首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the dental caries pathogen Streptococcus mutans, phosphotransacetylase (Pta) catalyzes the conversion of acetyl coenzyme A (acetyl-CoA) to acetyl phosphate (AcP), which can be converted to acetate by acetate kinase (Ack), with the concomitant generation of ATP. A ΔackA mutant displayed enhanced accumulation of AcP under aerobic conditions, whereas little or no AcP was observed in the Δpta or Δpta ΔackA mutant. The Δpta and Δpta ΔackA mutants also had diminished ATP pools compared to the size of the ATP pool for the parental or ΔackA strain. Surprisingly, when exposed to oxidative stress, the Δpta ΔackA strain appeared to regain the capacity to produce AcP, with a concurrent increase in the size of the ATP pool compared to that for the parental strain. The ΔackA and Δpta ΔackA mutants exhibited enhanced (p)ppGpp accumulation, whereas the strain lacking Pta produced less (p)ppGpp than the wild-type strain. The ΔackA and Δpta ΔackA mutants displayed global changes in gene expression, as assessed by microarrays. All strains lacking Pta, which had defects in AcP production under aerobic conditions, were impaired in their abilities to form biofilms when glucose was the growth carbohydrate. Collectively, these data demonstrate the complex regulation of the Pta-Ack pathway and critical roles for these enzymes in processes that appear to be essential for the persistence and pathogenesis of S. mutans.  相似文献   

2.
3.
Intracellular polysaccharide (IPS) is accumulated by Streptococcus mutans when the bacteria are grown in excess sugar and can contribute toward the cariogenicity of S. mutans. Here we show that inactivation of the glgA gene (SMU1536), encoding a putative glycogen synthase, prevented accumulation of IPS. IPS is important for the persistence of S. mutans grown in batch culture with excess glucose and then starved of glucose. The IPS was largely used up within 1 day of glucose starvation, and yet survival of the parental strain was extended by at least 15 days beyond that of a glgA mutant; potentially, some feature of IPS metabolism distinct from providing nutrients is important for persistence. IPS was not needed for persistence when sucrose was the carbon source or when mucin was present.Streptococcus mutans is a facultative colonizer of the human dental plaque, the microbial pellicle that covers the surface of the teeth. It is the major etiological agent of dental caries (17). Sugar metabolism is central to the behavior of S. mutans (4, 7). It can use a variety of sugars. The sugars are fermented by glycolysis with production of organic acids, particularly lactic acid (4, 7). In addition to providing energy, sucrose is used to produce extracellular polysaccharides to form the biofilm matrix that aids in the association of S. mutans with the dental plaque. Once the S. mutans biofilm becomes part of the dental plaque, the acidic by-products of sugar fermentation dissolve tooth enamel, eventually resulting in dental caries (17). The presence of sugars in the dental plaque is periodic and reflects the intake of dietary sugars. If there is excess sugar available, in addition to producing organic acids and matrix, intracellular (iodophilic) polysaccharide (IPS; glycogen) is formed.The IPS of S. mutans is a polymer of the glycogen-amylopectin type, with α-(1, 4)- and α-(1, 6)-linked glucose, and is stored as intracellular granules (10). Intracellular glycogen storage reserves in various bacterial species are synthesized from glucose-1-P via ADP-glucose (1). The synthesis involves at least three enzymes: glycogen synthase, glucose-1-phosphate pyrophosphorylase, and branching enzyme. The genes encoding these enzymes are commonly found in a glg operon, although the order of genes differs between species. In two gram-positive species, Bacillus subtilis and Bacillus stearothermophilus, the gene order is glgB-glgC-glgD-glgA-glgP (15, 29): glgA encodes glycogen synthase, glgB encodes glucan branching enzyme, and glgC and glgD encode subunits of glucose-1-phosphate pyrophosphorylase. The glgP gene encodes glycogen phosphorylase, which is unlikely to be involved in glycogen synthesis (29). Genes putatively encoding similar enzymes are present in the same order in the genome of S. mutans (29); they are thought also to form an operon.The IPS can be used as a source of carbohydrate for fermentation upon nutrient depletion (11, 13). In planktonic cultures, IPS reserves are largely consumed within 12 h of the imposition of sugar starvation (11, 13, 32). In S. mutans, IPS utilization may prolong acid production and hence the period of lowered pH of the resting (between meals) plaque, a factor that contributes to the incidence of caries. Indeed, IPS is implicated in dental caries: a mutant that synthesized elevated levels of IPS was hypercariogenic in germfree rats (27). Strains isolated from human carious lesions were nearly all stable IPS producers, whereas most strains from caries-inactive persons were variable IPS producers (13, 33).Since S. mutans deep in the dental plaque may not have access to nutrients because of competition with the bacteria at the surface of the plaque, the bacteria may need to survive longer periods of nutrient starvation. Previous studies in our laboratory showed that S. mutans can survive under sugar starvation conditions, provided that the pH remains above ∼5.5 (22). The presence of spent medium and mucin significantly prolonged survival of sugar-starved biofilms and batch cultures (22; also unpublished observations). Here we examine the role of IPS.The role of IPS (glycogen) in bacterial survival has been tested for several other bacterial species. It was found to extend survival of Aerobacter aerogenes (8) and Escherichia coli (28). Intracellular glycogen was also shown to support the survival of Streptococcus mitis during stationary-phase starvation (32). In contrast, glycogen-rich Sarcina lutea died at a higher rate during starvation than did bacteria without glycogen (2).In order to test the role of IPS in S. mutans survival, we constructed an IPS-deficient mutant by inactivating glgA (GenBank SMU.1536) (http://www.oralgen.lanl.gov/), putatively encoding the glycogen synthase. We also constructed a mutant potentially altered in IPS metabolism by inactivating the putative pullulanase structural gene, pul (SMU.1541). Pullulanases are responsible for hydrolyzing α-(1,6) linkages (and in some cases 1,4 linkages) in pullulan and in other polysaccharides (35) and may be important in determining the branching in IPS and/or affecting the catabolism of IPS. We studied the persistence of bacteria under conditions of sugar limitation and of sugar excess in both batch cultures and biofilms. We found that IPS can play a role in supporting S. mutans persistence in batch cultures but found no role for IPS in survival in biofilms.  相似文献   

