首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The structural organization of the bovine thyroglobulin gene has been investigated by a combination of Southern genomic blotting and direct analysis of cloned gene fragments isolated from a chromosomal DNA library. The entire locus is spread over more than 200,000 base pairs which makes it one of the largest eukaryotic genes studies to date. The coding information is scattered into at least 42 exons, 34 of which have been precisely identified. A different evolutionary origin of the 5' and 3' regions of the gene is supported by the highly different proportion of exonic material they contain (12% and 3%, respectively) and by the existence of sequence homology between the 3' region of thyroglobulin and acetylcholinesterase. Detailed sequence analysis of the 5' region of the gene and its flanking segment demonstrated that a significant homology exists between bovine and human thyroglobulin sequences, except for the presence within the ruminant promoter region of a 220-base-pair sequence belonging to the bovine monomer repeated family.  相似文献   

4.
5.
6.
7.
8.
De Miranda J  Santoro A  Engelender S  Wolosker H 《Gene》2000,256(1-2):183-188
High levels of D-serine are found in mammalian brain, where it is an endogenous agonist of the strichinine-insensitive site of N-methyl D-aspartate type of glutamate receptors. D-serine is enriched in protoplasmic astrocytes that occur in gray matter areas of the brain and was shown to be synthesized from L-serine. We now report cloning and expression of human serine racemase, an enzyme that catalyses the synthesis of D-serine from L-serine. The enzyme displays a high homology to the murine serine racemase. It contains a pyridoxal 5'-phosphate attachment sequence similar to bacterial biosynthetic threonine dehydratase. Northern-blot analysis show high levels of human serine racemase in areas known to contain large amounts of endogenous D-serine, such as hippocampus and corpus callosum. Robust synthesis of D-serine was detected in cells transfected with human serine racemase, demonstrating the conservation of D-amino acid metabolism in humans. Serine racemase may be a therapeutic target in psychiatric diseases as supplementation of D-serine greatly improves schizophrenia symptoms. We identify the human serine racemase genomic structure and show that the gene encompasses seven exons and localizes to chromosome 17q13.3. Identification of the intron-exon boundaries of the human serine racemase gene will be useful to search for mutations in neuropsychiatric disorders.  相似文献   

9.
10.
11.
Periplakin, a member of the plakin family of proteins, has been recently characterized by cDNA cloning, and the corresponding gene, PPL, has been mapped to human chromosome 16p13.3 (Aho et al., 1998, Genomics 48: 242-247). Periplakin has also been shown to serve as an autoantigen in a malignancy-associated autoimmune blistering disease, paraneoplastic pemphigus (Mahoney et al., 1998, J. Invest. Dermatol. 111: 308-313). In this study, we have elucidated the intron-exon organization of human PPL and characterized its promoter region. The flanking 5' sequences were rich in G and C ( approximately 80%) and included multiple AP2 sites and a SP1 site, while no canonical TATA or CCAAT sequences were found. The functionality of the upstream sequences (-709 to +135) as a promoter in cultured epidermal keratinocytes was detected by a CAT reporter gene, and a limited region (-382 to +135) showed activity in cultured dermal fibroblasts, attesting to cell-type specificity of the promoter. The genomic organization, including the intron-exon borders, was determined by direct nucleotide sequencing of human genomic P1 clones. Comparative analysis of cDNA and genomic sequences revealed that PPL consists of 22 exons, with the distribution of exons in PPL being consistent with that of other plakin genes: 21 small exons, separated by large introns, encode the amino-terminal globular domain, and 1 large exon encodes the entire rod and the tail domains. Characterization of four P1 clones spanning the PPL locus revealed multiple Alu repeats, 20 of them within 33 kb of the entirely sequenced segments (0.60/kb), in addition to numerous MIR and L1 elements. These repetitive elements could lead to the clonal instability detected throughout the genomic P1 clones and may give rise to the genomic rearrangements possibly underlying the paraneoplastic pemphigus.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号