首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endogenous gut-derived bacterial lipopolysaccharides have been implicated as important cofactors in the pathogenesis of liver injury. However, the molecular mechanisms by which lipopolysaccharides exert their effect are not entirely clear. Recent studies have pointed to proinflammatory cytokines such as tumor necrosis factor-alpha as mediators of hepatocyte injury. Within the liver, Kupffer cells are major sources of proinflammatory cytokines that are produced in response to lipopolysaccharides. This review will focus on three important molecular components of the pathway by which lipopolysaccharides activate Kupffer cells: CD14, Toll-like receptor 4, and lipopolysaccharide binding protein. Within the liver, lipopolysaccharides bind to lipopolysaccharide binding protein, which then facilitates its transfer to membrane CD14 on the surface of Kupffer cells. Signaling of lipopolysaccharide through CD14 is mediated by the downstream receptor Toll-like receptor 4 and results in activation of Kupffer cells. The role played by these molecules in liver injury will be examined.  相似文献   

2.
3.
We investigated the ability of dengue virus to invade human primary Kupffer cells and to complete its life cycle. The virus effectively penetrated Kupffer cells, but the infection did not result in any viral progeny. Dengue virus-replicating Kupffer cells underwent apoptosis and were cleared by phagocytosis. Infected Kupffer cells produced soluble mediators that could intervene in dengue virus pathogenesis.  相似文献   

4.
Mechanisms of cadmium-mediated acute hepatotoxicity   总被引:8,自引:0,他引:8  
The mechanism of cadmium-mediated acute hepatotoxicity has been the subject of numerous investigations and although some uncertainties persist, sufficient evidence has emerged to provide a reasonable account of the toxic process. Acute hepatotoxicity involves two pathways, one for the initial injury produced by direct effects of cadmium and the other for the subsequent injury produced by inflammation. Primary injury appears to be caused by the binding of Cd2+ to sulfhydryl groups on critical molecules in mitochondria. Thiol group inactivation causes oxidative stress, the mitochondrial permeability transition, and mitochondrial dysfunction. Although cadmium may injure hepatocytes directly, there are compelling reasons to believe that hepatocellular injury is produced in vivo as the result of ischemia caused by damage to endothelial cells. Secondary injury from acute cadmium exposure is thought to occur from the activation of Kupffer cells and a cascade of events involving several types of liver cells and a large number of inflammatory and cytotoxic mediators. In this regard, it is clear that Kupffer cell activation and neutrophil infiltration are important events in the toxic process, and the involvement of proinflammatory cytokines and chemokines has also been implicated. The precise roles of the soluble mediators of inflammation warrant further investigation.  相似文献   

5.
The role of Kupffer cells in the hepatocellular injury and oxidative stress induced by lindane (20 mg/kg; 24h) in hyperthyroid rats (daily doses of 0.1 mg L-3,3',5-triiodothyronine (T3)/kg for three consecutive days) was assessed by the simultaneous administration of gadolinium chloride (GdCl3; 2 doses of 10mg/kg on alternate days). Hyperthyroid animals treated with lindane exhibit enhanced liver microsomal superoxide radical (O2.-) production and NADPH cytochrome c reductase activity, with lower levels of cytochrome P450, superoxide dismutase (SOD) and catalase activity, and glutathione (GSH) content over control values. These changes are paralleled by a substantial increase in the lipid peroxidation potential of the liver and in the O2.- generation/ SOD activity ratio, thus evidencing a higher oxidative stress status that correlates with the development of liver injury characterized by neutrophil infiltration and necrosis. Kupffer cell inactivation by GdCl3 suppresses liver injury in lindane/T3-treated rats with normalization of altered oxidative stress-related parameters, excepting the reduction in the content of GSH and in catalase activity. It is concluded that lindane hepatotoxicity in hyperthyroid state, that comprises an enhancement in the oxidative stress status of the liver, is largely dependent on Kupffer cell function, which may involve generation of mediators leading to pro-oxidant and inflammatory processes.  相似文献   