4.
Role of Streptococcus mutans in human dental decay.   总被引:151,自引:0,他引:151       下载免费PDF全文
  相似文献   

5.
We have previously identified and characterized the alkyl hydroperoxide reductase of Streptococcus mutans, which consists of two components, Nox-1 and AhpC. Deletion of both nox-1 and ahpC had no effect on the sensitivity of S. mutans to cumene hydroperoxide or H(2)O(2), implying that the existence of another antioxidant system(s) independent of the Nox-1-AhpC system compensates for the deficiency. Here, a new antioxidant gene (dpr for Dps-like peroxide resistance gene) was isolated from the S. mutans chromosome by its ability to complement an ahpCF deletion mutant of Escherichia coli with a tert-butyl hydroperoxide-hypersensitive phenotype. The dpr gene complemented the defect in peroxidase activity caused by the deletion of nox-1 and ahpC in S. mutans. Under aerobic conditions, the dpr disruption mutant carrying a spectinomycin resistance gene (dpr::Spc(r) mutant) grew as well as wild-type S. mutans in liquid medium. However, the dpr::Spc(r) mutant could not form colonies on an agar plate under air. In addition, neither the dpr::Spc(r) ahpC::Em(r)::nox-1 triple mutant nor the dpr::Spc(r) sod::Em(r) double mutant was able to grow aerobically in liquid medium. The 20-kDa dpr gene product Dpr is an iron-binding protein. Synthesis of Dpr was induced by exposure of S. mutans cells to air. We propose a mechanism by which Dpr confers aerotolerance on S. mutans.  相似文献   

6.

SUMMARY

Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) genes are present in many bacterial and archaeal genomes. Since the discovery of the typical CRISPR loci in the 1980s, well before their physiological role was revealed, their variable sequences have been used as a complementary typing tool in diagnostic, epidemiologic, and evolutionary analyses of prokaryotic strains. The discovery that CRISPR spacers are often identical to sequence fragments of mobile genetic elements was a major breakthrough that eventually led to the elucidation of CRISPR-Cas as an adaptive immunity system. Key elements of this unique prokaryotic defense system are small CRISPR RNAs that guide nucleases to complementary target nucleic acids of invading viruses and plasmids, generally followed by the degradation of the invader. In addition, several recent studies have pointed at direct links of CRISPR-Cas to regulation of a range of stress-related phenomena. An interesting example concerns a pathogenic bacterium that possesses a CRISPR-associated ribonucleoprotein complex that may play a dual role in defense and/or virulence. In this review, we describe recently reported cases of potential involvement of CRISPR-Cas systems in bacterial stress responses in general and bacterial virulence in particular.  相似文献   

