首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The human C3a anaphylatoxin receptor (C3aR) is a G protein-coupled receptor (GPCR) composed of seven transmembrane alpha-helices connected by hydrophilic loops. Previous studies of chimeric C3aR/C5aR and loop deletions in C3aR demonstrated that the large extracellular loop2 plays an important role in noneffector ligand binding; however, the effector binding site for C3a has not been identified. In this study, selected charged residues in the transmembrane regions of C3aR were replaced by Ala using site-directed mutagenesis, and mutant receptors were stably expressed in the RBL-2H3 cell line. Ligand binding studies demonstrated that R161A (helix IV), R340A (helix V), and D417A (helix VII) showed no binding activity, although full expression of these receptors was established by flow cytometric analysis. C3a induced very weak intracellular calcium flux in cells expressing these three mutant receptors. H81A (helix II) and K96A (helix III) showed decreased ligand binding activity. The calcium flux induced by C3a in H81A and K96A cells was also consistently reduced. These findings suggest that the charged transmembrane residues Arg161, Arg340, and Asp417 in C3aR are essential for ligand effector binding and/or signal coupling, and that residues His81 and Lys96 may contribute less directly to the overall free energy of ligand binding. These transmembrane residues in C3aR identify specific molecular contacts for ligand interactions that account for C3a-induced receptor activation.  相似文献   

2.
This minireview is divided into three parts: the first part refers to the characterization and classification of kinin receptors using agonists and antagonists in isolated tissues (classical pharmacology). Two kinin receptors have been considered on the basis of their distinct pharmacology, namely the B1 receptor of the rabbit aorta (rank order of potency of agonists: LysdesArg9BK > desArg9BK > or = LysBK > BK; apparent affinities of antagonists Lys[Leu8]desArg9BK (pIC50 8.4) > [Leu8]desArg9BK (pIC50 7.4) > HOE 140, a B2 receptor antagonist, pIC50<5.0), and the B2 receptor of the rabbit jugular vein (potency of agonists: LysBK = BK > LysdesArg9BK = desArg9BK and HOE 140 (pIC50 9.0) > Lys[Leu8]desArg9BK, pIC50<5.0). The second part describes species-related B1 receptor subtypes, demonstrated by different pharmacological profiles of agonists and antagonists: human, rabbit and pig subtypes (LysdesArg9BK > desArg9BK and Lys[Leu8]desArg9BK > [Leu8]desArg9BK) and dog, rat, mouse and hamster B1 receptors (desArg9BK = LysdesArg9BK and [Leus]desArg9BK = Lys[Leu8]desArg9BK). Affinities of agonists and antagonists in some species (man, rabbit, pig) are significantly increased (at least 10-fold) by the presence of a Lys at their N-terminus. The last part describes species-related B2 receptor subtypes supported by results obtained with non-peptide receptor agonists (FR 190997) and antagonists (FR 173657). While BK acts as a full agonist in man, rabbit and pig, FR 190997 behaves as a full agonist on human, as partial agonist on rabbit, and as pure antagonist on pig B2 receptors. Various hypotheses are considered to interpret these findings.  相似文献   

3.
In analogy to the structure of rhodopsin, the seven hydrophobic segments of G-protein-coupled receptors are supposed to form seven membrane-spanning alpha-helices. To analyze the topology of the bradykinin B2 receptor, we raised site-directed antibodies to peptides corresponding to the loop regions and the amino and carboxyl terminus of this receptor. We found that a segment with predicted intracellular orientation according to the rhodopsin model, the connecting loop between membrane domains I and II of the bradykinin B2 receptor, was accessible to site-directed antibodies on intact fibroblasts, A431 cells, or COS cells expressing human B2 receptors. Extracellular orientation of this loop was further confirmed by the substituted cysteine accessibility method which showed that exchange of cysteine 94 for serine on this loop by point mutagenesis suppressed the effect of thiol modification by a membrane impermeant maleimide. In addition, this segment seemed to be involved in B2 receptor activation, since (i) thiol modification of cysteine 94 partially suppressed B2 receptor activation, and (ii) site-directed antibodies to the connecting loop between membrane domains I and II were agonists. The agonistic activity of the antibodies was suppressed by the B2 antagonist HOE140 confirming the B2 specificity of the antibody-generated signal. The extracellular orientation of the connecting loop between membrane domains I and II suggests a topology of the B2 receptor different from rhodopsin, consisting of five (instead of seven) transmembrane domains and two hydrophobic segments with both ends facing the extracellular side.  相似文献   

