首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Dissipation of absorbed excitation energy as heat, measured by its effect on the quenching of chlorophyll fluorescence, is induced under conditions of excess light in order to protect the photosynthetic apparatus of plants from light-dependent damage. The spectral characteristics of this quenching have been compared to that due to photochemistry in the Photosystem II reaction centre using leaves of Guzmania monostachia. This was achieved by making measurements at 77K when fluorescence emission bands from each type of chlorophyll protein complex can be distinguished. It was demonstrated that photochemistry and non-photochemical dissipation preferentially quench different emission bands and therefore occur by dissimilar mechanisms at separate sites. It was found that photochemistry was associated with a preferential quenching of emission at 688 nm whereas the spectrum for rapidly reversible non-photochemical quenching had maxima at 683 nm and 698 nm, suggesting selective quenching of the bands originating from the light harvesting complexes of Photosystem II. Further evidence that this was occurring in the light harvesting system was obtained from the fluorescence excitation spectra recorded in the quenched and relaxed states.Abbreviations pH transthylakoid pH gradient - Fo minimum level of chlorophyll fluorescence when Photosystem II reaction centres are open - Fm maximum level of fluorescence when Photosystem II reaction centres are closed - Fv variable fluorescence Fm minus Fo - F'o Fo in any quenched state - Fm Fm in any quenched state - LHCII light harvesting complexes of Photosystem II - PSI Photosystem I - PS II Photosystem II - qN non-photochemical quenching of chlorophyll fluorescence - qE non-photochemical quenching of chlorophyll fluorescence that occurs in the presence of a pH  相似文献   

2.
The role of the xanthophyll cycle in regulating the energy flow to the PS II reaction centers and therefore in photoprotection was studied by measurements of light-induced absorbance changes, Chl fluorescence, and photosynthetic O2 evolution in sun and shade leaves of Hedera canariensis. The light-induced absorbance change at 510 nm (A510) was used for continuous monitoring of zeaxanthin formation by de-epoxidation of violaxanthin. Non-radiative energy dissipation (NRD) was estimated from non-photochemical fluorescence quenching (NPQ).High capacity for zeaxanthin formation in sun leaves was accompanied by large NRD in the pigment bed at high PFDs as indicated by a very strong NPQ both when all PS II centers are closed (F'm) and when all centers are open (F'o). Such Fo quenching, although present, was less pronounced in shade leaves which have a much smaller xanthophyll cycle pool.Dithiothreitol (DTT) provided through the cut petiole completely blocked zeaxanthin formation. DTT had no detectable effect on photosynthetic O2 evolution or the photochemical yield of PS II in the short term but fully inhibited the quenching of Fo and 75% of the quenching of Fm, indicating that NRD in the antenna was largely blocked. This inhibition of quenching was accompanied by an increased closure of the PS II reaction centers.In the presence of DTT a photoinhibitory treatment at a PFD of 200 mol m-2 s-1, followed by a 45 min recovery period at a low PFD, caused a 35% decrease in the photon yield of O2 evolution, compared to a decrease of less than 5% in the absence of DTT. The Fv/Fm ratio, measured in darkness showed a much greater decrease in the presence than in the absence of DTT. In the presence of DTT Fo rose by 15–20% whereas no change was detected in control leaves.The results support the conclusion that the xanthophyll cycle has a central role in regulating the energy flow to the PS II reaction centers and also provide direct evidence that zeaxanthin protects against photoinhibitory injury to the photosynthetic system.Abbreviations F, Fm, Fo, Fv Fluorescence yield at actual degree of PS II center closure, when all centers are closed, when all centers are open, variable fluorescence - NPQ non-photochemical fluorescence quenching - NRD non-radiative energy dissipation - PFD photon flux density - QA primary acceptor PS II  相似文献   

