首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many experimental studies have shown that arterial smooth muscle cells respond with cytosolic calcium rises to vasoconstrictor stimulation. A low vasoconstrictor concentration gives rise to asynchronous spikes in the calcium concentration in a few cells (asynchronous flashing). With a greater vasoconstrictor concentration, the number of smooth muscle cells responding in this way increases (recruitment) and calcium oscillations may appear. These oscillations may eventually synchronize and generate arterial contraction and vasomotion. We show that these phenomena of recruitment and synchronization naturally emerge from a model of a population of smooth muscle cells coupled through their gap junctions. The effects of electrical, calcium, and inositol 1,4,5-trisphosphate coupling are studied. A weak calcium coupling is crucial to obtain a synchronization of calcium oscillations and the minimal required calcium permeability is deduced. Moreover, we note that an electrical coupling can generate oscillations, but also has a desynchronizing effect. Inositol 1,4,5-trisphosphate diffusion does not play an important role to achieve synchronization. Our model is validated by published in vitro experiments obtained on rat mesenteric arterial segments.  相似文献   

2.
It is well-known that cyclic variations of the vascular diameter, a phenomenon called vasomotion, are induced by synchronous calcium oscillations of smooth muscle cells (SMCs). However, the role of the endothelium on vasomotion is unclear. Some experimental studies claim that the endothelium is necessary for synchronization and vasomotion, whereas others report rhythmic contractions in the absence of an intact endothelium. Moreover, endothelium-derived factors have been shown to abolish vasomotion by desynchronizing the calcium signals in SMCs. By modeling the calcium dynamics of a population of SMCs coupled to a population of endothelial cells, we analyze the effects of an SMC vasoconstrictor stimulation on endothelial cells and the feedback of endothelium-derived factors. Our results show that the endothelium essentially decreases the SMCs calcium level and may move the SMCs from a steady state to an oscillatory domain, and vice versa. In the oscillatory domain, a population of coupled SMCs exhibits synchronous calcium oscillations. Outside the oscillatory domain, the coupled SMCs present only irregular calcium flashings arising from noise modeling stochastic opening of channels. Our findings provide explanations for the published contradictory experimental observations.  相似文献   

3.
The goal of the present study was to analyze the intercellular calcium communication between smooth muscle cells (SMCs) and endothelial cells (ECs) by simultaneously monitoring artery diameter and intracellular calcium concentration in a rat mesenteric arterial segment in vitro under physiological pressure (50 mmHg) and flow (50 microl/min) in a specially developed system. Intracellular calcium was expressed as the fura 2 ratio. The diameter was measured using a digital image acquisition system. Stimulation of SMCs with the alpha(1)-agonist phenylephrine (PE) caused not only an increase in the free intracellular calcium concentration of the SMCs as expected but also in the ECs, suggesting a calcium flux from the SMCs to the ECs. The gap junction uncoupler palmitoleic acid greatly reduced this increase in calcium in the ECs on stimulation of the SMCs with PE. This indicates that the signaling pathway passes through the gap junctions. Similarly, although vasomotion originates in the SMCs, calcium oscillates in both SMCs and ECs during vasomotion, suggesting again a calcium flux from the SMCs to the ECs.  相似文献   

4.
Smooth muscle and endothelial cells in the arterial wall are exposed to mechanical stress. Indeed blood flow induces intraluminal pressure variations and shear stress. An increase in pressure may induce a vessel contraction, a phenomenon known as the myogenic response. Many muscular vessels present vasomotion, i.e., rhythmic diameter oscillations caused by synchronous cytosolic calcium oscillations of the smooth muscle cells. Vasomotion has been shown to be modulated by pressure changes. To get a better understanding of the effect of stress and in particular pressure on vasomotion, we propose a model of a blood vessel describing the calcium dynamics in a coupled population of smooth muscle cells and endothelial cells and the consequent vessel diameter variations. We show that a rise in pressure increases the calcium concentration. This may either induce or abolish vasomotion, or increase its frequency depending on the initial conditions. In our model the myogenic response is less pronounced for large arteries than for small arteries and occurs at higher values of pressure if the wall thickness is increased. Our results are in agreement with experimental observations concerning a broad range of vessels.  相似文献   

