首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Growth hormone response of bull calves to growth hormone-releasing factor   总被引:2,自引:0,他引:2  
Three experiments were conducted to determine serum growth hormone (GH) response of bull calves (N = 4; 83 kg body wt) to iv injections and infusions of human pancreatic GH-releasing factor 1-40-OH (hpGRF). Peak GH responses to 0, 2.5, 10, and 40 micrograms hpGRF/100 kg body wt were 7 +/- 3, 8 +/- 3, 18 +/- 7, and 107 +/- 55 (mean peak height +/- SEM) ng/ml serum, respectively. Only the response to the 40-microgram dose was greater (P less than 0.05) than the 0-microgram dose. Concentrations of prolactin in serum were not affected by hpGRF treatment. In calves injected with hpGRF (20 micrograms/100 kg body wt) at 6-hr intervals for 48 hr, GH increased from a mean preinjection value of 3.1 ng/ml serum to a mean peak response value of 70 ng/ml serum. Differences in peak GH response between times of injection existed within individual calves (e.g., 10.5 ng/ml vs 184.5 ng/ml serum). Concentrations of GH in calves infused continuously with either 0 or 200 micrograms hpGRF/hr for 6 hr averaged 7.4 +/- 3 and 36.5 +/- 11 ng/ml serum, respectively (P less than 0.05). Concentrations of GH oscillated markedly in hpGRF-infused calves, but oscillations were asynchronous among calves. We conclude that GH response of bull calves to hpGRF is dose dependent and that repeated injections or continuous infusions of hpGRF elicit GH release, although magnitude of response varies considerably. We hypothesize that differences in GH response to hpGRF within and among calves, and pulsatile secretion in the face of hpGRF infusion may be related to the degree of synchrony among exogenous hpGRF and endogenous GRF and somatostatin.  相似文献   

2.
Synthetic human pancreatic growth hormone-releasing factor (hpGRF-44) was infused intravenously at a constant rate of 2.5 micrograms/min for 180 minutes in 3 normal boys of short stature. Plasma GH levels reached a peak at 60-120 min with a mean value (+/- SEM) of 69.1 +/- 14.3 ng/ml, and then, declined gradually in spite of continuous hpGRF-44 infusion up to 180 minutes. Similarly, constant infusion of hpGRF-44 at a rate of 2.5 micrograms/min in 5 normal but short boys for 90 minutes, together with an iv bolus injection of hpGRF-44 (2 micrograms/kg) administered at 0 and 90 minutes, elicited a prompt rise in plasma GH 15-30 minutes after the first bolus but no significant elevation of GH was observed after the second bolus. In contrast, when two iv bolus injections of hpGRF-44 (2 micrograms/kg) were given in 4 normal boys with short stature at 0 and 90 minutes, respectively, significant elevation of plasma GH was found after each bolus. These results suggest that under constant infusion of GRF the pituitary experiences a down-regulation after the initial peak of GH response, possibly due to desensitization to GRF.  相似文献   

3.
Growth hormone-releasing hormone, GHRH(1-44), was administered intranasally to 16 healthy young adult male volunteers in a placebo-controlled study using a dose of 1,000 micrograms dissolved in two different solvent vehicles: water alone and water with the surface tension-lowering agent Tween 80 (0.12%). The growth hormone (GH)-releasing effects of intranasal GHRH as well as that of the vehicle were established and compared to the effects of 80 micrograms intravenous GHRH. Plasma GH response was assessed by frequent blood sampling over an 180-min period, using both peak response and area under the curve (AUC). The results show that the GH-release effects of intranasal GHRH are comparable whichever vehicle is used, and are similar, with the dose of 1,000 micrograms, to the response obtained following the administration of 80 micrograms intravenous GHRH. Peak GH responses to GHRH (means +/- SEM) were 25.6 +/- 4.2 ng/ml (1,000 micrograms GHRH with water), 32.9 +/- 9.1 ng/ml (1,000 micrograms with water plus Tween 80) and 36.3 +/- 7.8 ng/ml (80 micrograms i.v. administration) (not significant). There was no significant GH response to placebo. Mean peak GH responses occurred after approximately 30 min in all three active treatments (29.2 +/- 2.7, 33.9 +/- 3.2 and 30.9 +/- 3.9 min, respectively). The AUC values (ng.min.ml-1) were not statistically different: 1,914.4 +/- 386.7 (water), 2,176.2 +/- 599.9 (water plus Tween 80) and 2,419.2 +/- 506.9 (i.v.) (not significant). Intranasal GHRH administration was well tolerated in all subjects. Occasional local reactions consisted of a prickly sensation in the nostrils or sneezing irrespective of the vehicle used.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The pituitary growth hormone (GH) responses during a 20-hour iv infusion of saline or human GH-releasing factor (hGRF-44) at 40 micrograms/h, followed by an iv bolus injection of hGRF at 2 micrograms/kg body weight, were studied in four normal adult men. During saline infusion only one or two pulses of plasma GH were observed. However, during hGRF infusion up to eight or ten pulses of GH were measured with an amplitude not different from that obtained during saline infusion. The mean +/- SEM integrated amount of GH secreted was 107 +/- 38.2 ng/ml.h in response to hGRF infusion, which was greater than the value of 25.4 +/- 3.5 ng/ml.h obtained during saline infusion. Plasma somatomedin-C also increased after hGRF infusion, but not after saline. After saline or hGRF infusion most of the subjects still responded to an iv bolus injection of the peptide (2 micrograms/kg). These results indicate that hGRF infusion augments GH secretion by increasing the number, but not the amplitude of GH pulses and that the infusion does not cause the pituitary somatotrophs to lose their capacity and ability to respond to hGRF subsequently.  相似文献   