3.
Koblížek  M.  Ciscato  M.  Komenda  J.  Kopencký  J.  Šiffel  P.  Masojídek  J. 《Photosynthetica》1999,37(2):307-323
The dark-adapted cells of the green alga Spongiochloris sp. were exposed to "white light" of 1000 μmol(photon) m−2 s−1 for 2 h and then dark adapted for 1.5 h. Changes of photochemical activities during photoadaptation were followed by measurement of chlorophyll (Chl) fluorescence kinetics, 77 K emission spectra, photosynthetic oxygen evolution, and pigment composition. We observed a build-up of slowly-relaxing non-photochemical quenching which led to a decrease of the Fv/Fm parameter and the connectivity. In contrast to the depression of Fv/Fm (35 %) and the rise of non-photochemical quenching (∼ 1.6), we observed an increase in effective absorption cross-section (20 %), Hill reaction (30 %), photosynthetic oxygen evolution (80 %), and electron transport rate estimated from the Chl fluorescence analysis (80 %). We showed an inconsistency in the presently used interpretation schemes, and ascribe the discrepancy between the increase of effective absorption cross-section and the photosynthetic activities on one side and the effective non-photochemical quenching on the other side to the build-up of a quenching mechanism which dissipates energy in closed reaction centres. Such a type of quenching changes the ratio between thermal dissipation and fluorescence without any effect on photochemical yield. In this case the Fv/Fm ratio cannot be used as a measure of the maximum photochemical yield of PS2. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
Summary Diurnal measurements of chlorophyll a fluorescence from cacti (Nopalea cochenillifera, Opuntia ficus-indica, and Opuntia wentiana) growing in northern Venezuela were used to determine photochemical fluorescence quenching related to the reduction state of the primary electron acceptor of PS II as well as non-photochemical fluorescence quenching which reflects the fraction of energy going primarily into radiationless deexcitation. The cladodes used in this study were oriented such that one surface received direct sunlight in the morning and the other one during the afternoon. Both surfaces exhibited large increases in radiationless energy dissipation from the photochemical system accompanied by decreases in PS II photochemical efficiency during direct exposure to natural sunlight. During exposure to sunlight in the morning, dissipation of absorbed light energy through photosynthesis and radiationless energy dissipation was sufficient to maintain Q, the primary electron acceptor for PS II, in a low reduction state. During exposure to sunlight in the afternoon, however, the reduction state of Q rose to levels greater than 50%, presumably due to a decrease in photosynthetic electron transport as the decarboxylation of the nocturnally accumulated malic acid was completed. Exposure to direct sunlight in the afternoon also led to more sustained increases in radiationless energy dissipation. Furthermore, the increases in radiationless energy dissipation during exposure of a water-stressed cladode of O. wentiana to direct sunlight were much greater than those from other well-watered cacti, presumably due to sustained stomatal closure and decreased rates of photosynthetic electron transport. These results indicate that the radiationless dissipation of absorbed light is an important process in these CAM plants under natural conditions, and may reflect a protective mechanism against the potentially damaging effects of the accumulation of excessive energy, particularly under conditions where CO2 availability is restricted.Abbreviations CAM crassulacean acid metabolism - F o instantaneous fluorescence emission - F M maximum fluorescence emission - F v variable fluorescence emission - K D rate constant for radiationless energy dissipation in the antenna chlorophyll - PFD photon flux density - PS I photosystem I - PS II photosystem II - Q primary electron acceptor of photosystem II - q NP non-photochemical fluorescence quenching - q P photochemical fluorescence quenching - T C cladode temperature  相似文献   