4.
To overcome the difficulty of characterizing the structures of the extracellular loops (eLPs) of G protein-coupled receptors (GPCRs) other than rhodopsin, we have explored a strategy to generate a three-dimensional structural model for a GPCR, the thromboxane A(2) receptor. This three-dimensional structure was completed by the assembly of the NMR structures of the computation-guided constrained peptides that mimicked the extracellular loops and connected to the conserved seven transmembrane domains. The NMR structure-based model reveals the structural features of the eLPs, in which the second extracellular loop (eLP(2)) and the disulfide bond between the first extracellular loop (eLP(1)) and eLP(2) play a major role in forming the ligand recognition pocket. The eLP(2) conformation is dynamic and regulated by the oxidation and reduction of the disulfide bond, which affects ligand docking in the initial recognition. The reduced form of the thromboxane A(2) receptor experienced a decrease in ligand binding activity due to the rearrangement of the eLP(2) conformation. The ligand-bound receptor was, however, resistant to the reduction inactivation because the ligand covered the disulfide bond and stabilized the eLP(2) conformation. This molecular mechanism of ligand recognition is the first that may be applied to other prostanoid receptors and other GPCRs.  相似文献   

5.
The C-terminal regions of glucagon-like peptide-1 (GLP-1) bind to the N terminus of the GLP-1 receptor (GLP-1R), facilitating interaction of the ligand N terminus with the receptor transmembrane domain. In contrast, the agonist exendin-4 relies less on the transmembrane domain, and truncated antagonist analogs (e.g. exendin 9-39) may interact solely with the receptor N terminus. Here we used mutagenesis to explore the role of residues highly conserved in the predicted transmembrane helices of mammalian GLP-1Rs and conserved in family B G protein coupled receptors in ligand binding and GLP-1R activation. By iteration using information from the mutagenesis, along with the available crystal structure of the receptor N terminus and a model of the active opsin transmembrane domain, we developed a structural receptor model with GLP-1 bound and used this to better understand consequences of mutations. Mutation at Y152 [transmembrane helix (TM) 1], R190 (TM2), Y235 (TM3), H363 (TM6), and E364 (TM6) produced similar reductions in affinity for GLP-1 and exendin 9-39. In contrast, other mutations either preferentially [K197 (TM2), Q234 (TM3), and W284 (extracellular loop 2)] or solely [D198 (TM2) and R310 (TM5)] reduced GLP-1 affinity. Reduced agonist affinity was always associated with reduced potency. However, reductions in potency exceeded reductions in agonist affinity for K197A, W284A, and R310A, while H363A was uncoupled from cAMP generation, highlighting critical roles of these residues in translating binding to activation. Data show important roles in ligand binding and receptor activation of conserved residues within the transmembrane domain of the GLP-1R. The receptor structural model provides insight into the roles of these residues.  相似文献   

