首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The crystal structure of the ribosome-inactivating protein (RIP) mistletoe lectin I (ML-I) from Viscum album has been solved by molecular replacement techniques. The structure has been refined to a crystallographic R-factor of 24.5% using X-ray diffraction data to 2.8 A resolution. The heterodimeric 63-kDa protein consists of a toxic A subunit which exhibits RNA-glycosidase activity and a galactose-specific lectin B subunit. The overall protein fold is similar to that of ricin from Ricinus communis; however, unlike ricin, ML-I is already medically applied as a component of a commercially available misteltoe extract with immunostimulating potency and for the treatment of human cancer. The three-dimensional structure reported here revealed structural details of this pharmaceutically important protein. The comparison to the structure of ricin gives more insights into the functional mechanism of this protein, provides structural details for further protein engineering studies, and may lead to the development of more effective therapeutic RIPs.  相似文献   

2.
Ebulin l is a type-II ribosome-inactivating protein (RIP) isolated from the leaves of Sambucus ebulus L. As with other type-II RIP, ebulin is a disulfide-linked heterodimer composed of a toxic A chain and a galactoside-specific lectin B chain. A normal level of ribosome-inactivating N-glycosidase activity, characteristic of the A chain of type-II RIP, has been demonstrated for ebulin l. However, ebulin is considered a nontoxic type-II RIP due to a reduced cytotoxicity on whole cells and animals as compared with other toxic type-II RIP like ricin. The molecular cloning, amino acid sequence, and the crystal structure of ebulin l are presented and compared with ricin. Ebulin l is shown to bind an A-chain substrate analogue, pteroic acid, in the same manner as ricin. The galactoside-binding ability of ebulin l is demonstrated crystallographically with a complex of the B chain with galactose and with lactose. The negligible cytotoxicity of ebulin l is apparently due to a reduced affinity for galactosides. An altered mode of galactoside binding in the 2gamma subdomain of the lectin B chain primarily causes the reduced affinity.  相似文献   

3.
4.
Ribosome-inactivating proteins (RIPs) are toxins involved in plant defense. How the plant prevents autotoxicity is not yet fully understood. The present study is the first structural evidence of a naturally inhibited form of RIP from a plant. Himalayan mistletoe RIP (HmRIP) was purified from Viscum album leaves and crystallized with lactose. The structure was determined by the molecular replacement method and refined at 2.8-A resolution. The crystal structure revealed the presence of high quality non-protein electron density at the active site, into which a pteridine derivative (2-amino 4-isopropyl 6-carboxyl pteridine) was modeled. The carboxyl group of the ligand binds strongly with the key active site residue Arg(162), nullifies the positive charge required for catalysis, and thereby acts as a natural inhibitor. Lectin subunits of RIPs have two active sugar-binding sites present in 1alpha- and 2gamma-subdomains. A third functionally active site has been identified in the 1beta-subdomain of HmRIP. The 1beta-site is active despite the absence of conserved polar sugar-binding residues. Loss of these residues is compensated by the following: (i) the presence of an extended site where the penultimate sugar also interacts with the protein; (ii) the interactions of galactose with the protein main chain carbonyl and amide nitrogen atoms; (iii) the presence of a well defined pocket encircled by four walls; and (iv) a favorable stacking of the galactose ring with Tyr(66) besides the conserved Phe(75). The mode of sugar binding is also distinct at the 1alpha and 2gamma sugar-binding sites.  相似文献   

5.
The crystal structure of thaumatin I, a potently sweet protein isolated from the fruits of the West African shrub, Thaumatococcus danielli Benth, has been refined at a resolution better than 1.65 A using a combination of energy minimization and stereochemically restrained least-squares methods. The final model consists of all 207 amino acids, 28 alternate amino acid conformers and 236 waters, with a crystallographic R-factor of 0.145 for 19,877 reflections having F > 4 sigma F between 10.0 A and 1.65 A (R = 0.167 for all 24,022 reflections). The model has good stereochemistry, with root-mean-square deviations from ideal values for bond and angle distances of 0.014 A and 0.029 A, respectively. The estimated root-mean-square co-ordinate error is 0.15 A. The current model confirms the previously reported 3.1 A C alpha trace in both main chain connectivity and disulfide topology, including two disulfide bonds, that differed from the earlier reported biochemical determination. The structure contains three domains. The core of the molecule consists of an eleven-stranded, flattened beta-sandwich folded into two Greek key motifs. All beta-strands in this sandwich are antiparallel except the parallel N-terminal and the C-terminal strands. The average hydrogen bond length in this sandwich is 2.89 A, with an angle of 155.1 degrees. Two beta-bulges are found in one of the sheets. The second domain consists of two beta-strands forming a beta-ribbon and connected by an omega-loop, and contains a proline residue in cis conformation. This structural motif folds back against the main sandwich to form a smaller sandwich-like structure. The third domain is a disulfide-rich region stretching away from the sandwich portion of the molecule. It contains one alpha-helix and three short helical fragments. Two of the helical segments are connected by an unusually sharp turn, stabilized by a disulfide bridge. One of the three disulfide bonds in this domain takes on two conformations.  相似文献   

