首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experiments were done in male Wistar rats to investigate the effects of microinjection of hypocretin-1 (Hcrt-1) into the nucleus of the solitary tract (NTS) on mean arterial pressure (MAP), heart rate (HR), and the baroreflex. In the first series, the distribution of Hcrt-1-like immunoreactivity (Ir) was mapped within the region of NTS. Hcrt-1 Ir was found throughout the NTS region, predominantly within the caudal dorsolateral (Slt), medial (Sm), and interstitial subnuclei of the NTS. In the second series, in alpha-chloralose or urethane-anesthetized rats, microinjection of Hcrt-1 (0.5-5 pmol) into the caudal NTS elicited a dose-dependent decrease in MAP and HR. A mapping of the caudal NTS region showed that the largest depressor and bradycardia responses elicited by Hcrt-1 were from sites in the Slt and Sm. In addition, doses >2.5 pmol at a small number of sites localized to the caudal commissural nucleus of NTS elicited pressor and tachycardia responses. Intravenous administration of the muscarinic receptor blocker atropine methyl bromide abolished the bradycardia response and attenuated the depressor response, whereas subsequent administration of the nicotinic receptor blocker hexamethonium bromide abolished the remaining MAP response. Finally, microinjection of Hcrt-1 into the NTS significantly potentiated the reflex bradycardia to activation of arterial baroreceptors as a result of increasing MAP by systemic injections of phenylephrine (2-4 microg/kg). These results suggest that Hcrt-1 in the NTS activates neuronal circuits that increases vagal activity to the heart, inhibits sympathetic activity to the heart and vasculature, and alters the excitability of NTS neuronal circuits that reflexly control the circulation.  相似文献   

2.
Urocortins are members of the hypothalamic corticotropin-releasing factor (CRF) peptide family. Urocortin1 (UCN1) mRNA has been reported to be expressed in the brainstem neurons. The present investigation was carried out to test the hypothesis that microinjections of UCN1 into the nucleus ambiguus (nAmb) may elicit cardiac effects. Urethane-anesthetized, artificially ventilated, adult male Wistar rats, weighing between 300-350 g, were used. nAmb was identified by microinjections of l-glutamate (5 mM, 30 nl). Microinjections (30 nl) of different concentrations (0.062, 0.125, 0.25, and 0.5 mM) of UCN1 into the nAmb elicited bradycardic responses (26.5 ± 1, 30.1 ± 1.7, 46.9 ± 1.7, and 40.3 ± 2.6 beats/min, respectively). These heart rate responses were not accompanied by significant changes in mean arterial pressure. The bradycardic responses to maximally effective concentration of UCN1 (0.25 mM) were significantly (P < 0.05) attenuated by prior microinjections of a selective antagonist (NBI 27914, 1.5 mM) for CRF type 1 receptor (CRF1R). Prior microinjections of ionotropic glutamate receptor (iGLUR) antagonists [d-(-)-2-amino-7-phosphono-heptanoic acid and 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo-(f)quinoxaline-7-sulfonamide disodium] also attenuated the bradycardia elicited by UCN1 microinjections into the nAmb. Microinjections of NBI 27914 (1.5 mM) into the nAmb did not alter baroreflex responses. Bilateral vagotomy abolished the bradycardic responses to microinjections of UCN1 into the nAmb. These results indicated that 1) microinjections of UCN1 into the nAmb elicited bradycardia, 2) the bradycardia was vagally mediated, 3) activation of CRF1Rs in the nAmb was responsible for the actions of UCN1, and 4) activation of iGLURs in the nAmb also participated in the bradycardia elicited by UCN1.  相似文献   