7.
Bacteria utilize quorum-sensing systems to modulate environmental stress responses. The quorum-sensing system of Streptococcus mutans is mediated by the competence-stimulating peptide (CSP), whose precursor is encoded by the comC gene. A comC mutant of strain GS5 exhibited enhanced antimicrobial sensitivity to a wide variety of different agents. Since the addition of exogenous CSP did not complement this phenotype, it was determined that the increased tetracycline, penicillin, and triclosan sensitivities resulted from repression of the putative bacteriocin immunity protein gene, bip, which is located immediately upstream from comC. We further demonstrated that the inactivation of bip or smbG, another bacteriocin immunity protein gene present within the smb operon in S. mutans GS5, affected sensitivity to a variety of antimicrobial agents. Furthermore, both the bip and smbG genes were upregulated in the presence of low concentrations of antibiotics and were induced during biofilm formation relative to in planktonic cells. These results suggest, for the first time, that the antimicrobial sensitivity of a bacterium can be modulated by some of the putative bacteriocin immunity proteins expressed by the organism. The implications of these observations for the evolution of bacteriocin immunity protein genes as well as for potential new chemotherapeutic strategies are discussed.  相似文献   

8.
In work previously reported (J. A. Gutierrez, P. J. Crowley, D. P. Brown, J. D. Hillman, P. Youngman, and A. S. Bleiweis, J. Bacteriol. 178:4166-4175, 1996), a Tn917 transposon-generated mutant of Streptococcus mutans JH1005 unable to synthesize glutamate anaerobically was isolated and the insertion point of the transposon was determined to be in the icd gene encoding isocitrate dehydrogenase (ICDH). The intact icd gene of S. mutans has now been isolated from an S. mutans genomic plasmid library by complementation of an icd mutation in Escherichia coli host strain EB106. Genetic analysis of the complementing plasmid pJG400 revealed an open reading frame (ORF) of 1,182 nucleotides which encoded an enzyme of 393 amino acids with a predicted molecular mass of 43 kDa. The nucleotide sequence contained regions of high (60 to 72%) homology with icd genes from three other bacterial species. Immediately 5' of the icd gene, we discovered an ORF of 1,119 nucleotides in length, designated citZ, encoding a homolog of known citrate synthase genes from other bacteria. This ORF encoded a predicted protein of 372 amino acids with a molecular mass of 43 kDa. Furthermore, plasmid pJG400 was also able to complement a citrate synthase (gltA) mutation of E. coli W620. The enzyme activities of both ICDH, found to be NAD+ dependent, and citrate synthase were measured in cell extracts of wild-type S. mutans and E. coli mutants harboring plasmid pJG400. The region 5' from the citZ gene also revealed a partial ORF encoding 264 carboxy-terminal amino acids of a putative aconitase gene. The genetic and biochemical evidence indicates that S. mutans possesses the enzymes required to convert acetyl coenzyme A and oxalacetate to alpha-ketoglutarate, which is necessary for the synthesis of glutamic acid. Indeed, S. mutans JH1005 was shown to assimilate ammonia as a sole source of nitrogen in minimal medium devoid of organic nitrogen sources.  相似文献   

9.
Role of HtrA in growth and competence of Streptococcus mutans UA159   总被引:3,自引:0,他引:3  
We report here that HtrA plays a role in controlling growth and competence development for genetic transformation in Streptococcus mutans. Disruption of the gene for HtrA resulted in slow growth at 37 degrees C, reduced thermal tolerance at 42 degrees C, and altered sucrose-dependent biofilm formation on polystyrene surfaces. The htrA mutant also displayed a significantly reduced ability to undergo genetic transformation. A direct association between HtrA and genetic competence was demonstrated by the increased expression of the htrA gene upon exposure to competence-stimulating peptide. The induction of htrA gradually reached a maximum at around 20 min, suggesting that HtrA may be involved in a late competence response. Complementation of the htrA mutation in a single copy on the chromosome of the mutant could rescue the defective growth phenotypes but not transformability, apparently because a second gene, spo0J, immediately downstream of htrA, also affects transformation. The htrA and spo0J genes were shown to be both individually transcribed and cotranscribed and probably have a functional connection in competence development. HtrA regulation appears to be finely tuned in S. mutans, since strains containing multiple copies of htrA exhibited abnormal growth phenotypes. Collectively, the results reveal HtrA to be an integral component of the regulatory network connecting cellular growth, stress tolerance, biofilm formation, and competence development and reveal a novel role for the spo0J gene in genetic transformation.  相似文献   

