首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Hyperglycemia in diabetic patients would cause cardiomyocytes oxidative stress and apoptosis due to the excessive reactive oxygen species (ROS) accumulation, leading to progressive deterioration of cardiac structure and function. Long noncoding RNAs (lncRNAs) play essential roles on controlling oxidative stress and apoptotic activity. In the present study, RNA sequencing was used to detect the differentially expressed lncRNAs during high glucose-induced cardiomyocytes oxidative stress and apoptosis. A total of 306/400 lncRNAs were identified as differentially expressed, including 156/198 lncRNAs with increased expression and 150/202 lncRNAs with decreased expression at 24 hours/48 hours after high-glucose stimulation respectively. Among these dysregulated lncRNAs, 45 lncRNAs were consistently differentially expressed in cardiomyocytes at both two time points after high-glucose stimulation. Twenty lncRNAs were upregulated and 25 lncRNAs were downregulated at both 24 hours and 48 hours, respectively. The top three upregulated lncRNAs, NONRATT029805.2, NONRATT007560.2, and NONRATT002486.2 were selected for functional studies to determine the role in oxidative stress-related apoptosis. The results showed that inhibition of non-ratt007560.2 could abate the formation of ROS and reduce apoptosis, suggesting NONRATT007560.2 might play critical roles in the development of cardiomyopathy. The dysregulated lncRNAs might participate in regulating cardiomyocytes oxidative stress and apoptosis. These findings would be important theoretical and experimental basis for investigation on diabetic cardiomyopathy pathogenesis  相似文献   

2.
3.
《Molecular cell》2022,82(24):4681-4699.e8
  1. Download : Download high-res image (153KB)
  2. Download : Download full-size image
  相似文献   

4.
5.
6.
7.
Long noncoding RNAs (lncRNA) snaR is a characterized oncogenic lncRNA in triple negative breast cancer and ovarian cancer, while its role in other human diseases is unknown. In the present study, we found that plasma levels of snaR were upregulated in patients with laryngeal squamous cell carcinoma (LSCC) than in healthy controls. Plasma levels of snaR increased with increase in AJCC stages. Follow-up study showed that high plasma levels of snaR were correlated with poor overall survival. Plasma levels of snaR were positively correlated with transforming growth factor beta (TGF-β1) in patients with LSCC but not in healthy controls. Overexpression of snaR resulted in upregulation of TGF-β1 in cells of human LSCC cell lines, while exogenous TGF-β1 treatment showed no significant effect on snaR expression. snaR overexpression and exogenous TGF-β1 treatment promoted LSCC cell proliferation, migration, and invasion. In addition, TGF-β inhibitor partially reduced the enhancing effects of snaR overexpression on LSCC cell proliferation, migration, and invasion. Therefore, overexpression of lncRNA snaR is correlated with progression and predicts poor survival of LSCC and the mechanism of its actions is likely related to TGF-β1.  相似文献   

8.
9.
10.
11.
The honeybee (Apis mellifera) has a genome with a wide variation in GC content showing 2 clear modal GC values, in some ways reminiscent of an isochore-like structure. To gain insight into causes and consequences of this pattern, we used a comparative approach to study the genome-wide alignment of primarily coding sequence of A. mellifera with Drosophila melanogaster and Anopheles gambiae. The latter 2 species show a higher average GC content than A. mellifera and no indications of bimodality, suggesting that the GC-poor mode is a derived condition in honeybee. In A. mellifera, synonymous sites of genes generally adopt the GC content of the region in which they reside. A large proportion of genes in GC-poor regions have not been assigned to the honeybee assembly because of the low sequence complexity of their genome neighborhood. The synonymous substitution rate between A. mellifera and the other species is very close to saturation, but analyses of nonsynonymous substitutions as well as amino acid substitutions indicate that the GC-poor regions are not evolving faster than the GC-rich regions. We describe the codon usage and amino acid usage and show that they are remarkably heterogeneous within the honeybee genome between the 2 different GC regions. Specifically, the genes located in GC-poor regions show a much larger deviation in both codon usage bias and amino acid usage from the Dipterans than the genes located in the GC-rich regions.  相似文献   

12.
The efficiency of gene expression in all organisms depends on the nucleotide composition of the coding region. GC content and codon usage are the two key sequence features known to influence gene expression, but the underlying molecular mechanisms are not entirely clear. Here we have determined the relative contributions of GC content and codon usage to the efficiency of nuclear gene expression in the unicellular green alga Chlamydomonas reinhardtii. By comparing gene variants that encode an identical amino acid sequence but differ in their GC content and/or codon usage, we show that codon usage is the key factor determining translational efficiency and, surprisingly, also mRNA stability. By contrast, unfavorable GC content affects gene expression at the level of the chromatin structure by triggering heterochromatinization. We further show that mutant algal strains that permit high‐level transgene expression are less susceptible to epigenetic transgene suppression and do not establish a repressive chromatin structure at the transgenic locus. Our data disentangle the relationship between GC content and codon usage, and suggest simple strategies to overcome the transgene expression problem in Chlamydomonas.  相似文献   