3.
J. Neurochem. (2012) 122, 1129-1136. ABSTRACT: Urocortin 3 (also known as stresscopin) is an endogenous ligand for the corticotropin-releasing factor receptor 2 (CRF(2) ). Despite predominant G(s) coupling of CRF(2) , promiscuous coupling with other G proteins has been also associated with the activation of this receptor. As urocortin 3 has been involved in central cardiovascular regulation at hypothalamic and medullary sites, we examined its cellular effects on cardiac vagal neurons of nucleus ambiguus, a key area for the autonomic control of heart rate. Urocortin 3 (1?nM-1000?nM) induced a concentration-dependent increase in cytosolic Ca(2+) concentration that was blocked by the CRF(2) antagonist K41498. In the case of two consecutive treatments with urocortin 3, the second urocortin 3-induced Ca(2+) response was reduced, indicating receptor desensitization. The effect of urocortin 3 was abolished by pre-treatment with pertussis toxin and by inhibition of phospolipase C with U-73122. Urocortin 3 activated Ca(2+) influx via voltage-gated P/Q-type channels as well as Ca(2+) release from endoplasmic reticulum. Urocortin 3 promoted Ca(2+) release via inositol 1,4,5 trisphosphate receptors, but not ryanodine receptors. Our results indicate a novel Ca(2+) -mobilizing effect of urocortin 3 in vagal pre-ganglionic neurons of nucleus ambiguus, providing a cellular mechanism for a previously reported role for this peptide in parasympathetic cardiac regulation.  相似文献   

4.
Zhang JH  Sampogna S  Morales FR  Chase MH 《Peptides》2002,23(8):1479-1483
Hypocretin-1 (hcrt-1) and hypocretin-2 (hcrt-2) are two recently discovered hypothalamic neuropeptides. In the present study, using double immunofluorescent techniques, the co-localization of hcrt-1 and hcrt-2 was examined in neuronal soma and fibers/terminals located, respectively, in the cat hypothalamus and brainstem. In the hypothalamus, all hcrt-1 positive neuronal soma also displayed hcrt-2 immunoreactivity. In the brainstem, both hcrt-1 and hcrt-2 antibodies labeled the same fibers/terminals, indicating that hcrt-1 and hcrt-2 co-localize not only in the neuronal soma (hypothalamus) but also in their fibers/terminals (brainstem). If both peptides are released following neuronal activity, then the distinct effects of these peptides in the brain are likely to depend on the types of postsynaptic receptors that are activated.  相似文献   

5.
Extracellular recordings were made in the right nucleus ambiguus of urethane-anesthetized rats from 33 neurons that were activated at constant latency from the craniovagal cardiac branch. Their calculated conduction velocities were in the B-fiber range (1.6-13.8 m/s, median 4.2), and most (22/33) were silent. Active units were confirmed as cardiac vagal motoneurons (CVM) by the collision test for antidromic activation and by the presence of cardiac rhythmicity in their resting discharge (9/9). Brief arterial pressure rises of 20-50 mmHg increased the activity in five of five CVM by 0.1 +/- 0.02 spikes. s(-1). mmHg(-1) from a resting 3.8 +/- 1.2 spikes/s; they also recruited activity in two of four previously silent cardiac branch-projecting neurons. CVM firing was modulated by the central respiratory cycle, showing peak activity during inspiration (8/8). Rat CVM thus show firing properties similar to those in other species, but their respiratory pattern is distinct. These findings are discussed in relation to mechanisms of respiratory sinus arrhythmia.  相似文献   

6.
Nesfatin‐1, a peptide whose receptor is yet to be identified, has been involved in the modulation of feeding, stress, and metabolic responses. More recently, increasing evidence supports a modulatory role for nesfatin‐1 in autonomic and cardiovascular activity. This study was undertaken to test if the expression of nesfatin‐1 in the nucleus ambiguus, a key site for parasympathetic cardiac control, may be correlated with a functional role. As we have previously demonstrated that nesfatin‐1 elicits Ca2+ signaling in hypothalamic neurons, we first assessed the effect of this peptide on cytosolic Ca2+ in cardiac pre‐ganglionic neurons of nucleus ambiguus. We provide evidence that nesfatin‐1 increases cytosolic Ca2+ concentration via a Gi/o‐coupled mechanism. The nesfatin‐1‐induced Ca2+ rise is critically dependent on Ca2+ influx via P/Q‐type voltage‐activated Ca2+ channels. Repeated administration of nesfatin‐1 leads to tachyphylaxis. Furthermore, nesfatin‐1 produces a dose‐dependent depolarization of cardiac vagal neurons via a Gi/o‐coupled mechanism. In vivo studies, using telemetric and tail‐cuff monitoring of heart rate and blood pressure, indicate that microinjection of nesfatin‐1 into the nucleus ambiguus produces bradycardia not accompanied by a change in blood pressure in conscious rats. Taken together, our results identify for the first time that nesfatin‐1 decreases heart rate by activating cardiac vagal neurons of nucleus ambiguus.