6.
To investigate the molecular basis for the specificity of ligand recognition in human kinin B(1) (B(1)R) and B(2) (B(2)R) receptors, we constructed a series of chimeric receptors by progressively replacing, from the N to the C terminus, the human B(2)R domains by their B(1) counterparts. The chimeric construct possessing the C-terminal tail and the transmembrane domain VII (TM VII) of the B(2)R (construct 6) displayed 7- and 20- fold decreased affinities for the B(1) agonist [(3)H]desArg(10)-kallidin (desArg(10)-KD) and the B(1) antagonist [(3)H]desArg(10)-[Leu(9)]-KD respectively, as compared with the wild-type B(1)R. Moreover, the substitution of the B(1) TM VII by its B(2) homologue TM increased the affinity for the pseudopeptide antagonists, Hoe140 and NPC 567. High affinity for desArg(10)-KD binding was fully regained when the B(2) residue Thr(287) was replaced in construct 6 by the corresponding B(1) Leu(294) residue. When the B(2) residue Tyr(295) was exchanged with the corresponding B(1) Phe(302), high affinity binding for both agonist and antagonist was recovered. Moreover, the L294T and F302Y mutant B(1)R exhibited 69- and 6.5-fold increases, respectively, in their affinities for the B(2) receptor antagonist, Hoe140. Therefore we proposed that Leu(294) and Phe(302) residues, which may not be directly involved in the binding of B(1)R ligands and, hence, their Thr(287) and Tyr(295) B(2) counterparts, are localized in a receptor region, which plays a pivotal role in the binding selectivity of the peptide or pseudopeptide kinin ligands.  相似文献   

7.
Ligand binding to extracellular domains of G protein-coupled receptors can result in novel and nuanced allosteric effects on receptor signaling. We previously showed that the protein-protein interaction of carboxypeptidase M (CPM) and kinin B1 receptor (B1R) enhances B1R signaling in two ways; 1) kinin binding to CPM causes a conformational activation of the B1R, and 2) CPM-generated des-Arg-kinin agonist is efficiently delivered to the B1R. Here, we show CPM is also a positive allosteric modulator of B1R signaling to its agonist, des-Arg10-kallidin (DAKD). In HEK cells stably transfected with B1R, co-expression of CPM enhanced DAKD-stimulated increases in intracellular Ca2+ or phosphoinositide turnover by a leftward shift of the dose-response curve without changing the maximum. CPM increased B1R affinity for DAKD by ∼5-fold but had no effect on basal B1R-dependent phosphoinositide turnover. Soluble, recombinant CPM bound to HEK cells expressing B1Rs without stimulating receptor signaling. CPM positive allosteric action was independent of enzyme activity but depended on interaction of its C-terminal domain with the B1R extracellular loop 2. Disruption of the CPM/B1R interaction or knockdown of CPM in cytokine-treated primary human endothelial cells inhibited the allosteric enhancement of CPM on B1R DAKD binding or ERK1/2 activation. CPM also enhanced the DAKD-induced B1R conformational change as detected by increased intramolecular fluorescence or bioluminescence resonance energy transfer. Thus, CPM binding to extracellular loop 2 of the B1R results in positive allosteric modulation of B1R signaling, and disruption of this interaction could provide a novel therapeutic approach to reduce pathological B1R signaling.  相似文献   

8.
Bitter taste receptors (T2Rs) are a group of 25 G protein-coupled receptors (GPCRs) in humans. The cognate agonists and the mechanism of ligand binding to the majority of the T2Rs remain unknown. Here we report the first structure-function analysis of T2R7 and study the ability of this receptor to bind to different agonists by site-directed mutagenesis. Screening of ligands for T2R7 in calcium based assays lead to the identification of novel compounds that activate this receptor. Quinine, diphenidol, dextromethorphan and diphenhydramine showed substantial activation of T2R7. Interestingly, these bitter compounds showed different pharmacological characteristics. To investigate the structural features in T2R7 that might contribute to the observed differences in agonist specificities, molecular model guided ligand docking and site-directed mutagenesis was pursued. Amino acids D65, D86, W89, N167, T169, W170, S181, T255 and E271 in the ligand-binding pocket were replaced and the mutants characterized pharmacologically. Our results suggest D86, S181 and W170 present on the extracellular side of transmembrane 3 (TM3), TM5 and in extracellular loop 2 (ECL2) are essential for agonist binding in T2R7. Mutations of these amino acids lead to loss-of-function. We also identified gain-of-function residues that are agonist specific. These results suggest that agonists bind at an extracellular site rather than deep within the TM core involving residues present in both ECL2 and TM helices in T2R7. Similar to majority of the Class A GPCRs, ECL2 in T2R7 plays a significant role in agonist binding and activation.  相似文献   