5.
Light modulation of the ability of three artificial quinones, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), 2,6-dichloro-p-benzoquinone (DCBQ), and tetramethyl-p-benzoquinone (duroquinone), to quench chlorophyll (Chl) fluorescence photochemically or non-photochemically was studied to simulate the functions of endogenous plastoquinones during the thermal phase of fast Chl fluorescence induction kinetics. DBMIB was found to suppress by severalfold the basal level of Chl fluorescence (Fo) and to markedly retard the light-induced rise of variable fluorescence (Fv). After irradiation with actinic light, Chl fluorescence rapidly dropped down to the level corresponding to Fo level in untreated thylakoids and then slowly declined to the initial level. DBMIB was found to be an efficient photochemical quencher of energy in Photosystem II (PSII) in the dark, but not after prolonged irradiation. Those events were owing to DBMIB reduction under light and its oxidation in the dark. At high concentrations, DCBQ exhibited quenching behaviours similar to those of DBMIB. In contrast, duroquinone demonstrated the ability to quench Fv at low concentration, while Fo was declined only at high concentrations of this artificial quinone. Unlike for DBMIB and DCBQ, quenched Fo level was attained rapidly after actinic light had been turned off in the presence of high duroquinone concentrations. That finding evidenced that the capacity of duroquinone to non-photochemically quench excitation energy in PSII was maintained during irradiation, which is likely owing to the rapid electron transfer from duroquinol to Photosystem I (PSI). It was suggested that DBMIB and DCBQ at high concentration, on the one hand, and duroquinone, on the other hand, mimic the properties of plastoquinones as photochemical and non-photochemical quenchers of energy in PSII under different conditions. The first model corresponds to the conditions under which the plastoquinone pool can be largely reduced (weak electron release from PSII to PSI compared to PSII-driven electron flow from water under strong light and weak PSI photochemical capacity because of inactive electron transport on its reducing side), while the second one mimics the behaviour of the plastoquinone pool when it cannot be filled up with electrons (weak or moderate light and high photochemical competence of PSI).  相似文献   

6.
Peter Horton  Neil R. Baker 《BBA》1980,592(3):559-564
Fluorescence induction at ?196°C has been monitored in chloroplasts rapidly frozen after poising at different redox potentials at room temperature. It was found that, as at room temperature, the initial level of fluorescence observed upon shutter opening (Fo), relative to the final level observed after 10 seconds of illumination (Fm) increased as the redox potential of the chloroplasts was lowered. Redox titration revealed the presence of two quenching components with Em,7.8 at ?70 mV and ?275 mV accounting for approx. 75% and 25% of the variable fluorescence (Fv). Parallel observation of fluorescence yield at room temperature similarly gave two components, with Em,7.8 at ?95 mV and ?290 mV, also accounting for approx. 75% and 25%. Simultaneous measurement of fluorescence emission at ?196°C at 695 nm and 735 nm indicated that both emissions are quenched by the same redox components.  相似文献   

7.
Non-photochemical chlorophyll fluorescence quenching (qN) in barley leaves has been analysed by monitoring its relaxation in the dark, by applying saturating pulses of light. At least three kinetically distinct phases to qN recovery are observed, which have previously been identified (Quick and Stitt 1989) as being due to high-energy state quenching (fast), excitation energy redistribution due to a state transition (medium) and photoinhibition (slow). However, measurements of chlorophyll fluorescence at 77 K from leaf extracts show that state transitions only occur in low light conditions, whereas the medium component of qN is very large in high light. The source of that part of the medium component not accounted for by a state transition is discussed.Abbreviations ATP adenosine 5-triphosphate - DCMU 3[3,4-dichlorophenyl]-1,1 dimethylurea - pH trans-thylakoid pH gradient - Fo, Fm room-temperature chlorophyll fluorescence yield with all reaction centres open, closed - Fv variable fluorescence = Fm–Fo - LHC II Light harvesting complex II - PS I, PS II Photosystem I, II - P700, P680 primary donor in photosystem I, II - qP photochemical quenching of variable fluorescence - qN non-photochemical quenching of variable fluorescence - qNe, qNt, qNi non-photochemical quenching due to high energy state, state transition, photoinhibition - qNf, qNm, qNs components of qN relaxing fast, medium, slow - qr quenching of r relative to the dark state - tricine N-tris[hydroxymethyl]methylglycine - r ratio of fluorescence maximum from photosystem II to that from photosystem I at 77 K  相似文献   