  相似文献   


7.
The ontogenetic development of the nucleus ambiguus was studied in a series of human embryos and fetuses ranging from 3 to 12.5 weeks of menstrual age (4 to 66 mm crown-rump length). They were prepared by Nissl and silver methods. Nucleus ambiguus neuroblasts, whose neurites extend towards and into the IXth and rostral Xth nerve roots, appear in the medial motor column of 4-6-week-old embryos (4.25-11 mm). These cells then migrate laterally (6.5 weeks, 14 mm) to a position near the dorsal motor nucleus of X. At 7 weeks (15 mm), nucleus ambiguus cells begin their migration, which progresses rostrocaudally, into their definitive ventrolateral position. The basic pattern of organization of the nucleus is established in its rostral region at 8 weeks (22.2-24 mm) and extends into its caudal region by 9 weeks (32 mm), when its nearly adult organization is evident. Cells having the characteristics of mature neurons first appear rostrally in the nucleus during the 8.5-9-week period (24.5-32 mm), gradually increase in number, and constitute the entire nucleus at 12.5 weeks (65.5 mm). Definitive neuronal subgroups first appear at 10 weeks (37.5 mm) in the large rostral nuclear region. These features suggest that the human nucleus ambiguus develops along a rostrocaudal temporospatial gradient. Evidence indicates that function of nucleus ambiguus neurons, manifested by fetal reflex swallowing, occurs after the cells migrate into their definitive position, establish the definitive nuclear pattern, and exhibit mature characteristics.  相似文献   

8.
The nucleus ambiguus (NA) and the dorsal motor nucleus of the vagus (DmnX) innervate distinct populations of cardiac ganglionic principal neurons. This anatomic evidence suggests that these two nuclei play different roles (Cheng Z and Powley TL, Soc Neurosci Abstr 26: 1189, 2000). However, lesion of the DmnX does not attenuate baroreflex sensitivity (Cheng Z, Guo SZ, Lipton AJ, and Gozal D, J Neurosci 22: 3215-3226, 2002). The present study tested the functional role of the NA in baroreflex control of heart rate (HR). Domoic acid (DA) was injected into the left NA of Sprague-Dawley rats to lesion the NA. The neuronal loss was assessed using retrograde labeling and confocal microscopy. HR changes induced by phenylephrine and sodium nitroprusside administration and after electrical stimulation of the left vagal trunk were measured at 15 days, and HR responses to left NA microinjection of L-glutamate were determined at 180 days postlesion. Compared with vehicle injections, DA lesions significantly reduced the population of NA motor neurons by approximately 68% (P < 0.01) and attenuated baroreflex sensitivity by approximately 83% (P < 0.01) at 15 days. Similarly, electrical stimulation of the vagal trunk of DA-lesioned animals led to attenuated decreases in HR responses. NA neuronal counts were reduced by approximately 81% (P < 0.01) and mean HR responses to l-glutamate injection into the lesioned NA were attenuated by approximately 65% (P < 0.01) at 180 days. Therefore, the NA plays a major role in baroreflex control of HR, and the integrity of the NA is critically important for the normal baroreflex control. In addition, NA lesions produce long-term anatomic and functional dysfunction of the nucleus, and thus it may provide an useful model for functional assessment of respective roles of the NA and DmnX.  相似文献   