5.
Plasma growth hormone (GH) and somatomedin C responses to single and repeated administrations of synthetic human growth hormone releasing factor (hGRF-44) were studied in 29 patients with GH deficiency. hGRF-44 administered by single iv bolus (10 micrograms/kg), repeated iv boluses (50 or 100 micrograms, once a day), repeated iv infusions (2.5 micrograms/min for 90 min, once a day), and/or repeated im injections (100 micrograms, twice a day) for three to six consecutive days. Ten of 16 patients had plasma GH responses to a single iv bolus injection, i.e., their plasma GH increased above 5 ng/ml or twice the basal level. However none of them showed a plasma somatomedin C increase. To repeated iv bolus injections and repeated iv infusions of hGRF-44, 7 of 17 patients showed plasma GH responses, however in none of 7 patients did somatomedin C increase. Plasma somatomedin C did not increase after repeated im administrations of hGRF-44 for 5 days. Plasma somatomedin C increase was observed in two patients, from 0.32 to 0.54 U/ml and from 0.16 to 0.46 U/ml, in response to repeated iv boluses and repeated iv infusions, respectively. These results suggest that hGRF-44 stimulates plasma GH secretion in some patients with GH deficiency, however the increases are not enough to stimulate somatomedin generation.  相似文献   

6.
The effects of a growth hormone releasing factor, human pancreatic growth hormone releasing factor-44 (hpGRF-44), on growth hormone (GH) secretion in calves, heifers and cows were studied. A single intravenous (iv) injection of 0.1, 0.25, 0.5 or 1.0 microgram of synthetic hpGRF-44 per kg of body weight (bw) in calves significantly elevated the circulating GH level within 2-5 min, while no increase in plasma GH was observed in saline injected control calves. The plasma GH level increased proportionally to the log dose of hpGRF-44, and reached a peak at 5-10 min (p less than 0.01). Subcutaneous injection of hpGRF-44 also elevated the plasma GH level, but the peak value at 15 min was 37% of that of iv injection (p less than 0.05). Intravenous injection of 0.25 microgram of hpGRF-44 per kg of bw to female calves, heifers, and cows significantly elevated mean the GH levels from 8.5, 2.3, and 1.6 ng/ml at 0 time to peak values of 97, 26, and 11.6 ng/ml, respectively (p less than 0.01). The plasma GH response and basal level in calves were significantly higher than those of heifers or cows (p less than 0.025). The plasma GH response to hpGRF-44 as well as the basal level decreased with advancing age. The plasma GH response to hpGRF-44 and basal GH in male calves were significantly greater than those in female calves (p less than 0.001). These results indicate that synthetic hpGRF-44 is a potent secretogogue for bovine GH, and suggest its usefulness in the assessment of GH secretion and reserve in cattle.  相似文献   