8.
Michael Bradbury  Neil R. Baker 《BBA》1984,765(3):275-281
Estimations of the changes in the reduction-oxidation state of Photosystem II electron acceptors in Phaseolus vulgaris leaves were made during the slow decline in chlorophyll fluorescence emission from the maximal level at P to the steady-state level at T. The relative contributions of photochemical and non-photochemical processes to the fluorescence quenching were determined from these data. At a low photon flux density of 100 μmol · m?2 · s?1, non-photochemical quenching was the major contributor to the fluorescence decline from P to T, although large charges were observed in photochemical quenching immediately after P. On increasing the light intensity 10-fold, the contribution of photochemical processes to fluorescence quenching was markedly diminished, with nearly all the P-to-T fluorescence decline being attributable to changes in non-photochemical quenching. The possible factors responsible for changes in non-photochemical quenching within the leaves are discussed.  相似文献   

9.
This contribution is a practical guide to the measurement of the different chlorophyll (Chl) fluorescence parameters and gives examples of their development under high-irradiance stress. From the Chl fluorescence induction kinetics upon irradiation of dark-adapted leaves, measured with the PAM fluorometer, various Chl fluorescence parameters, ratios, and quenching coefficients can be determined, which provide information on the functionality of the photosystem 2 (PS2) and the photosynthetic apparatus. These are the parameters Fv, Fm, F0, Fm′, Fv′, NF, and ΔF, the Chl fluorescence ratios Fv/Fm, Fv/F0, ΔF/Fm′, as well as the photochemical (qP) and non-photochemical quenching coefficients (qN, qCN, and NPQ). qN consists of three components (qN = qE + qT + qI), the contribution of which can be determined via Chl fluorescence relaxation kinetics measured in the dark period after the induction kinetics. The above Chl fluorescence parameters and ratios, many of which are measured in the dark-adapted state of leaves, primarily provide information on the functionality of PS2. In fully developed green and dark-green leaves these Chl fluorescence parameters, measured at the upper adaxial leaf side, only reflect the Chl fluorescence of a small portion of the leaf chloroplasts of the green palisade parenchyma cells at the upper outer leaf half. Thus, PAM fluorometer measurements have to be performed at both leaf sides to obtain information on all chloroplasts of the whole leaf. Combined high irradiance (HI) and heat stress, applied at the upper leaf side, strongly reduced the quantum yield of the photochemical energy conversion at the upper leaf half to nearly zero, whereas the Chl fluorescence signals measured at the lower leaf side were not or only little affected. During this HL-stress treatment, qN, qCN, and NPQ increased in both leaf sides, but to a much higher extent at the lower compared to the upper leaf side. qN was the best indicator for non-photochemical quenching even during a stronger HL-stress, whereas qCN and NPQ decreased with progressive stress even though non-photochemical quenching still continued. It is strongly recommended to determine, in addition to the classical fluorescence parameters, via the PAM fluorometer also the Chl fluorescence decrease ratio RFd (Fd/Fs), which, when measured at saturation irradiance is directly correlated to the net CO2 assimilation rate (P N) of leaves. This RFd-ratio can be determined from the Chl fluorescence induction kinetics measured with the PAM fluorometer using continuous saturating light (cSL) during 4–5 min. As the RFd-values are fast measurable indicators correlating with the photosynthetic activity of whole leaves, they should always be determined via the PAM fluorometer parallel to the other Chl fluorescence coefficients and ratios.  相似文献   