13.
Background and Aims: Plant evolution is well known to be frequently associated withremarkable changes in genome size and composition; however,the knowledge of long-term evolutionary dynamics of these processesstill remains very limited. Here a study is made of the finedynamics of quantitative genome evolution in Festuca (fescue),the largest genus in Poaceae (grasses). Methods: Using flow cytometry (PI, DAPI), measurements were made of DNAcontent (2C-value), monoploid genome size (Cx-value), averagechromosome size (C/n-value) and cytosine + guanine (GC) contentof 101 Festuca taxa and 14 of their close relatives. The resultswere compared with the existing phylogeny based on ITS and trnL-Fsequences. Key Results: The divergence of the fescue lineage from related Poeae waspredated by about a 2-fold monoploid genome and chromosome sizeenlargement, and apparent GC content enrichment. The backwardreduction of these parameters, running parallel in both mainevolutionary lineages of fine-leaved and broad-leaved fescues,appears to diverge among the existing species groups. The mostdramatic reductions are associated with the most recently andrapidly evolving groups which, in combination with recent intraspecificgenome size variability, indicate that the reduction processis probably ongoing and evolutionarily young. This dynamicsmay be a consequence of GC-rich retrotransposon proliferationand removal. Polyploids derived from parents with a large genomesize and high GC content (mostly allopolyploids) had smallerCx- and C/n-values and only slightly deviated from parentalGC content, whereas polyploids derived from parents with smallgenome and low GC content (mostly autopolyploids) generallyhad a markedly increased GC content and slightly higher Cx-and C/n-values. Conclusions: The present study indicates the high potential of general quantitativecharacters of the genome for understanding the long-term processesof genome evolution, testing evolutionary hypotheses and theirusefulness for large-scale genomic projects. Taken together,the results suggest that there is an evolutionary advantagefor small genomes in Festuca.  相似文献   

14.
Recently diverged species present particularly informative systems for studying speciation and maintenance of genetic divergence in the face of gene flow. We investigated speciation in two closely related Senecio species, S. aethnensis and S. chrysanthemifolius, which grow at high and low elevations, respectively, on Mount Etna, Sicily and form a hybrid zone at intermediate elevations. We used a newly generated genome‐wide single nucleotide polymorphism (SNP) dataset from 192 individuals collected over 18 localities along an elevational gradient to reconstruct the likely history of speciation, identify highly differentiated SNPs, and estimate the strength of divergent selection. We found that speciation in this system involved heterogeneous and bidirectional gene flow along the genome, and species experienced marked population size changes in the past. Furthermore, we identified highly‐differentiated SNPs between the species, some of which are located in genes potentially involved in ecological differences between species (such as photosynthesis and UV response). We analysed the shape of these SNPs’ allele frequency clines along the elevational gradient. These clines show significantly variable coincidence and concordance, indicative of the presence of multifarious selective forces. Selection against hybrids is estimated to be very strong (0.16–0.78) and one of the highest reported in literature. The combination of strong cumulative selection across the genome and previously identified intrinsic incompatibilities probably work together to maintain the genetic and phenotypic differentiation between these species – pointing to the importance of considering both intrinsic and extrinsic factors when studying divergence and speciation.  相似文献   

15.
16.
Plasmodium falciparum is the parasite responsible for the most acute form of malaria in humans. Recently, the serine repeat antigen (SERA) in P. falciparum has attracted attention as a potential vaccine and drug target, and it has been shown to be a member of a large gene family. To clarify the relationships among the numerous P. falciparum SERAs and to identify orthologs to SERA5 and SERA6 in Plasmodium species affecting rodents, gene trees were inferred from nucleotide and amino acid sequence data for 33 putative SERA homologs in seven different species. (A distance method for nucleotide sequences that is specifically designed to accommodate differing GC content yielded results that were largely compatible with the amino acid tree. Standard-distance and maximum-likelihood methods for nucleotide sequences, on the other hand, yielded gene trees that differed in important respects.) To infer the pattern of duplication, speciation, and gene loss events in the SERA gene family history, the resulting gene trees were then "reconciled" with two competing Plasmodium species tree topologies that have been identified by previous phylogenetic studies. Parsimony of reconciliation was used as a criterion for selecting a gene tree/species tree pair and provided (1) support for one of the two species trees and for the core topology of the amino acid-derived gene tree, (2) a basis for critiquing fine detail in a poorly resolved region of the gene tree, (3) a set of predicted "missing genes" in some species, (4) clarification of the relationship among the P. falciparum SERA, and (5) some information about SERA5 and SERA6 orthologs in the rodent malaria parasites. Parsimony of reconciliation and a second criterion--implied mutational pattern at two key active sites in the SERA proteins-were also seen to be useful supplements to standard "bootstrap" analysis for inferred topologies.  相似文献   