9.
Using chimeras of the mouse prostaglandin (PG) I receptor (mIP) and the mouse PGD receptor (mDP), we previously revealed that the cyclopentane ring recognition by these receptors is specified by a region from the first to third transmembrane domain of each receptor; recognition by this region of mIP is broad, accommodating the D, E, and I types of cyclopentane rings, whereas that of mDP binds the D type of PGs alone (Kobayashi, T., Kiriyama, M., Hirata, T., Hirata, M., Ushikubi, F., and Narumiya, S. (1997) J. Biol. Chem. 272, 15154-15160). In the present study, we performed a more detailed chimera analysis, and narrowed the domain for the ring recognition to a region from the first transmembrane domain to the first extracellular loop. One chimera with the replacement of the second transmembrane domain and the first extracellular loop of mDP with that of mIP bound only iloprost. The amino acid substitutions in this chimera suggest that Ser(50) in the first transmembrane domain of mIP confers the broad ligand recognition of mIP and that Lys(75) and Leu(83) in the second transmembrane domain of mDP confer the high affinity to PGD(2) and the strict specificity of ligand binding of mDP, respectively.  相似文献   

10.
The chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2) is a G protein-coupled receptor that mediates the pro-inflammatory effects of prostaglandin D(2) (PGD(2)) generated in allergic inflammation. The CRTH2 receptor shares greatest sequence similarity with chemoattractant receptors compared with prostanoid receptors. To investigate the structural determinants of CRTH2 ligand binding, we performed site-directed mutagenesis of putative mCRTH2 ligand-binding residues, and we evaluated mutant receptor ligand binding and functional properties. Substitution of alanine at each of three residues in the transmembrane (TM) helical domains (His-106, TM III; Lys-209, TM V; and Glu-268, TM VI) and one in extracellular loop II (Arg-178) decreased PGD(2) binding affinity, suggesting that these residues play a role in binding PGD(2). In contrast, the H106A and E268A mutants bound indomethacin, a nonsteroidal anti-inflammatory drug, with an affinity similar to the wild-type receptor. HEK293 cells expressing the H106A, K209A, and E268A mutants displayed reduced inhibition of intracellular cAMP and chemotaxis in response to PGD(2), whereas the H106A and E268A mutants had functional responses to indomethacin similar to the wild-type receptor. Binding of PGE(2) by the E268A mutant was enhanced compared with the wild-type receptor, suggesting that Glu-268 plays a role in determining prostanoid ligand selectivity. Replacement of Tyr-261 with phenylalanine did not affect PGD(2) binding but decreased the binding affinity for indomethacin. These results provided the first details of the ligand binding pocket of an eicosanoid-binding chemoattractant receptor.  相似文献   

11.
Family 1a GPCRs are thought to bind small molecule ligands in a pocket comprising sequences from non-contiguous transmembrane helices. In this study, receptor-ligand binding determinants were defined by building a series of complex chimeras where multiple sequences were exchanged between related G-protein coupled receptors. Regions of P2Y(1), P2Y(2) and BLT(1) predicted to interact with nucleotide and leukotriene ligands were identified and receptors were engineered within their transmembrane helices to transpose the ligand binding site of one receptor on to another receptor. Ligand-induced activation of chimeras was compared with wild-type receptor activation in a yeast reporter gene assay. Binding of ligand to a P2Y(2)/BLT(1) chimera confirmed that the ligand binding determinants of BLT(1) are located in the upper regions of the helices and extracellular loops of this receptor and that they had been successfully transferred to a receptor that normally binds unrelated ligands.  相似文献   