6.
Kupffer cells are known to participate in the early events of liver injury involving lipid peroxidation. 4-Hydroxy-2,3-(E)-nonenal (4-HNE), a major aldehydic product of lipid peroxidation, has been shown to modulate numerous cellular systems and is implicated in the pathogenesis of chemically induced liver damage. The purpose of this study was to characterize the metabolic ability of Kupffer cells to detoxify 4-HNE through oxidative (aldehyde dehydrogenase; ALDH), reductive (alcohol dehydrogenase; ADH), and conjugative (glutathione S-transferase; GST) pathways. Aldehyde dehydrogenase and GST activity was observed, while ADH activity was not detectable in isolated Kupffer cells. Additionally, immunoblots demonstrated that Kupffer cells contain ALDH 1 and ALDH 2 isoforms as well as GST A4-4, P1-1, Ya, and Yb. The cytotoxicity of 4-HNE on Kupffer cells was assessed and the TD50 value of 32.5+/-2.2 microM for 4-HNE was determined. HPLC measurement of 4-HNE metabolism using suspensions of Kupffer cells incubated with 25 microLM 4-HNE indicated a loss of 4-HNE over the 30-min time period. Subsequent production of 4-hydroxy-2-nonenoic acid (HNA) suggested the involvement of the ALDH enzyme system and formation of the 4-HNE-glutathione conjugate implicated GST-mediated catalysis. The basal level of glutathione in Kupffer cells (1.33+/-0.3 nmol of glutathione per 10(6) cells) decreased significantly during incubation with 4-HNE concurrent with formation of the 4-HNE-glutathione conjugate. These data demonstrate that oxidative and conjugative pathways are primarily responsible for the metabolism of 4-HNE in Kupffer cells. However, this cell type is characterized by a relatively low capacity to metabolize 4-HNE in comparison to other liver cell types. Collectively, these data suggest that Kupffer cells are potentially vulnerable to the increased concentrations of 4-HNE occurring during oxidative stress.  相似文献   

7.
Soluble mediators elaborated by activated Kupffer cells have been implicated in the activation of liver fat-storing cells. In the present study some of these factors were identified as TGF beta and TGF alpha affecting disparate reactions in the activation process. TGF beta is secreted in an inactive, latent form by Kupffer cells. It is activated after addition to primary FSC cultures and stimulates dose-dependently sulfated proteoglycan synthesis especially that of chondroitin sulfate, whereas the incorporation of [3H] thymidine is reduced significantly. These effects were neutralized completely by anti-TGF beta antibodies which ultimately converted the proliferation inhibitory effect of Kupffer cell medium in a proliferation stimulatory action. The latter is at least partially due to TGF alpha. Both cytokines are preferentially expressed in activated Kupffer cells. We conclude that Kupffer cells modulate the mitogenic activity of FSC in culture depending on the ratio of activated TGF beta and TGF alpha and affect chondroitin sulfate synthesis mainly by TGF beta. The results suggest a paracrine activation of FSC in injured liver by both transforming growth factors secreted by activated Kupffer cells.  相似文献   

8.
Electron microscopic studies were conducted to access ultrastructural alterations in Kupffer cells and other cells lining the hepatic sinusoids at the peak of mediator release two hours after challenge with low doses of endotoxin under various conditions including reticuloendothelial system (RES) expansion and activation with BCG. BCG is known to sensitize animals to endotoxin rendering normally innocuous, low doses of endotoxin lethal. Low non-lethal doses (5 micrograms) of endotoxin activated Kupffer cells as well as caused isolated foci of cellular injury. However, animals which were treated with BCG had a highly activated and expanded RES system as evidenced by enlarged Kupffer cells with many extended cellular processes. Granulomas were prevalent and many reactive cells were present. After two hours marked cellular injury occurred to sinusoid lining and parenchymal cells when BCG treated animals were challenged with these same low doses of endotoxin. Cellular debris, fibrin, and platelets were observed in sinusoids often associated with Kupffer cells. These results suggest that the functional state of Kupffer cells is an important determinant in the host response to endotoxin. While there appears to be an effective clearance of endotoxin; the release of mediators by the highly activated Kupffer cells can be toxic causing hepatocellular injury.  相似文献   