5.
Control of cerebral vasculature differs from that of systemic vessels outside the blood-brain barrier. The hypothesis that the endothelium modulates vasomotion via direct myoendothelial coupling was investigated in a small vessel of the cerebral circulation. In the primary branch of the rat basilar artery, membrane potential, diameter, and calcium dynamics associated with vasomotion were examined using selective inhibitors of endothelial function in intact and endothelium-denuded arteries. Vessel anatomy, protein, and mRNA expression were studied using conventional electron microscopy high-resolution ultrastructural and confocal immunohistochemistry and quantitative PCR. Membrane potential oscillations were present in both endothelial cells and smooth muscle cells (SMCs), and these preceded rhythmical contractions during which adjacent SMC intracellular calcium concentration ([Ca(2+)](i)) waves were synchronized. Endothelium removal abolished vasomotion and desynchronized adjacent smooth muscle cell [Ca(2+)](i) waves. N(G)-nitro-l-arginine methyl ester (10 microM) did not mimic this effect, and dibutyryl cGMP (300 muM) failed to resynchronize [Ca(2+)](i) waves in endothelium-denuded arteries. Combined charybdotoxin and apamin abolished vasomotion and depolarized and constricted vessels, even in absence of endothelium. Separately, (37,43)Gap27 and (40)Gap27 abolished vasomotion. Extensive myoendothelial gap junctions (3 per endothelial cell) composed of connexins 37 and 40 connected the endothelial cell and SMC layers. Synchronized vasomotion in rat basilar artery is endothelium dependent, with [Ca(2+)](i) waves generated within SMCs being coordinated by electrical coupling via myoendothelial gap junctions.  相似文献   

6.
In vitro, alpha-adrenoreceptor stimulation of rat mesenteric small arteries often leads to a rhythmic change in wall tension, i.e., vasomotion. Within the individual smooth muscle cells of the vascular wall, vasomotion is often preceded by a period of asynchronous calcium waves. Abruptly, these low-frequency waves may transform into high-frequency whole cell calcium oscillations. Simultaneously, multiple cells synchronize, leading to rhythmic generation of tension. We present a mathematical model of vascular smooth muscle cells that aims at characterizing this sudden transition. Simulations show calcium waves sweeping through the cytoplasm when the sarcoplasmic reticulum (SR) is stimulated to release calcium. A rise in cGMP leads to the experimentally observed transition from waves to whole cell calcium oscillations. At the same time, membrane potential starts to oscillate and the frequency approximately doubles. In this transition, the simulated results point to a key role for a recently discovered cGMP-sensitive calcium-dependent chloride channel. This channel depolarizes the membrane in response to calcium released from the SR. In turn, depolarization causes a uniform opening of L-type calcium channels on the cell surface, stimulating a synchronized release of SR calcium and inducing the shift from waves to whole cell oscillations. The effect of the channel is therefore to couple the processes of the SR with those of the membrane. We hypothesize that the shift in oscillatory mode and the associated onset of oscillations in membrane potential within the individual cell may underlie sudden intercellular synchronization and the appearance of vasomotion.  相似文献   

7.
Increased resistance of the small blood vessels within the lungs is associated with pulmonary hypertension and results from a decrease in size induced by the contraction of their smooth muscle cells (SMCs). To study the mechanisms that regulate the contraction of intrapulmonary arteriole SMCs, the contractile and Ca(2+) responses of the arteriole SMCs to 5-hydroxytrypamine (5-HT) and KCl were observed with phase-contrast and scanning confocal microscopy in thin lung slices cut from mouse lungs stiffened with agarose and gelatin. 5-HT induced a concentration-dependent contraction of the arterioles. Increasing concentrations of extracellular KCl induced transient contractions in the SMCs and a reduction in the arteriole luminal size. 5-HT induced oscillations in [Ca(2+)](i) within the SMCs, and the frequency of these Ca(2+) oscillations was dependent on the agonist concentration and correlated with the extent of sustained arteriole contraction. By contrast, KCl induced Ca(2+) oscillations that occurred with low frequencies and were preceded by small, localized transient Ca(2+) events. The 5-HT-induced Ca(2+) oscillations and contractions occurred in the absence of extracellular Ca(2+) and were resistant to Ni(2+) and nifedipine but were abolished by caffeine. KCl-induced Ca(2+) oscillations and contractions were abolished by the absence of extracellular Ca(2+) and the presence of Ni(2+), nifedipine, and caffeine. Arteriole contraction was induced or abolished by a 5-HT(2)-specific agonist or antagonist, respectively. These results indicate that 5-HT, acting via 5-HT(2) receptors, induces arteriole contraction by initiating Ca(2+) oscillations and that KCl induces contraction via Ca(2+) transients resulting from the overfilling of internal Ca(2+) stores. We hypothesize that the magnitude of the sustained intrapulmonary SMC contraction is determined by the frequency of Ca(2+) oscillations and also by the relaxation rate of the SMC.  相似文献   