7.
Plasma growth hormone (GH) responses to the repetitive administrations of synthetic human pancreatic growth hormone releasing factor (hpGRF-44) were studied in 15 patients with GH deficiency (11 diagnosed as idiopathic and 4 diagnosed as secondary to hypothalamo-pituitary tumor). hpGRF-44 was administered by single iv bolus (2 micrograms/kg), repetitive im (100 micrograms, twice a day), and/or repetitive iv infusion (2.5 micrograms/min for 90 min, once a day) for three to six consecutive days. Three of the eleven idiopathic GH deficient patients had plasma GH responses to both single iv bolus injection and repetitive administrations by im, or iv infusion of hpGRF. In four of the remaining eight, who had not had peak plasma GH levels above 5 ng/ml to a single iv bolus of the peptide, repetitive administrations of hpGRF-44 by im injection and/or iv infusion induced GH responses to the peptide. In the four patients with secondary GH deficiency, three had plasma GH response to hpGRF administration but one patient, who had indications of pituitary disorder, did not show any plasma GH response to either single iv injection or repetitive administrations of hpGRF-44. These data show that repetitive administrations of hpGRF-44 can induce plasma GH responses in some GH deficient patients who do not respond to a single iv bolus of the peptide.  相似文献   

8.
In a significant proportion of patients with acromegaly, a non-specific increase in plasma growth hormone (GH) has been recognized following administration of thyrotropin-releasing hormone (TRH) or luteinizing hormone-releasing hormone (LH-RH), probably due to the lack of the specificity of the receptor in their tumor cells. In this study, the effects of corticotropin-releasing factor (CRF), a newly isolated hypothalamic hormone, in addition to TRH and LH-RH, on plasma levels of GH and the other anterior pituitary hormones were evaluated in 6 patients with acromegaly. Synthetic ovine CRF (1.0 microgram/kg), TRH (500 micrograms) or LH-RH (100 micrograms) was given as an iv bolus injection, in the morning after an overnight fast. Blood specimens were taken before and after injection at intervals up to 120 min, and plasma GH, adrenocorticotropin (ACTH), thyrotropin, prolactin, luteinizing hormone, follicle-stimulating hormone and cortisol were assayed by radioimmunoassays. A non-specific rise in plasma GH was demonstrated following injection of TRH and LH-RH, in 5 of 6 and 2 of 5 patients, respectively. In all subjects, rapid rises were observed in both plasma ACTH (34.3 +/- 6.2 pg/ml at 0 min to 79.5 +/- 9.5 pg/ml at 30 min, mean +/- SEM) and cortisol level (9.1 +/- 1.3 micrograms/dl at 0 min to 23.4 +/- 1.2 micrograms/dl at 90 min). However, plasma levels of GH and the other anterior pituitary hormones did not change significantly after CRF injection. These results indicate that CRF specifically stimulates ACTH secretion and any non-specific response of GH to CRF appears to be an infrequent phenomenon in this disorder.  相似文献   

9.
The release of growth hormone (GH) during the 120 min following a bolus venous injection of 1-44 GH-releasing hormone (GHRH) 2 micrograms/kg was studied in 52 prepubertal children aged 8.4 +/- 2.1 years, having a nonfamilial growth deficiency of prenatal onset (-3.26 +/- 1.13 SDS at birth, -3.22 +/- 0.88 SDS at the time of study) and a normal response to conventional GH stimulation tests. GH release reached a peak level of 96.1 +/- 60.2 microU/ml, being significantly higher than that found in 68 non-GH-deficient very short children whose growth failure had a postnatal onset, and not significantly correlated with the response to conventional tests. 26 of the 52 intrauterine growth retardation (IUGR) patients were re-tested with GHRH in similar conditions after 6-12 months of daily subcutaneous injections of GH and 2 days without. They reached at the second test a peak plasma GH level of 91.7 +/- 56.1 microU/ml, not different from their response to the first test. These data could be taken into consideration for long-term studies of the clinical effects of GH in IUGR children with persisting severe growth deficiency.  相似文献   

10.
Cyproheptadine (CPH)--a putative serotonin antagonist--is known to inhibit growth hormone (GH) response to various pharmacological stimuli, as well as during sleep. To elucidate the possible site at which this drug takes effect, we examined plasma GH and somatostatin response to i.v. GHRH1-44 (1 microgram/kg body wt.) before and after CPH treatment in 10 healthy volunteers. The oral administration of CPH (8-12 mg daily for 5 days; total dose 56 mg) significantly curbed GH response to GHRH as expressed in peak plasma GH values (32.0 +/- 6.1 micrograms/l vs. 12.6 +/- 3.2 micrograms/l; P less than 0.01) and in integrated GH response area (2368 +/- 517 micrograms x l-1 x 2 h vs. 744 +/- 172 micrograms x l-1 x 2 h; P less than 0.01). Plasma somatostatin levels did not change in response to GHRH.  相似文献   