9.
The role of Kupffer cells in the hepatocellular injury and oxidative stress induced by lindane (20 mg/kg; 24 h) in hyperthyroid rats (daily doses of 0.1 mg l -3,3',5-triiodothyronine (T 3 )/kg for three consecutive days) was assessed by the simultaneous administration of gadolinium chloride (GdCl 3 ; 2 doses of 10 mg/kg on alternate days). Hyperthyroid animals treated with lindane exhibit enhanced liver microsomal superoxide radical ( O2.-) production and NADPH cytochrome c reductase activity, with lower levels of cytochrome P450, superoxide dismutase (SOD) and catalase activity, and glutathione (GSH) content over control values. These changes are paralleled by a substantial increase in the lipid peroxidation potential of the liver and in the O2.-09 generation/SOD activity ratio, thus evidencing a higher oxidative stress status that correlates with the development of liver injury characterized by neutrophil infiltration and necrosis. Kupffer cell inactivation by GdCl3 suppresses liver injury in lindane/T3 -treated rats with normalization of altered oxidative stress-related parameters, excepting the reduction in the content of GSH and in catalase activity. It is concluded that lindane hepatotoxicity in hyperthyroid state, that comprises an enhancement in the oxidative stress status of the liver, is largely dependent on Kupffer cell function, which may involve generation of mediators leading to pro-oxidant and inflammatory processes.  相似文献   

10.
During acetaminophen (APAP) hepatotoxicity, increased expression of multidrug resistance-associated proteins 2, 3, and 4 (Mrp2-4) occurs. Mrp4 is the most significantly upregulated transporter in mouse liver following APAP treatment. Although the expression profiles of liver transporters following APAP hepatotoxicity are well characterized, the regulatory mechanisms contributing to these changes remain unknown. We hypothesized that Kupffer cell-derived mediators participate in the regulation of hepatic transporters during APAP toxicity. To investigate this, C57BL/6J mice were pretreated with clodronate liposomes (0.1 ml iv) to deplete Kupffer cells and then challenged with APAP (500 mg/kg ip). Liver injury was assessed by plasma alanine aminotransferase and hepatic transporter protein expression was determined by Western blot and immunohistochemistry. Depletion of Kupffer cells by liposomal clodronate increased susceptibility to APAP hepatotoxicity. Although increased expression of several efflux transporters was observed after APAP exposure, only Mrp4 was found to be differentially regulated following Kupffer cell depletion. At 48 and 72 h after APAP dosing, Mrp4 levels were increased by 10- and 33-fold, respectively, in mice receiving empty liposomes. Immunohistochemistry revealed Mrp4 staining confined to centrilobular hepatocytes. Remarkably, Kupffer cell depletion completely prevented Mrp4 induction by APAP. Elevated plasma levels of TNF-alpha and IL-1beta were also prevented by Kupffer cell depletion. These findings show that Kupffer cells protect the liver from APAP toxicity and that Kupffer cell mediators released in response to APAP are likely responsible for the induction of Mrp4.  相似文献   

11.
Kupffer cells are a key source of mediators of alcohol-induced liver damage such as reactive oxygen species, chemokines, growth factors, and eicosanoids. Since diets rich in polyunsaturated fatty acids are a requirement for the development of alcoholic liver disease, we hypothesized that polyunsaturated fatty acids could synergize with ethanol to promote Kupffer cell activation and TNFα production, hence, contributing to liver injury. Primary Kupffer cells from control and from ethanol-fed rats incubated with arachidonic acid showed similar proliferation rates than nontreated cells; however, arachidonic acid induced phenotypic changes, lipid peroxidation, hydroperoxides, and superoxide radical generation. Similar effects occurred in human Kupffer cells. These events were greater in Kupffer cells from ethanol-fed rats, and antioxidants and inhibitors of arachidonic acid metabolism prevented them. Arachidonic acid treatment increased NADPH oxidase activity. Inhibitors of NADPH oxidase and of arachidonic acid metabolism partially prevented the increase in oxidant stress. Upon arachidonic acid stimulation, there was a rapid and sustained increase in TNFα, which was greater in Kupffer cells from ethanol-fed rats than in Kupffer cells from control rats. Arachidonic acid induced ERK1/2 phosphorylation and nuclear translocation of early growth response-1 (Egr1), and ethanol synergized with arachidonic acid to promote this effect. PD98059, a mitogen extracellular kinase 1/2 inhibitor, and curcumin, an Egr1 inhibitor, blocked the arachidonic acid-mediated upregulation of TNFα in Kupffer cells. This study unveils the mechanism whereby arachidonic acid and ethanol increase TNFα production in Kupffer cells, thus contributing to alcoholic liver disease.  相似文献   