12.
Kininase I-type carboxypeptidases convert native kinin agonists for B(2) receptors into B(1) receptor agonists by specifically removing the COOH-terminal Arg residue. The membrane localization of carboxypeptidase M (CPM) and carboxypeptidase D (CPD) make them ideally situated to regulate kinin activity. Nitric oxide (NO) release from human lung microvascular endothelial cells (HLMVEC) was measured directly in real time with a porphyrinic microsensor. Bradykinin (1-100 nM) elicited a transient (5 min) peak of generation of NO that was blocked by the B(2) antagonist HOE 140, whereas B(1) agonist des-Arg(10)-kallidin caused a small linear increase in NO over 20 min. Treatment of HLMVEC with 5 ng/ml interleukin-1beta and 200 U/ml interferon-gamma for 16 h upregulated B(1) receptors as shown by an approximately fourfold increase in prolonged (>20 min) output of NO in response to des-Arg(10)-kallidin, which was blocked by the B(1) antagonist des-Arg(10)-Leu(9)-kallidin. B(2) receptor agonists bradykinin or kallidin also generated prolonged NO production in treated HLMVEC, which was significantly reduced by either a B(1) antagonist or carboxypeptidase inhibitor, and completely abolished with a combination of B(1) and B(2) receptor antagonists. Furthermore, CPM and CPD activities were increased about twofold in membrane fractions of HLMVEC treated with interleukin-1beta and interferon-gamma compared with control cells. Immunostaining localized CPD primarily in a perinuclear/Golgi region, whereas CPM was on the cell membrane. These data show that cellular kininase I-type carboxypeptidases can enhance kinin signaling and NO production by converting B(2) agonists to B(1) agonists, especially in inflammatory conditions.  相似文献   

13.
Using site-directed mutagenesis of the human beta 2-adrenergic receptor and continuous expression in B-82 cells, the role of 3 conserved cysteines in transmembrane domains and 2 conserved cysteines in the third extracellular domain in receptor function was examined. Cysteine was replaced with serine in each mutant receptor as this amino acid is similar to cysteine in size but it cannot form disulfide linkages. Replacement of cysteine residues 77 and 327, in the second and seventh transmembrane-spanning domains, respectively, had no effect on ligand binding or the ability of the receptor to mediate isoproterenol stimulation of adenylate cyclase. Substitution of cysteine 285, in the sixth transmembrane domain of the receptor, produced a mutant receptor with normal ligand-binding properties but a significantly attenuated ability to mediate stimulation of adenylate cyclase. Mutation of cysteine residues 190 and 191, in the third extracellular loop of the beta 2 receptor, had qualitatively similar effects on ligand binding and isoproterenol-mediated stimulation of adenylate cyclase. Replacement of either of these residues with serine produced mutant receptors that displayed a marked loss in affinity for both beta-adrenergic agonists and antagonists. Replacement of both cysteine 190 and 191 with serine had an even greater effect on the ability of the receptor to bind ligands. Consistent with the loss of Ser190 and/or Ser191 mutant receptor affinity for agonists was a corresponding shift to the right in the dose-response curve for isoproterenol-induced increases in intracellular cyclic AMP concentrations in cells expressing the mutant receptors. These data implicate one of the conserved transmembrane cysteine residues in the human beta 2-adrenergic receptor in receptor activation by agonists and also suggest that conserved cysteine residues in an extracellular domain of the receptor may be involved in ligand binding.  相似文献   

14.
Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) play important roles in insulin secretion through their receptors, GLP1R and GIPR. Although GLP-1 and GIP are attractive candidates for treatment of type 2 diabetes and obesity, little is known regarding the molecular interaction of these peptides with the heptahelical core domain of their receptors. These core domains are important not only for specific ligand binding but also for ligand-induced receptor activation. Here, using chimeric and point-mutated GLP1R/GIPR, we determined that evolutionarily conserved amino acid residues such as Ile(196) at transmembrane helix 2, Leu(232) and Met(233) at extracellular loop 1, and Asn(302) at extracellular loop 2 of GLP1R are responsible for interaction with ligand and receptor activation. Application of chimeric GLP-1/GIP peptides together with molecular modeling suggests that His(1) of GLP-1 interacts with Asn(302) of GLP1R and that Thr(7) of GLP-1 has close contact with a binding pocket formed by Ile(196), Leu(232), and Met(233) of GLP1R. This study may provide critical clues for the development of peptide and/or nonpeptide agonists acting at GLP1R.  相似文献   