8.
Vasomotion is a rhythmic variation in microvascular diameter. Although known for more than 150 years, the cellular processes underlying the initiation of vasomotion are not fully understood. In the present study a model of a single cell is extended by coupling a number of cells into a tube. The simulated results point to a permissive role of cGMP in establishing intercellular synchronization. In sufficient concentration, cGMP may activate a cGMP-sensitive calcium-dependent chloride channel, causing a tight spatiotemporal coupling between release of sarcoplasmic reticulum calcium, membrane depolarization, and influx of extracellular calcium. Low [cGMP] is associated only with unsynchronized waves. At intermediate concentrations, cells display either waves or whole cell oscillations, but these remain unsynchronized between cells. Whole cell oscillations are associated with rhythmic variation in membrane potential and flow of current through gap junctions. The amplitude of these oscillations in potential grows with increasing [cGMP], and, past a certain threshold, they become strong enough to entrain all cells in the vascular wall, thereby initiating sustained vasomotion. In this state there is a rhythmic flow of calcium through voltage-sensitive calcium channels into the cytoplasm, making the frequency of established vasomotion sensitive to membrane potential. It is concluded that electrical coupling through gap junctions is likely to be responsible for the rapid synchronization across a large number of cells. Gap-junctional current between cells is due to the appearance of oscillations in the membrane potential that again depends on the entrainment of sarcoplasmic reticulum and plasma membrane within the individual cell.  相似文献   

9.
We investigated heterocellular communication in rat mesenteric arterial strips at the cellular level using confocal microscopy. To visualize Ca(2+) changes in different cell populations, smooth muscle cells (SMCs) were loaded with Fluo-4 and endothelial cells (ECs) with Fura red. SMC contraction was stimulated using high K(+) solution and Phenylephrine. Depending on vasoconstrictor concentration, intracellular Ca(2+) concentration ([Ca(2+)](i)) increased in a subpopulation of ECs 5-11s after a [Ca(2+)](i) rise was observed in adjacent SMCs. This time interval suggests chemical coupling between SMCs and ECs via gap junctions. As potential chemical mediators we investigated Ca(2+) or inositol 1,4,5-trisphosphate (IP(3)). First, phospholipase C inhibitor U-73122 was added to prevent IP(3) production in response to the [Ca(2+)](i) increase in SMCs. In high K(+) solution, all SMCs presented global and synchronous [Ca(2+)](i) increase, but no [Ca(2+)](i) variations were detected in ECs. Second, 2-aminoethoxydiphenylborate, an inhibitor of IP(3)-induced Ca(2+) release, reduced the number of flashing ECs by 75+/-3% (n = 6). The number of flashing ECs was similarly reduced by adding the gap junction uncoupler palmitoleic acid. Thus, our results suggest a heterocellular communication through gap junctions from SMCs to ECs by diffusion, probably of IP(3).  相似文献   