12.
Ricin, a highly toxic protein from castor beans was administered (ip) to rats in a dose of 1.25 micrograms/100 g to selectively deplete at least 60-70% of Kupffer cells. This dose spared hepatocytes. This rat model was used to study acute phase protein synthesis and the role of Kupffer cells in acute phase response (APR). Ricin itself induced an APR, similar in pattern but of lower magnitude, than that induced by turpentine. However, the effect of combination of ricin and turpentine on APR was not additive. Kupffer cells appear to play permissive role in APR through mediators like hepatocytes stimulating factors.  相似文献   

13.
An inadequate balance between oxidant species and antioxidant mechanisms may constitute the primary mechanisms of a number of pathologies. The liver plays a central role in this balance: parenchymal hepatic cells contain and export especially high levels of the antioxidant glutathione and activated Kupffer cells release inflammation mediators and reactive oxygen species. There is growing evidence of a paracrine regulation of hepatic function by means of a fluent intercellular communication which must still be fully elucidated, especially in basal conditions. In vivo models provide often too complex results but, in vitro, tissue interactions are left aside; therefore it is important to find new experimental models to address cell communication studies. Here we propose the complementary use of three models to study liver glutathione system regulation in basal conditions: pure parenchymal cells primary cultures, addition of sinusoidal cell conditioned media to parenchymal cells and co-culture of sinusoidal cells using porous membranes. We have also developed a high specifity immunofluorescent method for the complete characterization of sinusoidal cell populations by flow cytometry and confocal microscopy. Our results show that Kupffer cells possess higher levels of reactive oxygen species than sinusoidal endothelial cells even in basal conditions. We also report that the glutathione content of hepatic parenchymal cells in basal conditions is regulated by a sinusoidal-parenchymal cells cross-talk and suggest the existence of a paracrine circuit in the management of liver oxidative stress.  相似文献   

14.
The initial site of replication for Plasmodium parasites in mammalian hosts are hepatocytes, cells that offer unique advantages for the extensive parasite replication occurring prior to the erythrocytic phase of the life cycle. The liver is the metabolic centre of the body and has an unusual relationship to the immune system. However, to reach hepatocytes, sporozoites must cross the sinusoidal barrier, composed of specialized endothelia and Kupffer cells, the resident macrophages of the liver. Mounting evidence suggests that, instead of taking what would seem a safer route through endothelia, the parasites traverse Kupffer cells yet suffer no harm. Kupffer cells have a broad range of responses towards incoming microorganisms, toxins and antigens which depend on the nature of the intruder, the experimental conditions and the environmental circumstances. Kupffer cells may become activated or remain anergic, produce pro- or anti-inflammatory mediators. Consequently, outcomes are diverse and include development of immunity or tolerance, parenchymal necrosis or regeneration, chronic cirrhotic transformation or acute liver failure. Here we review data concerning the unique structural and functional characteristics of Kupffer cells and their interactions with Plasmodium sporozoites in the context of a model in which these hepatic macrophages function as the sporozoite gate to the liver.  相似文献   

15.
Pro-inflammatory cytokines play a vital role in the pathogenesis of alcoholic steatohepatitis. The present study was to determine the role of alcohol-induced oxidative stress in modulating cytokine production. A rat model of alcohol consumption was used to determine alcohol-induced hepatic cytokine expression. Chronic alcohol exposure caused lipid accumulation, oxidative stress, and inflammation in the livers of Wistar rats. The role of oxidative stress in regulating cell type-specific cytokine production was further dissected in vitro. Lipopolysaccharide (LPS) dose-dependently upregulated TNF-α, MIP-1α, MCP-1, and CINC-1 in Kupffer cells-SV40, whereas TNF-α dose-dependently induced CINC-1, IP-10, and MIP-2 expression in H4IIEC3 hepatoma cells. An additive effect on cytokine production was observed in both Kupffer cells-SV40 and hepatocytes when combined hydrogen peroxide with LPS or TNF-α, respectively, which was associated with NF-κB activation and histone H3 hyper-acetylation. Unexpectedly, an inhibitory effect of 4-hydroxynonenal on cytokine production was revealed in LPS-treated Kupffer cells-SV40. Mechanistic study showed that 4-hydroxynonenal significantly enhanced mRNA degradation of TNF-α, MCP-1, and MIP-1α, and decreased the protein levels of MCP-1 in LPS-stimulated Kupffer cells-SV40 through reducing the phosphorylation of mRNA binding proteins. This study suggests that Kupffer cells and hepatocytes express distinct pro-inflammatory cytokines/chemokines in response to alcohol intoxication, and oxidative products (4-hydroxynonenal) differentially modulate pro-inflammatory cytokine/chemokine production via NF-κB signaling, histone acetylation, and mRNA stability.  相似文献   