10.
Modulated chlorophylla fluorescence is useful for eco-physiological studies of lichens as it is sensitive, non-invasive and specific to the photobiont. We assessed the validity of using fluorescence yield to predict CO2 gain in cyano-lichens, by simultaneous measurements of CO2 gas exchange and chlorophylla fluorescence in five species withNostoc-photobionts. For comparison, O2 evolution and fluorescence were measured in isolated cells ofNostoc, derived fromPeltigera canina (Nostoc PC). At irradiances up to the growth light level, predictions from fluorescence yield underestimated true photosynthesis, to various extents depending on species. This reflected the combined effect of a state transition in darkness, which was not fully relaxed until the growth light level was reached, and a phycobilin contribution to the minimum fluorescence yield (Fo). Above the growth light level, the model progressively overestimated assimilation, reflecting increased electron flow to oxygen under excess irradiance. In cyanobacteria, this flow maintains photosystem II centres open even up to photoinhibitory light levels without contributing to CO2 fixation. Despite this we show that gross CO2 gain may be predicted from fluorescence yield also in cyanolichens when the analysis is made near the acclimated growth light level. This level can be obtained even when measurements are performed in the field, since it coincides with a minimum in non-photochemical fluorescence quenching (NPQ). However, the absolute relation between fluorescence yield and gross CO2 gain varies between species. It may therefore be necessary to standardise the fluorescence prediction for each species with CO2 gas exchange.Abbreviations CCM CO2-Concentrating mechanism - Chl chlorophyll - Ci inorganic carbon - 0 convexity (curvature of the light response curve) - ETR electron transport rate - Fo minimum fluorescence yield - Fm maximal fluorescence yield - Fs fluorescence yield at steady-state photosynthesis - Fv variable fluorescence yield - Fv/Fm dark ratio of variable to maximal fluorescence yield after dark adaptation - FvFmmax ratio of variable to maximal fluorescence yield in the absence of quenching - CO2 maximum quantum yield of CO2 assimilation - PS quantum yield of photosystem II photochemistry - GP gross photosynthesis - I irradiance (mol quanta·m–2·s–1) - NPQ non photochemical fluorescence quenching - qp photochemical fluorescence quenching  相似文献   

11.
Photosynthetic rate (PN) and chlorophyll (Chl) fluorescence induction of source leaves in response to a low sink demand created by girdling the branch (GB) between the root-tuber-system and the leaves were studied in Dahlia pinnata L. cv. Rigolet during the stage of rapid tuber growth in the greenhouse. GB resulted in significantly lower values of PN, stomatal conductance (gs), and transpiration rate (E), but in higher leaf temperature (Tl) compared with those of controls. With exception of maximum quantum yield of photosystem 2 (PS 2) photochemistry (Fv/Fm) and maximum ratio of quantum yields of photochemical and concurrent non-photochemical processes in PS 2 (Fv/F0), no significant differences were observed in Chl fluorescence parameters between girdled and control leaves on days 1 and 2 after GB, indicating no apparent damage in the photosynthetic apparatus. However, longer girdling duration resulted in higher non-photochemical Chl fluorescence quenching (NPQ), but lower Fv/F0, actual efficiency of energy conversion in PS 2 under steady-state conditions (ΦPS2), and photochemical quenching coefficient (qP) in comparison with controls from 10:00 to 16:00 or 15:00 on days 4 and 5, respectively, indicating reversible injury in the photosynthetic apparatus.  相似文献   

12.
The red laser-induced chlorophyll-fluorescence induction kinetics of predarkened leaf samples were registered simultaneously in the 690 and 730 nm regions i.e., in the region of the two chlorophyll fluorescence emission maxima. From the induction kinetics the chlorophyll fluorescence ratio F690/F730 was calculated. The ratio F690/F730 shows to be dependent on the chlorophyll content of leaves. It is significantly higher in needles of damaged spruces (values of 0.45–0.9) than in normal green needles of healthy trees (values of 0.35–0.5). During development and greening of maple leaves the ratio F690/F730 decreases with increasing chlorophyll content. Determination of the ratio F690/F730 can be a suitable method of monitoring changes in chlorophyll content in a non-destructive way in the same leaves during development or the yellowish-green discolouration of needles of damaged spruces in the Black Forest with the typical tree decline symptoms.Abbreviations F690/F730 ratio of the fluorescence yield at the two fluorescence-emission maxima in the 690 and 730 nm regions - Fm maximum fluorescence - Fs steady-state fluorescence  相似文献   