17.
Hepatocellular carcinoma (HCC) is a severe disease with high mortality in the world. It has been shown that long noncoding RNA (lncRNA) might play a role in HCC. The aim of the present study was to identify the role of long intergenic noncoding RNA 01551 (LINC01551) in the HCC development and explore the underlying mechanism of LINC01551/miR-122-5p/ADAM10 axis. The differentially expressed lncRNAs associated with HCC were screened out by a microarray analysis. The expression of LINC01551, miR-122-5p, and ADAM10 was determined in HCC tissues and cells. The potential miRNA (miR-122-5p) regulated by LINC01551 was explored, and the target relationship between miR-122-5p and ADAM10 was confirmed. To evaluate the effect of LINC01551 and miR-122-5p on proliferation, migration, invasion, and apoptosis of HCC, different plasmids were delivered into MHCC97-H cells. High expression of LINC01551 and ADAM10 yet low-expression of miR-122-5p were revealed in HCC tissues and cells. Overexpression of miR-122-5p could downregulate ADAM10. Biological prediction websites and fluorescence in situ hybridization assay verified that LINC01551 was mainly expressed in the cytoplasm. Silencing LINC01551 reduced HCC cell viability, proliferation, migration, invasion, and cell cycle entry yet induce cell apoptosis. Upregulation of LINC01551 increased its ability of competitively binding to miR-122-5p, thus reducing miR-122-5p and upregulating ADAM10 expression, as well as promoting the proliferative, migrative, and invasive ability. Taken together the results, it is highly possible that LINC01551 functions as an competing endogenous RNA (ceRNA) to regulate the miRNA target ADAM10 by sponging miR-122-5p and therefore promotes the development of HCC, highlighting a promising competitive new target for the HCC treatment.  相似文献   

18.
Summary Cell suspension cultures of cotton (Gossypium hitirsutum L. cv. Coker 312) were exposed to various temperature:time treatments in order to select cell lines resistant to high temperature stress. Cells were exposed to 45°C for 3 h each day until the total accumulated hours of stress were: 0 h, 10 h, 75 h, 100 h, or 105 h (81 h pulsed then 24 h continuous). After the stress treatments, the cells were plated onto embryo development medium and plants were recovered. The embryogenic calli that were recovered were subcultured monthly for 6 months and tested for increased resistance to the temperature:time treatments previously determined to be lethal and to water stress as imposed by PEG. All of the selected cell lines were more resistant to both types of stress than the control cell lines. Leaf tissue of stress selected (Ro) formed and maintained callus growth when incubated at 38°C; whereas, tissue excised from nonselected controls rarely formed callus and calli which did form quickly became necrotic. These cells and plants will provide a tool for determining the mechanisms involved in resistance to high temperature stress.  相似文献   

19.
Consecutive exons 6A, 6B, 7 and 8 that encode the variable region of the amino-terminal domain (NTD) of the col11a1 gene product undergo a complex pattern of alternative splicing that is both tissue-dependent and developmentally regulated. Expression of col11a1 is predominantly associated with cartilage where it plays a critical role in skeletal development. At least five splice-forms (6B-7-8, 6A-7-8, 7-8, 6B-7 and 7) are found in cartilage. Splice-forms containing exon 6B or 8 have distinct distributions in the long bone during development, while in non-cartilage tissues, splice-form 6A-7-8 is typically expressed. In order to study this complex and tissue-specific alternative splicing, a mini-gene that contains mouse genomic sequence from exon 5 to 11, flanking the variable region of α1(XI)-NTD, was constructed. The minigene was transfected into chondrocytic (RCS) and non-chondrocytic (A204) cell lines that endogenously express α1(XI), as well as 293 cells which do not express α1(XI). Alternative splicing in RCS and A204 cells reflected the appropriate cartilage and non-cartilage patterns while 293 cells produced only 6A-7-8. This suggests that 6A-7-8 is the default splicing pathway and that cell or tissue-specific trans-acting factors are required to obtain pattern of the alternative splicing of α1(XI) pre-mRNA observed in chondrocytes. Deletional analysis was used to identify cis-acting regions important for regulating splicing. The presence of the intact exon 7 was required to generate the full complex chondrocytic pattern of splicing. Furthermore, deletional mapping of exon 6B identified sequences required for expression of exon 6B in RCS cells and these may correspond to purine-rich (ESE) and AC-rich (ACE) exonic splicing enhancers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号