the context of the full length NS5 protein which correlates well with the analysis of the crystallographic temperature factors. Site-directed mutagenesis targeting the mostly polar interface between the MTase and RdRp domains identified several evolutionarily conserved residues that are important for viral replication, suggesting that inter-domain cross-talk in NS5 regulates virus replication. Collectively, a picture for the molecular origin of NS5 flexibility is emerging with profound implications for flavivirus replication and for the development of therapeutics targeting NS5.  相似文献   

18.
The three-dimensional structures of the two peptides, lactococcin G-alpha (LcnG-alpha; contains 39 residues) and lactococcin G-beta (LcnG-beta, contains 35 residues), that constitute the two-peptide bacteriocin lactococcin G (LcnG) have been determined by nuclear magnetic resonance (NMR) spectroscopy in the presence of DPC micelles and TFE. In DPC, LcnG-alpha has an N-terminal alpha-helix (residues 3-21) that contains a GxxxG helix-helix interaction motif (residues 7-11) and a less well defined C-terminal alpha-helix (residues 24-34), and in between (residues 18-22) there is a second somewhat flexible GxxxG-motif. Its structure in TFE was similar. In DPC, LcnG-beta has an N-terminal alpha-helix (residues 6-19). The region from residues 20 to 35, which also contains a flexible GxxxG-motif (residues 18-22), appeared to be fairly unstructured in DPC. In the presence of TFE, however, the region between and including residues 23 and 32 formed a well defined alpha-helix. The N-terminal helix between and including residues 6 and 19 seen in the presence of DPC, was broken at residues 8 and 9 in the presence of TFE. The N-terminal helices, both in LcnG-alpha and -beta, are amphiphilic. We postulate that LcnG-alpha and -beta have a parallel orientation and interact through helix-helix interactions involving the first GxxxG (residues 7-11) motif in LcnG-alpha and the one (residues 18-22) in LcnG-beta, and that they thus lie in a staggered fashion relative to each other.  相似文献   

19.
Flaviviruses are positive-sense RNA viruses, and many are important human pathogens. Nonstructural protein 2B and 3 of the flaviviruses (NS2BNS3) form an endoplasmic reticulum (ER) membrane-associated hetero-dimeric complex through the NS2B transmembrane region. The NS2BNS3 complex is multifunctional. The N-terminal region of NS3, and its cofactor NS2B fold into a protease that is responsible for viral polyprotein processing, and the C-terminal domain of NS3 possesses NTPase/RNA helicase activities and is involved in viral RNA replication and virus particle formation. In addition, NS2BNS3 complex has also been shown to modulate viral pathogenesis and the host immune response. Because of the essential functions that the NS2BNS3 complex plays in the flavivirus life cycle, it is an attractive target for antiviral development. This review focuses on the recent biochemical and structural advances of NS2BNS3 and provides a brief update on the current status of drug development targeting this viral protein complex.  相似文献   

20.
Flaviviruses are positive-sense RNA viruses, and many are important human pathogens. Nonstructural protein 2B and 3 of the flaviviruses(NS2BNS3) form an endoplasmic reticulum(ER) membrane-associated hetero-dimeric complex through the NS2B transmembrane region. The NS2BNS3 complex is multifunctional. The N-terminal region of NS3, and its cofactor NS2B fold into a protease that is responsible for viral polyprotein processing, and the C-terminal domain of NS3 possesses NTPase/RNA helicase activities and is involved in viral RNA replication and virus particle formation. In addition, NS2BNS3 complex has also been shown to modulate viral pathogenesis and the host immune response. Because of the essential functions that the NS2BNS3 complex plays in the flavivirus life cycle, it is an attractive target for antiviral development. This review focuses on the recent biochemical and structural advances of NS2BNS3 and provides a brief update on the current status of drug development targeting this viral protein complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号