15.
Cloning and sequencing of the murine chromosomal region XB harboring the murine vasopressin V(2) receptor (mV(2)R) gene and comparison with the orthologous human Xq28 region harboring the human vasopressin V(2) receptor (hV(2)R) revealed conservation of the genomic organization and a high degree of sequence identity in the V(2)R coding regions. Despite an identity of 87% of the amino acid sequences, both receptors show marked functional differences upon stable expression in Chinese hamster ovary cells: the mV(2)R displayed a 5-fold higher affinity for [(3)H]AVP than the human ortholog; similar differences were found for the AVP-mediated activation of adenylyl cyclase. Saturation binding experiments with transiently transfected intact COS.M6 cells showed that the mV(2)R was 3- to 5-fold less abundantly expressed at the cell surface than the hV(2)R. Laser scanning microscopy of fusion proteins consisting of the V(2)Rs and green fluorescent protein (GFP) (mV(2)R/GFP, hV(2)R/GFP) demonstrated that the hV(2)R/GFP was efficiently transported to the plasma membrane, whereas the mV(2)R/GFP was localized mainly within the endoplasmic reticulum. Chimeric hV(2)Rs, in which the first and/or second extracellular loop(s) were replaced by the corresponding loop(s) of the mV(2)R, revealed that the second extracellular loop accounts for the differences in ligand binding, but the first extracellular loop accounts for the reduced cell surface expression. The exchange of lysine 100 by aspartate in the first extracellular loop of hV(2)R was sufficient to reduce cell surface expression, which was accompanied by intracellular retention as observed in laser scanning microscopy analysis. Conversely, the exchange of aspartate 100 by lysine in the mV(2)R increased the cell surface expression and resulted in predominant plasma membrane localization. Thus, a single amino acid difference in the first extracellular loop between mV(2)R and hV(2)R determines the efficiency of cell surface expression.  相似文献   

16.
Unson CG  Wu CR  Jiang Y  Yoo B  Cheung C  Sakmar TP  Merrifield RB 《Biochemistry》2002,41(39):11795-11803
To identify structural determinants of ligand binding in the glucagon receptor, eight receptor chimeras and additional receptor point mutants were prepared and studied. Amino acid residues 103-117 and 126-137 in the extracellular N-terminal tail and residues 206-219 and 220-231 in the first extracellular loop of the glucagon receptor were replaced with the corresponding segments of the glucagon-like peptide-1 receptor or the secretin receptor. Specific segments of both the N-terminal tail and the first extracellular loop of the glucagon receptor are required for hormone binding. The 206-219 segment of the first loop appears to be important for both glucagon binding and receptor activation. Functional studies with a synthetic chimeric peptide consisting of the N-terminal 14 residues of glucagon and the C-terminal 17 residues of glucagon-like peptide 1 suggest that hormone binding specificity may involve this segment of the first loop. The binding selectivity may arise in part from aspartic acid residues in this segment. Mutation of R-202 located at the junction between the second transmembrane helix and the first loop resulted in a mutant receptor that failed to bind glucagon or signal. We conclude that high-affinity glucagon binding requires multiple contacts with residues in the N-terminal tail and first extracellular loop domain of the glucagon receptor, with hormone specificity arising primarily from the amino acid 206-219 segment. The data suggest a model whereby glucagon first interacts with the N-terminal domain of the receptor followed by more specific interactions between the N-terminal half of the peptide and the first extracellular loop of the receptor, leading to activation.  相似文献   