11.
Subjects with Cushing's disease have diminished growth hormone (GH) response to growth hormone-releasing hormone (GHRH). The aim of our study was to investigate the underlying mechanism of this diminished GH response in these patients using pyridostigmine (PD), an acetylcholinesterase inhibitor, which is reported to increase GH secretion by reducing somatostatin tone. Eight subjects with untreated Cushing's disease (caused by a pituitary adenoma) and 6 control subjects received GHRH 100 micrograms in 1 ml of saline, as intravenous bolus injection 60 min after (1) placebo (2 tablets, p.o.) or (2) PD (120 mg, p.o.). After GHRH plus placebo, the GH peak (mean +/- SEM) was significantly lower in subjects with Cushing's disease (2.4 +/- 0.5 micrograms/l) compared to control subjects (25.1 +/- 1.8 micrograms/l, p less than 0.05). After GHRH plus PD, the GH peak was significantly enhanced both in subjects with Cushing's disease (7.1 +/- 2.3 micrograms/l, p less than 0.05) and in control subjects (42.3 +/- 4.3 micrograms/l, p less than 0.05). In patients with Cushing's disease, the GH response to GHRH plus PD was lower with respect to the GH response to GHRH alone in normal subjects. We conclude that hypercortisolism may cause a decrease in central cholinergic tone which is in turn hypothesized to be responsible of an enhanced somatostatin release from the hypothalamus. However, other metabolic or central nervous system alterations may act synergistically with hypercortisolism in causing GH inhibition in patients with Cushing's disease.  相似文献   

12.
Acute exercise has no effect on ghrelin plasma concentrations.   总被引:5,自引:0,他引:5  
Exercise is a potent, dose-dependent stimulus of growth hormone (GH) secretion. The hypothalamic peptides, GH-releasing hormone (GHRH) and somatostatin are regarded as major regulators of this stimulation. The role of the stomach-derived peptide ghrelin, which has been shown to exert strong GH releasing effects, has not been fully characterized yet. We therefore studied GH and ghrelin plasma concentrations in response to graded levels of exercise in eight healthy young volunteers. After determination of their individual maximal exercise capacity, all individuals underwent a treadmill exercise at 50 %, 70 %, and 90 % of maximum oxygen consumption (VO (2)max) on different days. Maximal GH response to exercise was observed after 40 minutes at 50 % VO (2)max and after 20 minutes at 70 and 90 % VO (2max). GH serum concentrations increased significantly at all three exercise intensities (GH peak concentrations were 5.8 +/- 2.3 ng/ml, 12.0 +/- 3.2 ng/ml, and 9.8 +/- 4.7 ng/ml, respectively). In contrast, ghrelin plasma concentrations remained unchanged at all three workloads. Assuming that the sensitivity of the GH neuroendocrine/metabolic regulation of GH is unaltered, ghrelin does not participate in the regulation of the GH response to exercise in healthy males.  相似文献   

13.
The effects of intravenous injection of synthetic human pancreatic growth hormone-releasing factor-44-NH2 (hpGRF-44) and synthetic thyrotropin releasing hormone (TRH), or hpGRF-44 in combination with TRH on growth hormone (GH), thyrotropin (TSH), and prolactin (PRL) release in dairy female calves (6- and 12-month-old) were studied. When 0.25 microgram of hpGRF-44 per kg of body weight (bw) was injected in combination with TRH (1.0 microgram per kg of bw), the mean plasma GH concentration of the 12-month-old calves rose to a maximum level of 191.5 ng/ml (P less than 0.001) at 15 min from the value of 6.8 ng/ml before injection at 0 min. The maximum level was 3.1 and 6.1 times as high as the peak values obtained after injection of hpGRF-44 (0.25 microgram per kg of bw) and TRH (1.0 microgram per kg of bw), respectively (P less than 0.001). The area under the GH response curve for the 12-month-old calves for 3 hr after injection of hpGRF-44 in combination with TRH was 2.5 times as large as the sum of the areas obtained by hpGRF-44 and TRH injections. In contrast, the mean plasma GH level was unchanged in saline injected calves. The magnitudes of the first and the second plasma GH responses in the 6-month-old calves to two consecutive injections of hpGRF-44 in combination with TRH at a 3-hr interval were very similar. The peak values of plasma GH in the calves after hpGRF-44 injection were 2-4 times as high as those after TRH injection.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Ten acromegalics received daily doses of 200-300 micrograms of a long-acting somatostatin analog, SMS 201-995 (Sandostatin, SMS), for an average of 64 weeks. Basal mean GH values of 44 +/- (SE) 7.8 ng/ml had fallen into the normal range at the end of the observation period (mean 64 weeks). This effect was accompanied by a substantial drop in somatomedin-C values. Reduction of pituitary tumor size could be documented in 3 of 6 patients. Whereas SMS did not affect high plasma PRL in 4 microprolactinoma patients, lactotrophs turned sensitive to this agent in mixed GH/PRL tumors. In a comparative study between SMS and bromocriptine, the former normalized circulating GH in 10 of 17 acromegalics in an acute trial, whereas bromocriptine was effective in only 5. A combination of both substances was effective in 2 of 3 patients who were insensitive to single drug administration. Cultures of GH-secreting tumor cells showed a statistically significant hormone decrease in the medium when exposed to SMS. However, in some instances, a diminution of the GH contents of the tumor cells was also observed, presumably as the basis for intracellular breakdown and clinical tumor shrinkage.  相似文献   