10.
Increased resistance of airways or blood vessels within the lung is associated with asthma or pulmonary hypertension and results from contraction of smooth muscle cells (SMCs). To study the mechanisms regulating these contractions, we developed a mouse lung slice preparation containing bronchioles and arterioles and used phase-contrast and confocal microscopy to correlate the contractile responses with changes in [Ca(2+)](i) of the SMCs. The airways are the focus of this study. The agonists, 5-hydroxytrypamine (5-HT) and acetylcholine (ACH) induced a concentration-dependent contraction of the airways. High concentrations of KCl induced twitching of the airway SMCs but had little effect on airway size. 5-HT and ACH induced asynchronous oscillations in [Ca(2+)](i) that propagated as Ca(2+) waves within the airway SMCs. The frequency of the Ca(2+) oscillations was dependent on the agonist concentration and correlated with the extent of sustained airway contraction. In the absence of extracellular Ca(2+) or in the presence of Ni(2+), the frequency of the Ca(2+) oscillations declined and the airway relaxed. By contrast, KCl induced low frequency Ca(2+) oscillations that were associated with SMC twitching. Each KCl-induced Ca(2+) oscillation consisted of a large Ca(2+) wave that was preceded by multiple localized Ca(2+) transients. KCl-induced responses were resistant to neurotransmitter blockers but were abolished by Ni(2+) or nifedipine and the absence of extracellular Ca(2+). Caffeine abolished the contractile effects of 5-HT, ACH, and KCl. These results indicate that (a) 5-HT and ACH induce airway SMC contraction by initiating Ca(2+) oscillations, (b) KCl induces Ca(2+) transients and twitching by overloading and releasing Ca(2+) from intracellular stores, (c) a sustained, Ni(2+)-sensitive, influx of Ca(2+) mediates the refilling of stores to maintain Ca(2+) oscillations and, in turn, SMC contraction, and (d) the magnitude of sustained airway SMC contraction is regulated by the frequency of Ca(2+) oscillations.  相似文献   

11.
The possible roles of endothelial intracellular Ca(2+) concentration ([Ca(2+)](i)), nitric oxide (NO), arachidonic acid (AA) metabolites, and Ca(2+)-activated K(+) (K(Ca)) channels in adrenergically induced vasomotion were examined in pressurized rat mesenteric arteries. Removal of the endothelium or buffering [Ca(2+)](i) selectively in endothelial cells with BAPTA eliminated vasomotion in response to phenylephrine (PE; 10.0 microM). In arteries with intact endothelium, inhibition of NO synthase with N(omega)-nitro-l-arginine methyl ester (l-NAME; 300.0 microM) or N(omega)-nitro-l-arginine (l-NNA; 300.0 microM) did not eliminate vasomotion. Neither inhibition of cGMP formation with 10.0 microM 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) nor inhibition of prostanoid formation (10.0 microM indomethacin) eliminated vasomotion. Similarly, inhibition of AA cytochrome P-450 metabolism with an intraluminal application of 17-octadecynoic acid (17-ODYA) or 6-(2-propargyloxyphenyl)hexanoic acid (PPOH) failed to eliminate vasomotion. In contrast, intraluminal application of the K(Ca) channel blockers apamin (250.0 nM) and charybdotoxin (100.0 nM), together, abolished vasomotion and changed synchronous Ca(2+) oscillations in smooth muscle cells to asynchronous propagating Ca(2+) waves. Apamin, charybdotoxin, or iberiotoxin (100.0 nM) alone did not eliminate vasomotion, nor did the combination of apamin and iberiotoxin. The results show that adrenergic vasomotion in rat mesenteric arteries is critically dependent on Ca(2+)-activated K(+) channels in endothelial cells. Because these channels (small- and intermediate-conductance K(Ca) channels) are a recognized component of EDHF, we conclude therefore that EDHF is essential for the development of adrenergically induced vasomotion.  相似文献   