10.
11.
The oral pathogen, Streptococcus mutans, possesses inducible DNA repair defences for protection against pH fluctuations and production of reactive oxygen metabolites such as hydrogen peroxide (H(2) O(2) ), which are present in the oral cavity. DNA base excision repair (BER) has a critical role in genome maintenance by preventing the accumulation of mutations associated with environmental factors and normal products of cellular metabolism. In this study, we examined the consequences of compromising the DNA glycosylases (Fpg and MutY) and endonucleases (Smx and Smn) of the BER pathway and their relative role in adaptation and virulence. Enzymatic characterization of the BER system showed that it protects the organism against the effects of the highly mutagenic lesion, 7,8-dihydro-8-oxo-2'-deoxyguanine (8-oxo-dG). S. mutans strains lacking a functional Fpg, MutY or Smn showed elevated spontaneous mutation frequencies; and, these mutator phenotypes correlated with the ability of the strains to survive killing by acid and oxidative agents. In addition, in the Galleria mellonella virulence model, strains of S. mutans deficient in Fpg, MutY and Smn showed increased virulence as compared with the parent strain. Our results suggest that, for S. mutans, mutator phenotypes, due to loss of BER enzymes, may confer an advantage to virulence of the organism.  相似文献   

12.
13.
规律成簇的间隔短回文重复(CRISPR)及相关基因(cas)组成了CRISPR-Cas系统,该系统存在于约90%的古细菌和40%的细菌基因组内,使细菌对外源基因的入侵具有获得性免疫作用。我们简要介绍细菌CRISPR-Cas系统的结构和作用机制,并对其在细菌毒力、耐药性传递、生物膜形成等生理中的作用进行综述。  相似文献   

14.
15.
16.
The interaction of sucrose and starch with bacterial glucosyltransferases and human salivary amylase may enhance the pathogenic potential of Streptococcus mutans within biofilms by influencing the structural organization of the extracellular matrix and modulating the expression of genes involved in exopolysaccharide synthesis and specific sugar transport and two-component systems.  相似文献   

17.
Genetic heterogeneity in Streptococcus mutans   总被引:19,自引:2,他引:17       下载免费PDF全文
The genetic homogeneity among eight cariogenic strains of Streptococcus mutans was assessed by deoxyribonucleic acid (DNA)-DNA reassociation experiments. DNA species were extracted from strains GS5, Ingbritt, 10449, FAl, BHT, E49, SLl, and KlR. Labeled DNA ((14)C-DNA) was extracted from strains 10449, FAl, and SLl. Denatured (14)C-DNA fragments were allowed to reassociate, i.e., form hybrid duplexes, with denatured DNA immobilized on membrane filters incubated in 0.45 m NaCl-0.045 m sodium citrate at 67 or 75 C. At 67 C, 10449 (14)C-DNA reassociated extensively only with GS5 and Ingbritt DNA. FAl (14)C-DNA hybridized extensively only with BHT DNA, and SLl (14)C-DNA reassociated with KlR and E49 DNA. DNA which hybridized extensively at 67 C also reassociated to a high degree at 75 C. Thermal elution of (14)C-FAl-BHT duplexes showed that the hybrid duplexes were thermostable. The results indicate that S. mutans is a genetically heterogeneous species. The strains studied can be divided into three (possibly four) genetic groups, and these groups closely parallel antigenic groups.  相似文献   

18.
The C-terminal glucan-binding domain of the glucosyltransferase-S of Streptococcus mutans GS-5 contains five 65-amino-acid direct repeating units. A series of deletion derivatives of both the glucosyltransferase-S and its glucan-binding domain were constructed and analyzed. The results demonstrated that the four C-terminal direct repeating units constituted part of the minimum domain required for glucan binding.  相似文献   

19.
20.
Glucose-grown washed cells of streptococci similar to Streptococcus mutans, which contain cell-bound dextransucrase, have been observed to agglutinate upon the addition of high molecular weight dextran. Low molecular weight dextran or unrelated polysaccharides were ineffective. Agglutination also occurred upon addition of sucrose, which can be converted into dextran, but not with other mono- and disaccharides. Other bacteria, including species capable of synthesizing dextrans, were not observed to exhibit this phenomenon. Cells of S. mutans agglutinated upon addition of dextran over a wide pH range, but maximal sensitivity to dextran occurred at pH 8.5. At this pH, such cells can be used for a simple, specific, and exquisitely sensitive qualitative assay for high molecular weight dextran, for addition of 6 ng of dextran with a molecular weight of 2 x 10(6) (i.e., approximately three molecules per cell) caused detectable agglutination. High concentrations of glucose, levan, and dextran of molecular weight of 2 x 10(4) inhibited the reaction. Fluorescein-labeled cells of S. mutans were observed to adhere to dextran-containing plaques and dextran-treated teeth, suggesting that this phenomenon may be of importance in the formation of streptococcal dental plaques. The mechanism responsible for dextraninduced agglutination appears to involve the affinity of a receptor site, possibly dextransucrase, on the surface of several cells for common dextran molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号