13.
Photoinhibition was examined in naturally exposed willow leaves in the field. In the afternoon on clear and warm days, the quantum yield of electron transport, derived from gas exchange data, was decreased by 28%. Besides this photoinhibition, decreases in the photosynthetic capacity and in the stomatal conductance were also observed. Of these three limitations of carbon assimilation, photoinhibition was the major one at limiting light only.To investigate the generality of photoinhibition, shade- and sun-acclimated leaves of fourteen different species were compared in a laboratory study. Photoinhibition was quantified by fluorescence measurements following exposure to moderate and high light for 30 min. The extent of photoinhibition was inversely related to the photochemical quenching, qp, during exposure (the proportion of open PS II traps). This relationship was the same independent of the species, the light-acclimation state of the leaf and the light intensity. However, sun- and shade-acclimated leaves occupied opposite sides of the relationship: the sun-leaves showed lower photoinhibition and higher qp. The sun-leaves were also more competent than shade-leaves by showing faster recovery from a given level of photoinhibition.Abbreviations F0, FV, FM, FS minimal, variable, maximal and steady-state fluorescence - qN, qi total and photoinhibitory non-photochemical quenching of variable fluorescence - qp photochemical quenching  相似文献   

14.
The components of non-photochemical chlorophyll fluorescence quenching (qN) in barley leaves have been quantified by a combination of relaxation kinetics analysis and 77 K fluorescence measurements (Walters RG and Horton P 1991). Analysis of the behaviour of chlorophyll fluorescence parameters and oxygen evolution at low light (when only state transitions — measured as qNt — are present) and at high light (when only photoinhibition — measured as qNi — is increasing) showed that the parameter qNt represents quenching processes located in the antenna and that qNi measures quenching processes located in the reaction centre but which operate significantly only when those centres are closed. The theoretical predictions of a variety of models describing possible mechanisms for high-energy-state quenching, measured as the residual quenching, qNe, were then tested against the experimental data for both fluorescence quenching and quantum yield of oxygen evolution. Only one model was found to agree with these data, one in which antennae exist in two states, efficient in either energy transfer or energy dissipation, and in which those photosynthetic units in a dissipative state are unable to exchange energy with non-dissipative units.Abbreviations: Fo, Fm room-temperature chlorophyll fluorescence yield with all centres open, closed - Fv variable fluorescence yield - LHC II light-harvesting chlorophyll-protein complex of PS II - PS I, PS II Photosystem I, II - P700, P680 primary donor in Photosystem I, II - QA primary electron acceptor of PS II - Pmax maximum quantum yield of oxygen evolution - qN coefficient of non-photochemical quenching of variable fluorescence - qNe, qNt, qNi coefficient of non-photochemical quenching due to high-energy-state, state transition, photoinhibition - qO coefficient of quenching of dark level fluorescence - qP coefficient of photochemical quenching of variable fluorescence - P intrinsic quantum yield of open PS II reaction centres = s/qP - PS 2 quantum yield of PS = qP × Fv/Fm - S quantum yield of oxygen evolution = rate of oxygen evolution/light intensity  相似文献   

15.
Light-induced heat produced by the non-radiative decay represents one way of de-excitation after excitation by light absorption. It was detected in vivo with cotyledons of radish seedlings (Raphanus sativus L.) by measuring the photoacoustic signal at a modulation frequency of 279 Hz. During the induction kinetic of photosynthesis the photoacoustic signal, the chlorophyll fluorescence as well as the photochemical and the non-photochemical quenching of fluorescence were simultaneously determined in order to get information about the correlation of heat production, fluorescence and its quenching mechanisms. Our results demonstrate that the changes of the photoacoustic signal can in most cases be related directly or indirectly to changes in the photochemical activity. However the kinetic of the photoacoustic signal differs from that of the fluorescence and from that of the non-photochemical quenching. This indicates that the sum of energy dissipation processes resulting in the production of light-induced heat and measured by the high-frequency photoacoustic signal must be taken into account when judging photosynthetic activity.Abbreviations LED light-emitting diode - PA photoacoustic - PAM pulse-amplitude-modulated  相似文献   