12.
We have examined the effect of epidermal growth factor--urogastrone (EGF-URO) on the response of isolated canine helical mesenteric arterial strips contracted by norepinephrine (NE), KCl, and transmural electrical stimulation (TES). Although EGF-URO alone did not affect resting arterial tone, contraction caused by all three modes of stimulation (NE, KCl, and TES) was inhibited up to 50% in the presence of EGF-URO. The action of EGF-URO did not depend on the presence of intact endothelial cells. The most pronounced effect of EGF-URO was observed on KCl-mediated contraction. The inhibitory effect of EGF-URO was maximal at about 15 min after addition of the polypeptide to the organ bath and persisted (e.g., electrical stimulation) for up to 1 h. A half-maximal inhibitory effect of EGF-URO was observed at a concentration of about 1 nM. Washing the tissue free of EGF-URO reversed its inhibitory action. Although in the presence of indomethacin (3 microM) EGF-URO caused a small, variable elevation in resting tension, the presence of indomethacin did not affect the ability of EGF--URO to inhibit contraction mediated by KCl. Under conditions wherein contraction in response to maximally effective concentrations of either NE or KCl was made dependent on the addition of calcium, EGF-URO was able to inhibit the response in the presence of KCl but not in the presence of NE.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Vasomotion, the phenomenon of vessel diameter oscillation, regulates blood flow and resistance. The main parameters implicated in vasomotion are particularly the membrane potential and the cytosolic free calcium in smooth muscle cells. In this study, these parameters were measured in rat perfused-pressurized mesenteric artery segments. The application of norepinephrine (NE) caused rhythmic diameter contractions and membrane potential oscillations (amplitude; 5.3 +/- 0.3 mV, frequency; 0.09 +/- 0.01 Hz). Verapamil (1 microM) abolished this vasomotion. During vasomotion, 10(-5) M ouabain (Na(+)-K(+) ATPase inhibitor) decreased the amplitude of the electrical oscillations but not their frequency (amplitude; 3.7 +/- 0.3 mV, frequency; 0.08 +/- 0.002 Hz). Although a high concentration of ouabain (10(-3) M) (which exhibits non-specific effects) abolished both electrical membrane potential oscillations and vasomotion, we conclude that the Na+-K+ ATPase could not be implicated in the generation of the membrane potential oscillations. We conclude that in rat perfused-pressurized mesenteric artery, the slow wave membrane type of potential oscillation by rhythmically gating voltage-dependent calcium channels, is responsible for the oscillation of intracellular calcium and thus vasomotion.  相似文献   

14.
The intercellular synchronization of spontaneous calcium (Ca(2+)) oscillations in individual smooth muscle cells is a prerequisite for vasomotion. A detailed mathematical model of Ca(2+) dynamics in rat mesenteric arteries shows that a number of synchronizing and desynchronizing pathways may be involved. In particular, Ca(2+)-dependent phospholipase C, the intercellular diffusion of inositol trisphosphate (IP(3), and to a lesser extent Ca(2+)), IP(3) receptors, diacylglycerol-activated nonselective cation channels, and Ca(2+)-activated chloride channels can contribute to synchronization, whereas large-conductance Ca(2+)-activated potassium channels have a desynchronizing effect. Depending on the contractile state and agonist concentrations, different pathways become predominant, and can be revealed by carefully inhibiting the oscillatory component of their total activity. The phase shift between the Ca(2+) and membrane potential oscillations can change, and thus electrical coupling through gap junctions can mediate either synchronization or desynchronization. The effect of the endothelium is highly variable because it can simultaneously enhance the intercellular coupling and affect multiple smooth muscle cell components. Here, we outline a system of increased complexity and propose potential synchronization mechanisms that need to be experimentally tested.  相似文献   

15.
Synthetic peptides homologous to the extracellular loops of the major vascular connexins represent a novel class of gap junction blockers that have been used to assess the role of direct cellular communication in arteries and veins. However, the specificity of action of such peptides on the coupling between smooth muscle cells (SMCs) has not yet been fully characterized. Isolated third-order rat mesenteric arteries were therefore studied with respect to isometric tension (myography), intracellular Ca2+ concentration ([Ca2+]i) (Ca2+ -sensitive dyes), membrane potential, and input resistance (sharp intracellular glass electrodes). Confocal imaging was used for visualization of [Ca2+]i events in individual SMCs in the arterial wall and membrane currents (patch clamp) measured in individual SMCs isolated from the same arteries. A triple peptide combination (37,43Gap 27 + 40Gap 27 + 43Gap 26) increased intercellular resistance (measured as input resistance) in intact arterial segments without affecting the membrane conductance of individual cells and also interrupted electrical coupling between pairs of rat aortic A7r5 myocytes. In intact arterial segments, the peptides desynchronized [Ca2+]i transients in individual SMCs and abolished vasomotion without suppressing Ca2+ transients in individual cells. They also depolarized SMCs, increased [Ca2+]i, and attenuated acetylcholine-induced, endothelium-dependent smooth muscle hyperpolarization. Experiments with endothelium-denuded arteries suggested that the depolarization produced by the peptides under basal conditions was in part secondary to electrical uncoupling of the endothelium from SMCs with loss of a tonic hyperpolarizing effect of the endothelium. Taken together, the results indicate that connexin-mimetic peptides block electrical signaling in rat mesenteric small arteries without exerting major nonjunctional effects.  相似文献   