9.
The effects of prostaglandin E1 (PGE1) and prostaglandin F1 alpha (PGF1 alpha) were studied on perfused rat hearts and isolated rat atria. Both PGE1 and PGF1 alpha produced dose-dependent increases in right atrial rate but had no effect on left atrial tension development. PGE1 (10(-4) M) increased right atrial cyclic AMP content without changing phosphorylase a activity. PGF1 alpha (10(-4) M) did not change right atrial cyclic AMP or cyclic GMP content. Both prostaglandins had no effect on left atrial cyclic nucleotide content. When infused at a rate of 1 microgram/min, PGE1 produced a time-dependent increase in cyclic AMP content in the Langendorff perfused hearts but did not alter contractile force development or phosphorylase a activity. An infusion of PGF1 alpha produced a dose-dependent increase in tension development which was secondary to a negative chronotropic effect. PGF1 alpha (1 microgram/min) did not produce any changes in cyclic nucleotide levels or phosphorylase a activity in the Langendorff perfused hearts. These results show that PGE1 can selectively increase myocardial cyclic AMP content without altering contractile force or phosphorylase activity and that PGF1 alpha does not increase rat cardiac AMP levels.  相似文献   

10.
The vocal motor control of the larynx was studied with single unit recordings from the efferent motor nucleus (nucleus ambiguus) in the CF-FM-bat Rhinolophus rouxi, spontaneously emitting echolocation sounds. The experiments were performed in a stereotaxic apparatus that allowed differentiation of activities in the recorded nucleus depending on the electrode position (Fig. 1). Echolocation calls and respiration activity were monitored simultaneously, thus it was possible to compare the time course of the motor control activity during respiration with and without concurrent vocalization. Unit discharges were classified as laryngeal motoneuron activity according to their correlation with the time course (onset and end) of echolocation calls and their discharge rate as: Pre-off-tonic, pre-off-phasic, off-pauser, off-tonic, on-chopper, on-tonic, prior-tonic and inhibitory (Fig. 4). The on-chopper and on-tonic discharge patterns were assigned to the motor activity of the lateral cricoarytenoid muscle and the off-pauser and off-tonic discharge patterns to the motor activity of the posterior cricoarytenoid muscle controlling the time course of vocal pulses. Motoneuron activities recorded under the condition of systematically shifted frequencies in the emitted echolocation calls were investigated in Doppler-shift compensating bats responding to electronically simulated echoes. Of all neurons classified as motor control, only units of the pre-off-tonic discharge type (cricothyroid muscle) changed their activity with frequency shifts in the vocalized pulses; they showed a positive linear correlation with the emitted sound frequency (Fig. 6). In addition, single unit activities in strict synchronization to vocalization were recorded, that by their low discharge rate were not valid as motor control, and were considered to represent activities of interneurons or internuclear neurons connecting the nucleus ambiguus with other vocalization- and respiration-centers (Fig. 3c). Electric lesions in the brain stem and iontophoretically applied horseradish peroxidase (HRP) served as references for localization and morphological identification of the recording sites in cell stained brain slices.  相似文献   

11.
Horseradish peroxidase was applied by inotophoretic injections to physiologically identified regions of the laryngeal motor nucleus, the nucleus ambiguus in the CF/FM bat Rhinolophus rouxi. The connections of the nucleus ambiguus were analysed with regards to their possible functional significance in the vocal control system, in the respiration control system, and in mediating information from the central auditory system. The nucleus ambiguus is reciprocally interconnected with nuclei involved in the generation of the vocal motor pattern, i.e., the homonomous contralateral nucleus and the area of the lateral reticular formation. Similarly, reciprocal connections are found with the nuclei controlling the rhythm of respiration, i.e., medial parts of the medulla oblongata and the parabrachial nuclei. Afferents to the nucleus ambiguus derive from nuclei of the 'descending vocalization system' (periaqueductal gray and cuneiform nuclei) and from motor control centers (red nucleus and frontal cortex). Afferents to the nucleus ambiguus, possibly mediating auditory influence to the motor control of vocalization, come from the superior colliculus and from the pontine nuclei. The efferents from the pontine nuclei are restricted to rostral parts of the nucleus ambiguus, which hosts the motoneurons of the cricothyroid muscle controlling the call frequency.  相似文献   