17.
Understanding the molecular basis of natural ligand binding and activation of the glucagon-like peptide 1 (GLP1) receptor may facilitate the development of agonist drugs useful for the management of type 2 diabetes mellitus. We previously reported molecular approximations between carboxyl-terminal residues 24 and 35 within GLP1 and its receptor. In this work, we have focused on the amino-terminal region of GLP1, known to be critical for receptor activation. We developed two high-affinity, full agonist photolabile GLP1 probes having sites of covalent attachment in positions 6 and 12 of the 30-residue peptide (GLP1(7–36)). Both probes bound to the receptor specifically and covalently labeled single distinct sites. Chemical and protease cleavage of the labeled receptor identified the juxtamembrane region of its amino-terminal domain as the region of covalent attachment of the position 12 probe, whereas the region of labeling by the position 6 probe was localized to the first extracellular loop. Radiochemical sequencing identified receptor residue Tyr145, adjacent to the first transmembrane segment, as the site of labeling by the position 12 probe, and receptor residue Tyr205, within the first extracellular loop, as the site of labeling by the position 6 probe. These data provide support for a common mechanism for natural ligand binding and activation of family B G protein-coupled receptors. This region of interaction of peptide amino-terminal domains with the receptor may provide a pocket that can be targeted by small molecule agonists.  相似文献   

18.

Background  

Cellular response to changes in the concentration of different chemical species in the extracellular medium is induced by ligand binding to dedicated transmembrane receptors. Receptor density, distribution, and clustering may be key spatial features that influence effective and proper physical and biochemical cellular responses to many regulatory signals. Classical equations describing this kind of binding kinetics assume the distributions of interacting species to be homogeneous, neglecting by doing so the impact of clustering. As there is experimental evidence that receptors tend to group in clusters inside membrane domains, we investigated the effects of receptor clustering on cellular receptor ligand binding.  相似文献   

19.
Membrane bound guanylyl cyclases are single chain transmembrane receptors that produce the second messenger cGMP by either intra- or extracellular stimuli. This class of type I receptors contain an intracellular catalytic guanylyl cyclase domain, an adjacent kinase-like domain and an extracellular ligand binding domain though some receptors have their ligands yet to be identified. The most studied member is the atrial natriuretic peptide (ANP) receptor, which is involved in blood pressure regulation. Extracellular ANP binding induces a conformational change thereby activating the pre-oligomerized receptor leading to the production of cGMP. The recent crystal structure of the dimerized hormone binding domain of the ANP receptor provides a first three-dimensional view of this domain and can serve as a basis to structurally analyze mutagenesis, cross-linking, and genetic studies of this class of receptors as well as a non-catalytic homolog, the clearance receptor. The fold of the ligand binding domain is that of a bilobal periplasmic binding protein (PBP) very similar to that of the Leu/Ile/Val binding protein, AmiC, multi-domain transmembrane metabotropic glutamate receptors, and several DNA binding proteins such as the lactose repressor. Unlike these structural homologs, the guanylyl cyclase receptors bind much larger molecules at a site seemingly remote from the usual small molecule binding site in periplasmic binding protein folds. Detailed comparisons with these structural homologs offer insights into mechanisms of signal transduction and allosteric regulation, and into the remarkable usage of the periplasmic binding protein fold in multi-domain receptors/proteins.  相似文献   

20.
Glucagon-like peptides (GLP-1 and GLP-2) are two proglucagon-derived intestinal hormones that mediate distinct physiological functions through two related receptors (GLP-1R and GLP-2R) which are important drug targets for metabolic disorders and Crohn’s disease, respectively. Despite great progress in GLP-1R structure determination, our understanding on the differences of peptide binding and signal transduction between these two receptors remains elusive. Here we report the electron microscopy structure of the human GLP-2R in complex with GLP-2 and a Gs heterotrimer. To accommodate GLP-2 rather than GLP-1, GLP-2R fine-tunes the conformations of the extracellular parts of transmembrane helices (TMs) 1, 5, 7 and extracellular loop 1 (ECL1). In contrast to GLP-1, the N-terminal histidine of GLP-2 penetrates into the receptor core with a unique orientation. The middle region of GLP-2 engages with TM1 and TM7 more extensively than with ECL2, and the GLP-2 C-terminus closely attaches to ECL1, which is the most protruded among 9 class B G protein-coupled receptors (GPCRs). Functional studies revealed that the above three segments of GLP-2 are essential for GLP-2 recognition and receptor activation, especially the middle region. These results provide new insights into the molecular basis of ligand specificity in class B GPCRs and may facilitate the development of more specific therapeutics.Subject terms: Cryoelectron microscopy, Hormone receptors  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号