16.
The functions of ryanodine receptors (RyRs) and inositol (1,4,5)-trisphosphate receptors [Ins(1,4,5)P(3)Rs] in adrenergically activated contractions of pressurized rat mesenteric small arteries were investigated. Caffeine (20 mM) but not phenylephrine (PE; 10 microM) facilitated the depletion of smooth muscle sarcoplasmic reticulum (SR) Ca(2+) stores by ryanodine (40 microM). In ryanodine-treated SR-depleted arteries, 1) Ca(2+) sparks were absent, 2) low concentrations of PE failed to elicit either vasoconstriction or normal asynchronous propagating Ca(2+) waves, and 3) high [PE] induced abnormally slow oscillatory contractions (vasomotion) and synchronous Ca(2+) oscillations. In ryanodine-treated SR-depleted arteries denuded of endothelium, high [PE] induced steady contraction and steady elevation of intracellular [Ca(2+)]. In contrast, 2-aminoethyl diphenylborate (2-APB), a putative blocker of Ins(1,4,5)P(3)Rs, produced opposite effects to ryanodine: 1) Ca(2+) sparks were present; 2) Ca(2+) waves were absent; 3) caffeine-releasable Ca(2+) stores were intact; and 4) PE, even at high concentrations on endothelial-denuded arteries, failed to elicit contraction, asynchronous Ca(2+) waves, or synchronous Ca(2+) oscillations or maintained elevated [Ca(2+)]. We conclude that 1) Ins(1,4,5)P(3)Rs are essential for adrenergically induced asynchronous Ca(2+) waves and the associated steady vasoconstriction, 2) RyRs are not appreciably opened during adrenergic activation (because PE did not facilitate the development of the effects of ryanodine), and 3) Ins(1,4,5)P(3)Rs are not essential for Ca(2+) sparks. This provides an explanation of the fact that adrenergic stimulation decreases the frequency of Ca(2+) sparks (previously reported) while simultaneously increasing the frequency of asynchronous propagating Ca(2+) waves; different SR Ca(2+)-release channels are involved.  相似文献   

17.
The addition of prostaglandin (PG) D2 contracted helical strips of dog cerebral, coronary, renal and femoral arteries; the contraction was greatest in cerebral arteries. The contractile response of cerebral arteries was potentiated by aspirin and attenuated by polyphloretin phosphate. In the arterial strips contracted with PGF, PGD2 elicited a concetration-related relaxation; the relaxation was greatest in mesenteric arteries. In mesenteric arterial strips contracted with norepinephrine, a lesser degree of relaxation was induced, and in the K+-contracted arteries, only a contraction was induced. Treatment with PGD2 attenuated the contractile responses of cerebral and mesentric arteries to PGF or PGE2; this inhibitory effect was approximately 10 times greater in mesenteric arteries. However, the response to serotonin (for cerebral arteries) or norepinephrine (for mesenteric) was unaffected. It may be concluded that the heterogeneity of response to PGD2 of a variety of dog arteries is due to different contributions of vasoconstrictor and vasodilator mechanisms. PGD2 appears top share the mechanism underlying arterial contraction with PGF and PGE2, and interferes with the effect of these PG's possibly on receptor sites.  相似文献   