12.
13.
The neuropeptides hypocretins (orexins), the loss of which results in the sleep disorder narcolepsy, are hypothesized to be involved in the consolidation of wakefulness and have been proposed to be part of the circadian-driven alertness signal. To elucidate the role of hypocretins in the consolidation of human wakefulness we examined the effect of wake extension on hypocretin-1 in squirrel monkeys, primates that consolidate wakefulness during the daytime as do humans. Wake was extended up to 7 h with hypocretin-1, cortisol, ghrelin, leptin, locomotion, and feeding, all being assayed. Hypocretin-1 (P < 0.01), cortisol (P < 0.001), and locomotion (P < 0.005) all increased with sleep deprivation, while ghrelin (P = 0.79) and leptin (P = 1.00) did not change with sleep deprivation. Using cross-correlation and multivariate modeling of these potential covariates along with homeostatic pressure (a measure of time awake/asleep), we found that time of day and homeostatic pressure together explained 44% of the variance in the hypocretin-1 data (P < 0.001), while cortisol did not significantly contribute to the overall hypocretin-1 variance. Locomotion during the daytime, but not during the nighttime, helped explain < 5% of the hypocretin-1 variance (P < 0.05). These data are consistent with earlier evidence indicating that in the squirrel monkey hypocretin-1 is mainly regulated by circadian inputs and homeostatic sleep pressure. Concomitants of wakefulness that affect hypocretin-1 in polyphasic species, such as locomotion, food intake, and food deprivation, likely have a more minor role in monophasic species, such as humans.  相似文献   

14.
Acid-sensing ion channels (ASIC) are widely expressed in several brain regions including medulla; their role in physiology and pathophysiology is incompletely understood. We examined the effect of acidic pH of 6.2 on the medullary neurons involved in parasympathetic cardiac control. Our results indicate that retrogradely labeled cardiac vagal neurons of nucleus ambiguus are depolarized by acidic pH. In addition, acidic saline of pH 6.2 increases cytosolic Ca2+ concentration by promoting Ca2+ influx in nucleus ambiguus neurons. In vivo studies indicate that microinjection of acidic artificial cerebrospinal fluid (pH 6.2) into the nucleus ambiguus decreases the heart rate in conscious rats, whereas it has no effect in anesthetized animals. Pretreatment with either amiloride or benzamil, two widely used ASIC blockers, abolishes both the in vitro and in vivo effects elicited by pH 6.2. Our findings support a critical role for ASIC in modulation of cardiac vagal tone and provide a potential mechanism for acidosis-induced bradycardia, while identifying important differences in the response to acidic pH between anesthetized and conscious rats.  相似文献   

15.
16.
Orexins/hypocretins are neuropeptides that have various physiological effects, including the regulation of both the feeding behavior neuroendocrine functions and sleep-wakefulness cycle. Recent studies have suggested that the orexin system may also be involved in neuronal damage in the clinical setting and animal experiments. The aim of this study was to examine the role of the hypothalamic orexin-A/hypocretin-1 system in patients with intracerebral hemorrhage (ICH). The CSF orexin-A/hypocretin-1 levels were measured in 11 ICH patients. CSF orexin-A/hypocretin-1 levels were low in ICH patients during the 13 days following the ICH event. The mean CSF orexin-A/hypocretin-1 levels were 61.1+/-22.3 (S.D.) pg/ml (range 27.5-106.9 pg/ml).The decreasing in the CSF orexin-A/hypocretin-1 levels was not related to the severity of ICH. The CSF orexin-A/hypocretin-1 levels were lower in the thalamic hemorrhage patients than those in other patients (48.5+/-23.3 pg/ml vs. 65.2+/-21.2 pg/ml; p=0.03.) These data indicate that orexin-A/hypocretin-1 may therefore play an important role in the various physiological responses including sleep, feeding, and the overall metabolism in ICH patients.  相似文献   