16.
Gas exchange and fluorescence measurements of attached leaves of water stressed bean, sunflower and maize plants were carried out at two light intensities (250 mol quanta m-2s-1 and 850 mol quanta m-2s-1). Besides the restriction of transpiration and CO2 uptake, the dissipation of excess light energy was clearly reflected in the light and dark reactions of photosynthesis under stress conditions. Bean and maize plants preferentially use non-photochemical quenching for light energy dissipation. In sunflower plants, excess light energy gave rise to photochemical quenching. Autoradiography of leaves after photosynthesis in 14CO2 demonstrated the occurrence of leaf patchiness in sunflower and maize but not in bean. The contribution of CO2 recycling within the leaves to energy dissipation was investigated by studies in 2.5% oxygen to suppress photorespiration. The participation of different energy dissipating mechanisms to quanta comsumption on agriculturally relevant species is discussed.Abbreviations Fo minimal fluorescence - Fm maximal fluorescence - Fp peak fluorescence - g leaf conductance - PN net CO2 uptake - qN coefficient of non-photochemical quenching - qP coefficient of photochemical quenching  相似文献   

17.
Cells of the cyanobacterium Synechococcus 6301 were grown in yellow light absorbed primarily by the phycobilisome (PBS) light-harvesting antenna of photosystem II (PS II), and in red light absorbed primarily by chlorophyll and, therefore, by photosystem I (PS I). Chromatic acclimation of the cells produced a higher phycocyanin/chlorophyll ratio and higher PBS-PS II/PS I ratio in cells grown under PS I-light. State 1-state 2 transitions were demonstrated as changes in the yield of chlorophyll fluorescence in both cell types. The amplitude of state transitions was substantially lower in the PS II-light grown cells, suggesting a specific attenuation of fluorescence yield by a superimposed non-photochemical quenching of excitation. 77 K fluorescence emission spectra of each cell type in state 1 and in state 2 suggested that state transitions regulate excitation energy transfer from the phycobilisome antenna to the reaction centre of PS II and are distinct from photosystem stoichiometry adjustments. The kinetics of photosystem stoichiometry adjustment and the kinetics of the appearance of the non-photochemical quenching process were measured upon switching PS I-light grown cells to PS II-light, and vice versa. Photosystem stoichiometry adjustment was complete within about 48 h, while the non-photochemical quenching occurred within about 25 h. It is proposed that there are at least three distinct phenomena exerting specific effects on the rate of light absorption and light utilization by the two photoreactions: state transitions; photosystem stoichiometry adjustment; and non-photochemical excitation quenching. The relationship between these three distinct processes is discussed.Abbreviations Chl chlorophyll - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - F relative fluorescence intensity at emission wavelength nm - F o fluorescence intensity when all PS II traps are open - light 1 light absorbed preferentially by PS I - light 2 light absorbed preferentially by PS II - PBS phycobilisome - PS photosystem  相似文献   

18.
Summary A convenient system for the rapid simultaneous measurement of both chlorophyll fluorescence quenching using a modulated light system, and of CO2, and water vapour exchange by leaves is described. The system was used in a study of the effects of water deficits on the photosynthesis by apple leaves (Malus x domestica Borkh.). Apple leaves were found to have low values of steady-state variable fluorescence, and the existence of significant fluorescence with open traps (Fo) quenching necessitated the measurement and use of a corrected Fo in the calculation of quenching components. Long-term water stress had a marked effect on both gas-exchange and chlorophyll fluorescence quenching. Non-photochemical quenching (qn) in particular was increased in water-stressed leaves, and it was particularly sensitive to incident radiation in such leaves. In contrast, rapid dehydration only affected gas exchange. Relaxation of qn quenching in the dark was slow, taking approximately 10 min for a 50% recovery, in well-watered and in draughted plants, and whether or not the plants had been exposed to high light.  相似文献   