16.
Mitogenic effect of augmenter of liver regeneration (ALR), a protein produced and released by hepatocytes, on hepatocytes in vivo but not in vitro suggests that the effect is mediated by nonparenchymal cells. Since mediators produced by Kupffer cells are implicated in hepatic regeneration, we investigated receptor for ALR and its functions in rat Kupffer cells. Kupffer cells were isolated from rat liver by enzymatic digestion and centrifugal elutriation. Radioligand ([125I] ALR) receptor binding, ALR‐induced GTP/G‐protein association, and nitric oxide (NO), tumor necrosis factor (TNF)‐α, and interleukin‐6 (IL‐6) synthesis were determined. High‐affinity receptor for ALR, belonging to the G‐protein family, with Kd of 1.25 ± 0.18 nM and Bmax of 0.26 ± 0.02 fmol/µg DNA was identified. ALR stimulated NO, TNF‐α, and IL‐6 synthesis via cholera toxin‐sensitive G‐protein, as well as p38‐MAPK activity and nuclear translocation of NFκB. While inhibitor of NFκB (MG132) inhibited ALR‐induced NO synthesis, MG132 and p38‐MAPK inhibitor (SB203580) abrogated ALR‐induced TNF‐α and IL‐6 synthesis. ALR also prevented the release of mediator(s) from Kupffer cells that cause inhibition of DNA synthesis in hepatocytes. Administration of ALR to 40% partially hepatectomized rats increased expression of TNF‐α, IL‐6, and inducible nitric oxide synthase (iNOS) and caused augmentation of hepatic regeneration. These results demonstrate specific G‐protein coupled binding of ALR and its function in Kupffer cells and suggest that mediators produced by ALR‐stimulated Kupffer cells may elicit physiologically important effects on hepatocytes. J. Cell. Physiol. 222: 365–373, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
Thyroid calorigenesis is carried out by activation of cytochrome-c oxidase, as well as by induction of mitochondrial and nuclear genes that code for cell respiratory apparatus components and uncoupling proteins. These effects operate increments in basal metabolic rate and also lead to increased production of oxygen and nitrogen reactive species in liver parenchymal cells. The hepatic antioxidant system is also compromised, since superoxide dismutase and catalase activities, glutathione content and lipid soluble antioxidants are reduced. Liver macrophages contribute to the hepatic oxidative stress observed in T(3)-treated rats, and both Kupffer cell hyperplasia and hypertrophy are reported. Kupffer cells constitute the main fixed macrophage population in the body and are a heterogeneous group of cells, derived from a less numerous population of local precursors, which are morphologically fairly distinguishable from the mature lineage elements. ED1 and ED2 antigens have been particularly useful in the characterization of Kupffer cell subpopulations. In particular, antibodies against these antigens provided evidence that T(3)- induced Kupffer cell hyperplasia causes a shift on liver macrophage population phenotype, leaning towards younger cell types. Despite the fact that sinusoidal environment itself stimulates the proliferation of macrophage precursors and their differentiation into Kupffer cells, increased Kupffer cell turnover rates modify the sinusoidal environment and may imply further functional effects. Thus, Kupffer cell hyperplasia secondary to increased T(3) levels is potentially a pro-inflammatory event, which involves both, the expansion of Kupffer cell precursor population by means of circulating monocyte recruitment, and the differentiation of preexisting local Kupffer cell precursors into mature liver macrophages.  相似文献   