6.
BACKGROUND: Colicins are antibiotic-like proteins of Escherichia coli that kill related strains. Colicin E3 acts as an RNase that specifically cleaves 16S rRNA, thereby inactivating the ribosomes in the infected cell. The producing organism is protected against colicin E3 by a specific inhibitor, the immunity protein Im3, which forms a tight 1:1 complex with colicin E3 and renders it inactive. Crystallographic studies on colicin E3 and Im3 have been undertaken to unravel the structural basis for the ribonucleolytic activity and its inhibition. RESULTS: The crystal structure of Im3 has been determined to a resolution of 1.8 A. The structure consists of a four-standard antiparallel beta sheet flanked by three alpha helices on one side of the sheet. Thr7, Phe9, Phe16 and Phe74 form a hydrophobic cluster on the surface of the protein in the vicinity of Cys47. This cluster is part of a putative binding pocket which also includes nine polar residues. CONCLUSIONS: The putative binding pocket of Im3 is the probable site of interaction with colicin E3. The six acidic residues in the pocket may interact with some of the numerous basic residues of colicin E3. The involvement of hydrophobic moieties in the binding is consistent with the observation that the tight complex can only be dissociated by denaturation. The structure of Im3 resembles those of certain nucleic acid binding proteins, in particular domain II of topoisomerase I and RNA-binding proteins that contain the ribonucleoprotein (RNP) sequence motif. This observation suggests that Im3 has a nucleic acid binding function in addition to binding colicin E3.  相似文献   

7.
The cellular protein, cyclophilin A (CypA), is incorporated into the virion of the type 1 human immunodeficiency virus (HIV-1) via a direct interaction with the capsid domain of the viral Gag polyprotein. We demonstrate that the capsid sequence 87His-Ala-Gly-Pro-Ile-Ala92 (87HAGPIA92) encompasses the primary cyclophilin A binding site and present an X-ray crystal structure of the CypA/HAGPIA complex. In contrast to the cis prolines observed in all previously reported structures of CypA complexed with model peptides, the proline in this peptide, Pro 90, binds the cyclophilin A active site in a trans conformation. We also report the crystal structure of a complex between CypA and the hexapeptide HVGPIA, which also maintains the trans conformation. Comparison with the recently determined structures of CypA in complexes with larger fragments of the HIV-1 capsid protein demonstrates that CypA recognition of these hexapeptides involves contacts with peptide residues Ala(Val) 88, Gly 89, and Pro 90, and is independent of the context of longer sequences.  相似文献   

8.
The eosinophil major basic protein (EMBP) is the predominant constituent of the crystalline core of the eosinophil primary granule. EMBP is directly implicated in epithelial cell damage, exfoliation, and bronchospasm in allergic diseases such as asthma. Here we report the crystal structure of EMBP at 1.8 A resolution, and show that it is similar to that of members of the C-type lectin superfamily with which it shares minimal amino acid sequence identity (approximately 15--28%). However, this protein lacks a Ca(2+)/carbohydrate-binding site. Our analysis suggests that EMBP specifically binds heparin. Based on our results, we propose a possible new function for this protein, which is likely to have implications for EMBP function.  相似文献   