18.
The specific role of different isoforms of the Na,K-pump in the vascular wall is still under debate. We have previously suggested that the α(2) isoform of the Na,K-pump (α(2)), Na(+), Ca(2+)-exchange (NCX), and connexin43 form a regulatory microdomain in smooth muscle cells (SMCs), which controls intercellular communication and contractile properties of the vascular wall. We have tested this hypothesis by downregulating α(2) in cultured SMCs and in small arteries with siRNA in vivo. Intercellular communication was assessed by using membrane capacitance measurements. Arteries transfected in vivo were tested for isometric and isobaric force development in vitro; [Ca(2+)](i) was measured simultaneously. Cultured rat SMCs were well-coupled electrically, but 10 μM ouabain uncoupled them. Downregulation of α(2) reduced electrical coupling between SMCs and made them insensitive to ouabain. Downregulation of α(2) in small arteries was accompanied with significant reduction in NCX expression. Acetylcholine-induced relaxation was not different between the groups, but the endothelium-dependent hyperpolarizing factor-like component of the response was significantly diminished in α(2)-downregulated arteries. Micromolar ouabain reduced in a concentration-dependent manner the amplitude of norepinephrine (NE)-induced vasomotion. Sixty percent of the α(2)-downregulated arteries did not have vasomotion, and vasomotion in the remaining 40% was ouabain insensitive. Although ouabain increased the sensitivity to NE in the control arteries, it had no effect on α(2)-downregulated arteries. In the presence of a low NE concentration the α(2)-downregulated arteries had higher [Ca(2+)](i) and tone. However, the NE EC50 was reduced under isometric conditions, and maximal contraction was reduced under isometric and isobaric conditions. The latter was caused by a reduced Ca(2+)-sensitivity. The α(2)-downregulated arteries also had reduced contraction to vasopressin, whereas the contractile response to high K(+) was not affected. Our results demonstrate the importance of α(2) for intercellular coupling in the vascular wall and its involvement in the regulation of vascular tone.  相似文献   

19.
Graded contractions to cumulative additions of calcium in the presence of KCl were obtained in strips of aorta and mesenteric arteries of normotensive (WKY) and spontaneously hypertensive (SHR) rats. In calcium-free medium, a maximally effective concentration of KCl produced a response that was larger in the mesenteric arteries (43-51% of control) than in the aorta (12-14% of control). The calcium channel blocker nifedipine (NFD, up to 10(-7) M) did not significantly alter these calcium-insensitive responses. The Ca2+-induced responses were inhibited by NFD, in a concentration-dependent fashion, in both vessel types of WKY and SHR rats. The aortic responses were more sensitive to inhibition by NFD than the responses of mesenteric arteries. Moreover, the aortic responses of WKY were inhibited to a greater extent than those of the SHR. The results suggest: (a) a differential calcium dependence of contractions to KCl in the vessels studied; (b) that aortic responses are dependent on NFD-sensitive voltage-sensitive Ca2+ channels to a greater extent than the responses of mesenteric arteries; and (c) that hypertension results in a decreased sensitivity of the aorta Ca2+ channels to NFD.  相似文献   

20.
Nitric oxide (NO) reacts with superoxide anion to form the peroxynitrite anion (ONOO-), a molecule with pulmonary vasodilator properties in the adult rat. The purpose of this study was to compare the effects of ONOO- on intrapulmonary arteries from the newborn (days 4-7), juvenile (day 14), and adult rat. Following thromboxane A2 (TXA2) analogue (U46619) prestimulation, newborn vessels were more sensitive to ONOO- -induced muscle contraction, compared to both the juvenile and the adult vessels. Peroxynitrite-induced contraction in newborn vessels was abrogated by ibuprofen, an endothelin B-receptor blocker (A-192621), or a rho-kinase-specific inhibitor (Y27632) (all p < 0.01). Following KCl stimulation and TXA2 receptor blockade, ONOO- induced NO-dependent muscle relaxation in newborn vessels via stimulation of the endothelial and inducible nitric oxide synthases. However, in the presence of ONOO-, the pulmonary artery relaxation response to endothelium-dependent stimulation was significantly reduced (p < 0.01). Finally, newborn but not adult pulmonary arteries exposed to ONOO- showed a 10-fold increase in 8-isoprostane production, a possible mediator of ONOO- -induced contraction. We conclude that exposure to ONOO- results in a unique response in newborn intrapulmonary arteries characterized by increased 8-isoprostane generation, which we believe is responsible for its vasoconstrictor effect. This unique response potentially renders the newborn more susceptible to ONOO- -induced pulmonary hypertension than older animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号