17.
A quantitative evaluation of the thresholds of changes in the firing rate/pattern and depolarizing block of the neuron and the bradycardiac response by pressure microinjection of 10 mM glutamate (Glu) into the region of the nucleus ambiguus (NA) of the ventral medulla was performed in anesthetized rats. A change in neuronal activity was shown with injection of about 2 pmol of Glu. A depolarizing block of single-unit activity could be observed at 2.9 +/- 0.3 nl (approximately 30 pmol, n = 22). Maximal bradycardiac response (-50 +/- 5%) was elicited with 4.4 +/- 0.7 nl (approximately 50 pmol, n = 10), which is significantly smaller than the ranges used in previous studies. Based on these results, a safe and effective use of 10 mM Glu to induce neuronal or physiological response should be in the range of a few nanoliters and less than 100 pmol, especially for the NA.  相似文献   

18.
Sweet DC  Levine AS  Kotz CM 《Peptides》2004,25(2):307-314
We investigated the interaction of the orexigenic neuropeptide, hypocretin-1 (Hcrt-1, also known as orexin-A), with endogenous opioids (also orexigenic neuropeptides). Rats were injected with naltrexone (NTX, nonspecific opioid antagonist) i.p., i.c.v., in the lateral hypothalamus (LH), and in the accumbens shell (AcbSh), and naloxone methiodide (nonspecific opioid antagonist unable to cross the blood brain barrier) was injected i.p. Rats were then injected with Hcrt-1 in the LH. Food intake was measured for up to 4h thereafter. Rats were also pretreated with NTX in the LH, with Hcrt-1 injected in the AcbSh. NTX suppressed Hcrt-1-induced feeding only when injected i.p., i.c.v., and in the AcbSh. These studies reveal the necessity for functional central opioidergic pathways involving the AcbSh, but not the LH in Hcrt-1-induced feeding.  相似文献   

19.
Symptoms consistent with cardiac disease have been noted as part of the syndrome of lead (Pb) intoxication. All types of cardiotoxicity noted in patients have been reproduced in experimental animals exposed acutely to high concentrations of Pb, or chronically exposed to lower levels. Types of cardiac effects observed include negative inotropism and electrocardiogram abnormalities, particularly conduction defects. Neonatal rats exposed to Pb via the milk of dams provided a drinking solution of lead acetate exhibit approximately four times the sensitivity to the arrhythmogenic effect of norepinephrine as adults compared with controls. Cardiotoxicity occurs after exposure as short as the first 10 postnatal days, but is not expressed until the rats are adult. Increased sensitivity to the arrhythmogenic effect of norepinephrine was seen in Pb-exposed animals in vivo and in isolated hearts from Pb-exposed animals in vitro. Norepinephrine arrhythmogenesis in vivo was attenuated by atropine or vagotomy, which indicates vagal nerve involvement. Possible mechanisms including interference with central gamma-aminobutyric acid systems, alteration of adrenergic nerve development, and Pb-Ca interaction are discussed.  相似文献   

20.
Dohi K  Ripley B  Fujiki N  Ohtaki H  Shioda S  Aruga T  Nishino S 《Peptides》2005,26(11):2339-2343
The aim of this study was to examine the role of the hypothalamic hypocretin/orexin system in complications of delayed ischemic neuronal deficit (DIND) resulting from symptomatic vasospasm in patients with aneurysmal subarachnoid hemorrhage (SAH). CSF hypocretin-1/orexin-A levels were measured in 15 SAH patients. DIND complications occurred in seven patients with symptomatic vasospasm. Hypocretin-1/orexin-A levels were low in SAH patients during the 10 days following the SAH event. CSF hypocretin-1/orexin-A levels were lower in patients with DIND complications than in those who did not develop DIND. A significant transient decline in CSF hypocretin-1/orexin-A levels was also observed at the onset of DIND in all patients with symptomatic vasospasm. The reduced hypocretin/orexin production observed in SAH patients may reflect reduced brain function due to the decrease in cerebral blood flow. These results, taken together with recent experimental findings in rats that indicate hypocretin receptor 1 (orexin 1 receptor) mRNA and protein are elevated following middle cerebral artery occlusion, suggest that a reduction in hypocretin/orexin production in SAH and DIND patients is associated with alterations in brain hypocretin/orexin signaling in response to ischemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号