18.
It has been reported that hepatocyte metabolism and function can be modulated by the activated Kupffer cell through the release of different biomolecules like cytokines, eicosanoids, oxygen free radicals and enzymes. In relation to these paracrine factors involved in circuits of intercellular communication, the existence of a hepatic oxygen sensor located in the Kupffer cell has been postulated. According to this postulate the oxygen metabolism of the liver parenchymal cells could be under the control of the Kupffer cells. In order to study the role of the Kupffer cell in the reperfusion syndrome of the liver, a lobular ischaemia–reperfusion model was performed in rats with or without previous treatment with gadolinium chloride to block Kupffer cell function. Spontaneous chemiluminescence of the liver surface, oxygen uptake by tissue slices and tert-butyl hydroperoxide-initiated chemiluminescence determinations were performed to evaluate the oxygen metabolism and the oxy-radical generation by the liver. The lower basal photoemission, in parallel with a lower basal oxygen uptake registered in the hepatic lobes from the animals pretreated with gadolinium chloride clearly indicates that the gadolinium chloride-dependent functional inhibition of Kupffer cell leads to a downregulation of oxygen metabolism by the liver. Moreover, the intensity of oxidative stress exhibited by the postischaemic lobes appears to be closely linked with the Kupffer cell activity. On the basis of the data obtained we propose that a paracrine circuit between activated Kupffer cell and hepatocytes is an early key event in the induction of postischaemic oxidative stress in the liver. Furthermore the interference with the mitochondrial electron flow by some biomolecules released from the activated Kupffer cell, such as tumour necrosis factor, interleukins, eicosanoids, etc., would increase the rate of generation of reactive oxygen species by the inhibited mitochondrial respiratory chain. © 1998 John Wiley & Sons, Ltd.  相似文献   

19.
Thyroid hormone-induced calorigenesis contributes to liver oxidative stress and promotes an increased respiratory burst activity in Kupffer cells, which could conceivably increase the expression of redox-sensitive genes, including those coding for cytokines. Our aim was to test the hypothesis that L-3,3',5-triiodothyronine (T3)-induced liver oxidative stress would markedly increase the production of TNF-alpha by Kupffer cells and its release into the circulation. Sprague-Dawley rats receive a single dose of 0.1 mg T3/kg or vehicle (controls) and determinations of liver O2 consumption, serum TNF-alpha, rectal temperature, and serum T3 levels, were carried out at different times after treatment. Hepatic content of total reduced glutathione (GSH) and biliary glutathione disulfide (GSSG) efflux were measured as indices of oxidative stress. In some studies, prior to T3 injection animals were administered either (i) the Kupffer cell inactivator gadolinium chloride (GdCl3), (ii) the antioxidants alpha-tocopherol and N-acetyl-L-cysteine (NAC), or (iii) an antisense oligonucleotide against TNF-alpha (ASO TJU-2755). T3 elicited an 80-fold increase in the serum levels of TNF-alpha at 22h after treatment, which coincided with the onset of thyroid calorigenesis. Pretreatment with GdCl3, alpha-tocopherol, NAC, and ASO TJU-2755 virtually abolished this effect and markedly reduced T3-induced liver GSH depletion and the increases in biliary GSSG efflux. It is concluded that the hyperthyroid state in the rat increases the circulating levels of TNF-alpha by actions exerted at the Kupffer cell level and these are related to the oxidative stress status established in the liver by thyroid calorigenesis.  相似文献   

20.
The function of microRNAs (miRNAs) during alcoholic liver disease (ALD) has recently become of great interest in biological research. Studies have shown that ALD associated miRNAs play a crucial role in the regulation of liver‐inflammatory agents such as tumour necrosis factor‐alpha (TNF‐α), one of the key inflammatory agents responsible for liver fibrosis (liver scarring) and the critical contributor of alcoholic liver disease. Lipopolysaccharide (LPS), a component of the cell wall of gram‐negative bacteria, is responsible for TNF‐α release by Kupffer cells. miRNAs are the critical mediators of LPS signalling in Kupffer cells, hepatocytes and hepatic stellate cells. Certain miRNAs, in particular miR‐155 and miR‐21, show a positive correlation in up‐regulation of LPS signalling when they are exposed to ethanol. ALD is related to enhanced gut permeability that allows the levels of LPS to increase, leads to increased secretion of TNF‐α by the Kupffer cells and subsequently promotes alcoholic liver injury through specific miRNAs. Meanwhile, two of the most frequently dysregulated miRNAs in steatohepatitis, miR‐122 and miR‐34a are the critical mediators in ethanol/LPS activated survival signalling during ALD. In this review, we summarize recent findings regarding the experimental and clinical aspects of functions of specific microRNAs, focusing mainly on inflammation and cell survival after ethanol/LPS treatment, and advances on the role of circulating miRNAs in human alcoholic disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号