9.
From mistletoe Viscum album L. extracts three chitin-binding lectin isoforms, cbML1, cbML2, and cbML3, were isolated and their primary structure determined. All three cbML isoforms are composed of two protein chains of 48 or 49 amino acid residues, linked by an intermolecular disulfide bond. The sequence of each single cbML chain is characterized by a relatively high number of cysteine and glycine residues, 9 and 6, respectively, and contains four intramolecular disulfide bridges. On the basis of the combined interpretation of sequencing and MALDI MS data, the following results for the three cbML isoforms were obtained: the first one consists of two identical truncated polypeptide chains (1--48), the second is a heterodimer, containing one truncated (1--48) and one full-length chain (1--49), and the third is composed of two full length chains (1--49). The cbML sequence shows 55% identity to hevein, a single-chain chitin-binding protein of 43 amino acids, one of the most predominant proteins in natural rubber latex. On the basis of the NMR data on hevein from Hevea brasiliensis the three-dimensional structure of cbML3 was modelled. The 26 sequence changes between cbML3 and hevein were accommodated with only little perturbation in the main chain folding. A comparison of the primary structures of cbML3 and hevein is shown and the effects of the sequence changes are discussed. Differences have been identified in the loop region of the molecule and the potential interface region of cbML3 supporting the dimer formation. The high-affinity chitin-binding site seems to be highly conserved.  相似文献   

10.
The effects of pH on the conformation of mistletoe lectin I and its isolated A- and B-subunits has been investigated by using the methods of intrinsic fluorescence. By the denaturating action of guanidine hydrochloride and the influence of the quenchers (I-, Cs+, acrylamide) the structural stability of the native protein and its isolated subunits was estimated. Treatment of the protein with the denaturant and quenchers revealed its different structure at pH 7.0 and 4.0. At pH 4.0 tryptophan residues become more accessible to quenchers, positive charge of the surrounding area increases and the protein becomes more stable to the action of denaturant. The structure of the isolated A- and B-chains of mistletoe lectin I differs considerably from that of the whole protein: a) its stability to the action of guanidine hydrochloride is lower; b) it depends on the ionic strength of the solvent; c) it is characterized by increased accessibility of tryptophan residues to quenchers (for B-chain). Differences between the conformations of the isolated chains at pH 7.0 and 4.0 are marked more strongly; moreover, at pH 4.5 the B-chain undergoes structural transition. The possible relationship between structural peculiarities of mistletoe lectin I and the mechanism of its transmembrane transfer is discussed.  相似文献   

11.
van Aalten DM  Chong CR  Joshua-Tor L 《Biochemistry》2000,39(33):10082-10089
D-Cysteine differs from the antiarthritis drug D-penicillamine by only two methyl groups on the beta-carbon yet inhibits carboxypeptidase A (CPD) by a distinct mechanism: D-cysteine binds tightly to the active site zinc, while D-penicillamine catalyzes metal removal. To investigate the structural basis for this difference, we solved the crystal structure of carboxypeptidase A complexed with D-cysteine (D-Cys) at 1.75-A resolution. D-Cys binds the active site zinc with a sulfur ligand and forms additional interactions with surrounding side chains of the enzyme. The structure explains the difference in potency between D-Cys and L-Cys and provides insight into the mechanism of D-penicillamine inhibition. D-Cys binding induces a concerted motion of the side chains around the zinc ion, similar to that found in other carboxypeptidase-inhibitor crystal structures and along a limited path. Analysis of concerted motions of CPD and CPD-inhibitor crystal structures reveals a clustering of these structures into distinct groups. Using the restricted conformational flexibility of a drug target in this type of analysis could greatly enhance efficiency in drug design.  相似文献   

12.
Sphingomonas sp. A1 possesses a high molecular weight (HMW) alginate uptake system composed of a novel pit formed on the cell surface and a pit-dependent ATP-binding cassette (ABC) transporter in the inner membrane. The transportation of HMW alginate from the pit to the ABC transporter is mediated by the periplasmic HMW alginate-binding proteins AlgQ1 and AlgQ2. We determined the crystal structure of AlgQ2 complexed with an alginate tetrasaccharide using an alginate-free (apo) form as a search model and refined it at 1.6-A resolution. One tetrasaccharide was found between the N and C-terminal domains, which are connected by three extended hinge loops. The tetrasaccharide complex took on a closed domain form, in contrast to the open domain form of the apo form. The tetrasaccharide was bound in the cleft between the domains through van der Waals interactions and the formation of hydrogen bonds. Among the four sugar residues, the nonreducing end residue was located at the bottom of the cleft and exhibited the largest number of interactions with the surrounding amino acid residues, suggesting that AlgQ2 mainly recognizes and binds to the nonreducing part of a HMW alginate and delivers the polymer to the ABC transporter through conformational changes (open and closed forms) of the two domains.  相似文献   