19.
The content of cytokinins (CKs), the plant inhibitors of the final phase of plant development, senescence, is effectively controlled by irreversible degradation catalysed by cytokinin oxidase/dehydrogenase (CKX). In transgenic tobacco, denoted as AtCKX, with over-expressed CKX causing lowered CK content, we investigated changes in the time courses of chlorophyll (Chl) and xanthophyll (violaxanthin, antheraxanthin, zeaxanthin, neoxanthin, and lutein) contents. We also determined parameters of slow Chl fluorescence kinetics such as minimum Chl fluorescence yield in the darkadapted state F0, maximum quantum yield of PS2 photochemistry (Fv/Fm), maximum ratio of quantum yields of photochemical and concurrent non-photochemical processes in photosystem 2 (PS2), Fv/F0, non-photochemical quenching (NPQ), and effective quantum yield of photochemical energy conversion in PS2 (Φ2). We used three different developmental leaf stages, old, mature, and young, and compared this with time courses of these characteristics in leaves with natural CK levels. The parameters Fv/Fm, Fv/F0, and Φ2 were unchanged during ageing in AtCKX plants in contrast to control ones where a significant decrease in old leaves was found. In control plants F0 increased during ageing, but in the oldest leaf a considerable decrease was observed. This could indicate progressive damage to PS2 reaction centres and then detachment and rapid degradation of Chl. This is in agreement with time course of Chl content. NPQ decreased with age and was similar in both plant types. We observed a decline of xanthophyll contents in the oldest leaves in both plant types, but the contents were enhanced in AtCKX compared to control plants, especially of neoxanthin. The higher xanthophyll contents in the transgenic plants contribute to a better photoprotection and the fluorescence parameters indicated that photosynthetic apparatus was in better condition compared to control and it consequently postponed the onset of leaf senescence.  相似文献   

20.
In tobacco leaves inoculated with tobacco mosaic virus (TMV), changes in chlorophyll (Chl) and carotenoid contents, parameters of slow Chl fluorescence kinetics, i.e. the maximum quantum yield of photosystem (PS2) photochemistry Fv/Fm, the effective quantum yield of photochemical energy conversion in PS2 Φ2, ratio of quantum yields of photochemical and concurrent non-photochemical processes in PS2 Fv/F0, non-photochemical quenching (NPQ), and photochemical activities of isolated chloroplasts from systemically infected tobacco leaves were investigated. We compared two successive stages of infection, the first in the stage of vein clearing at 9th day post inoculation (dpi) and the second at 22nd dpi when two different regions, i.e. light- (LGI) or dark-green (DGI) islands in the infected leaf were apparent and symptoms were fully developed. These two different regions were measured separately. The Chl and carotenoid contents in infected leaves decreased with a progression of infection and were lowest in LGI in the second stage. Also the ratio of Chl a/b declined in similar manner. The maximum quantum yield of PS2 photochemistry Fv/Fm, was decreased in the following order: first stage, DGI, and LGI. The same is true for the ratio Fv/F0. The decrease of Φ2 in infected leaves declined as compared to their controls. On the contrary, NPQ increased in infected leaves, the highest value was found in the first infection stage. Photochemical activities of the whole electron transport chain in isolated chloroplasts dramatically declined with the progression of symptoms, the lowest value was in LGI. Similarly, but to a lesser extent, the activity of PS2 in isolated chloroplasts decreased in infected leaves. Generally, the most marked impairment of the photosynthetic apparatus was manifested in the LGI of infected leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号