13.
The thermodynamic binding parameters and crystal structure for streptavidin-peptide complexes where the peptide sequences were obtained by random screening methods are reported. The affinities between streptavidin and two heptapeptides were determined by titrating calorimetric methods [Phe-Ser-His-Pro-Gln-Asn-Thr, Ka = 7944 (+/- 224) M-1, delta G degrees = -5.32 (+/- 0.01) kcal/mol, and delta H degrees = -19.34 (+/- 0.48) kcal/mol; His-Asp-His-Pro-Gln-Asn-Leu, Ka = 3542 (+/- 146) M-1, delta G degrees = -4.84 (+/- 0.03) kcal/mol, and delta H degrees = -19.00 (+/- 0.64) kcal/mol]. The crystal structure of streptavidin complexed with one of these peptides has been determined at 2.0-A resolution. The peptide (Phe-Ser-His-Pro-Gln-Asn-Thr) binds in a turn conformation with the histidine, proline, and glutamine side chains oriented inward at the biotin-binding site. A water molecule is immobilized between the histidine and glutamine side chains of the peptide and an aspartic acid side chain of the protein. Although some of the residues that participate in binding biotin also interact with the screened peptide, the peptide adopts an alternate method of utilizing binding determinants in the biotin-binding site of streptavidin.  相似文献   

14.
C-type lectins are calcium-dependent carbohydrate-recognising proteins. Isothermal titration calorimetry of the C-type Polyandrocarpa lectin (TC14) from the tunicate Polyandrocarpa misakiensis revealed the presence of a single calcium atom per monomer with a dissociation constant of 2.6 microM, and confirmed the specificity of TC14 for D -galactose and related monosaccharides. We have determined the 2.2 A X-ray crystal structure of Polyandrocarpa lectin complexed with D -galactose. Analytical ultracentrifugation revealed that TC14 behaves as a dimer in solution. This is reflected by the presence of two molecules in the asymmetric unit with the dimeric interface formed by antiparallel pairing of the two N-terminal beta-strands and hydrophobic interactions. TC14 adopts a typical C-type lectin fold with differences in structure from other C-type lectins mainly in the diverse loop regions and in the second alpha-helix, which is involved in the formation of the dimeric interface. The D -galactose is bound through coordination of the 3 and 4-hydroxyl oxygen atoms with a bound calcium atom. Additional hydrogen bonds are formed directly between serine, aspartate and glutamate side-chains of the protein and the sugar 3 and 4-hydroxyl groups. Comparison of the galactose binding by TC14 with the mannose binding by rat mannose-binding protein reveals how monosaccharide specificity is achieved in this lectin. A tryptophan side-chain close to the binding site and the distribution of hydrogen-bond acceptors and donors around the 3 and 4-hydroxyl groups of the sugar are essential determinants of specificity. These elements are, however, arranged in a very different way than in an engineered galactose-specific mutant of MBPA. Possible biological functions can more easily be understood from the fact that TC14 is a dimer under physiological conditions.  相似文献   

15.
The structure of A1-III from a Sphingomonas species A1 complexed with a trisaccharide product (4-deoxy-l-erythro-hex-4-enepyranosyluronate-mannuronate-mannuronic acid) was determined by X-ray crystallography at 2.0 A with an R-factor of 0.16. The final model of the complex form comprising 351 amino acid residues, 245 water molecules, one sulfate ion and one trisaccharide product exhibited a C(alpha) r.m.s.d. value of 0.154 A with the reported apo form of the enzyme. The trisaccharide was bound in the active cleft at subsites -3 approximately -1 from the non-reducing end by forming several hydrogen bonds and van der Waals interactions with protein atoms. The catalytic residue was estimated to be Tyr246, which existed between subsites -1 and +1 based on a mannuronic acid model oriented at subsite +1.  相似文献   

16.
Purine nucleoside phosphorylase (PNP) catalyzes the phosphorolysis of the N-ribosidic bonds of purine nucleosides and deoxynucleosides. PNP is a target for inhibitor development aiming at T-cell immune response modulation and has been submitted to extensive structure-based drug design. More recently, the 3-D structure of human PNP has been refined to 2.3A resolution, which allowed a redefinition of the residues involved in the substrate-binding sites and provided a more reliable model for structure-based design of inhibitors. This work reports crystallographic study of the complex of Human PNP:guanine (HsPNP:Gua) solved at 2.7A resolution using synchrotron radiation. Analysis of the structural differences among the HsPNP:Gua complex, PNP apoenzyme, and HsPNP:immucillin-H provides explanation for inhibitor binding, refines the purine-binding site, and can be used for future inhibitor design.  相似文献   

17.
Human cytosolic 3,5,3'-triiodo-L-thyronine-binding protein, also called mu-crystallin or CRYM, plays important physiological roles in transporting 3,5,3'-triiodo-L-thyronine (T(3)) into nuclei and regulating thyroid-hormone-related gene expression. The crystal structure of human CRYM's bacterial homolog Pseudomonas putida ornithine cyclodeaminase and Archaeoglobus fulgidus alanine dehydrogenase have been available, but no CRYM structure has been reported. Here, we report the crystal structure of human CRYM bound with NADPH refined to 2.6 A, and there is one dimer in the asymmetric unit. The structure contains two domains: a Rossmann fold-like NADPH-binding domain and a dimerization domain. Different conformations of the loop Arg83-His92 have been observed in two monomers of human CRYM in the same asymmetric unit. The peptide bond of Val89-Pro90 is a trans-configuration in one monomer but a cis-configuration in the other. A detailed comparison of the human mu-crystallin structure with its structurally characterized homologs including the overall comparison and superposition of active sites was conducted. Finally, a putative T(3)-binding site in human CRYM is proposed based on comparison with structural homologs.  相似文献   

18.
The three-dimensional structure of the single-chain Fv fragment 1F9 in complex with turkey egg-white lysozyme (TEL) has been determined to a nominal resolution of 2.0 A by X-ray diffraction. The scFv fragment 1F9 was derived from phage-display libraries in two steps and binds both hen and turkey egg-white lysozyme, although the level of binding affinity is two orders of magnitude greater for the turkey lysozyme. The comparison of the crystal structure with a model of the single-chain Fv fragment 1F9 in complex with hen egg-white lysozyme (HEL) reveals that in the latter a clash between Asp101 in lysozyme and Trp98 of the complementarity determining region H3 of the heavy chain variable domain occurs. This is the only explanation apparent from the crystal structure for the better binding of TEL compared to HEL.The binding site topology on the paratope is not simply a planar surface as is usually found in antibody-protein interfaces, but includes a cleft between the light chain variable domain and heavy chain variable domain large enough to accommodate a loop from the lysozyme. The scFv fragment 1F9 recognizes an epitope on TEL that differs from the three antigenic determinants recognized in other known crystal structures of monoclonal antibodies in complex with lysozyme.  相似文献   

19.
Two paralogous groups of liver fatty acid-binding proteins (FABPs) have been described: the mammalian type liver FABPs and the basic type (Lb-FABPs) characterized in several vertebrates but not in mammals. The two groups have similar sequences and share a highly conserved three-dimensional structure, but their specificity and stoichiometry of binding are different. The crystal structure of chicken Lb-FABP complexed with cholic acid and that of the apoprotein refined to 2.0 A resolution are presented in this paper. The two forms of the protein crystallize in different space groups, and significant changes are observed between the two conformations. The holoprotein binds two molecules of cholate in the interior cavity, and the contacts observed between the two ligands can help to explain the reason for this stoichiometry of binding. Most of the amino acids involved in ligand binding are conserved in other members of the Lb-FABP family. Since the amino acid sequence of the Lb-FABPs is more similar to that of the bile acid-binding proteins than to that of the L-FABPs, the possibility that the Lb-FABPs might be more appropriately called liver bile acid-binding proteins (L-BABPs) is suggested.  相似文献   

20.
alpha-Galactosidases catalyze the hydrolysis of alpha-1,6-linked galactosyl residues from galacto-oligosaccharides and polymeric galacto-(gluco)mannans. The crystal structure of rice alpha-galactosidase has been determined at 1.5A resolution using the multiple isomorphous replacement method. The structure consisted of a catalytic domain and a C-terminal domain and was essentially the same as that of alpha-N-acetylgalactosaminidase, which is the same member of glycosyl hydrolase family 27. The catalytic domain had a (beta/alpha)8-barrel structure, and the C-terminal domain was made up of eight beta-strands containing a Greek key motif. The structure was solved as a complex with d-galactose, providing a mode of substrate binding in detail. The d-galactose molecule was found bound in the active site pocket on the C-terminal side of the central beta-barrel of the catalytic domain. The d-galactose molecule consisted of a mixture of two anomers present in a ratio equal to their natural abundance. Structural comparisons of rice alpha-galactosidase with chicken alpha-N-acetylgalactosaminidase provided further understanding of the substrate recognition mechanism in these enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号