15.
The effect of a long-acting somatostatin analogue SMS 201-995 on GH secretion was investigated. Eleven acromegalic patients received a single dose of 50 micrograms SMS 201-995 administered subcutaneously, and plasma GH, IGF-I, GRF, TSH, IRI and blood glucose were determined at regular intervals. Nine of 11 patients had elevated basal plasma GH levels above 5 ng/ml. In all patients, plasma GH levels fell immediately from 39.5 +/- 17.3 ng/ml (mean +/- SEM) to 4.3 +/- 1.6 ng/ml (P less than 0.05) with a maximal inhibition of 82.9 +/- 3.3% of the basal levels and the suppression persisted for about 6 h of the observation period. IGF-I and GRF levels were not apparently altered. TSH and IRI levels also rapidly fell. Blood glucose levels fell slightly by 0.5 h. Ten of 11 patients had pain at injection sites. Except for this, no side effects were observed. Our results show that the new somatostatin analogue SMS 201-995 may inhibit GH hypersecretion in acromegalic patients for significant periods, suggesting that this agent can be a useful clinical tool for the treatment of acromegaly.  相似文献   

16.
A 36-yr-old man with multiple endocrine neoplasia (MEN) type I had an ectopic growth hormone-releasing hormone (GHRH) syndrome due to a GHRH-secreting pancreatic tumor. The immunoreactive (IR)-GHRH concentration in his plasma ranged from 161 to 400 pg/ml (299 +/- 61 pg/ml, mean +/- SD; normal, 10.4 +/- 4.1 pg/ml), and a significant correlation was found between his plasma IR-GHRH and GH (r = 0.622, p less than 0.02). After removal of the pancreatic tumor, the high plasma GH concentration returned to nearly the normal range (42.2 +/- 31.3 to 9.6 +/- 3.8 ng/ml). These changes paralleled the normalization of his plasma IR-GHRH (16.1 +/- 3.8 pg/ml) and some of his symptoms related to acromegaly improved. However, plasma GH (7.7 +/- 1.3 ng/ml) and IGF-I (591 +/- 22 ng/ml) concentrations were high at 12 months after surgery, suggesting adenomatous changes in the pituitary somatotrophs. Before surgery, exogenous GHRH induced a marked increase in plasma GH, and somatostatin and its agonist (SMS201-995) completely suppressed GH secretion, but not IR-GHRH release. No pulsatile secretion of either IR-GHRH or GH was observed during sleep. An apparent increase in the plasma GH concentration was observed in response to administration of TRH, glucose, arginine or insulin, while plasma IR-GHRH did not show any fluctuation. However, these responses of plasma GH were reduced or no longer observed one month and one year after surgery. These results indicate that 1) a moderate increase in circulating GHRH due to ectopic secretion from a pancreatic tumor stimulated GH secretion resulting in acromegaly, and evoked GH responses to various provocative tests indistinguishable from those in patients with classical acromegaly, and 2) the ectopic secretion of GHRH may play an etiological role in the pituitary lesion of this patient with MEN type I.  相似文献   

17.
The present study was designed to answer the following three questions: Is there any difference between the growth hormone (GH) response to i.v. injections of GHRH 1-44 by a slowly injecting hormone pump or to a s. s. or rapid i. v. injection by syringe? Do nocturnal injections of GHRH 1-44 i. v. elicit different GH levels than during daytime? Can repetitive administration of GHRH 1-44 in patient with GH deficiency induce a physiological GH pattern and thereby normalize the condition resulting from a hypothalamic defect? A rapid i. v. bolus injection of 50 micrograms GHRH 1-44 by syringe with an injection time of one second elicited in the same subject at the same time of the day a twofold greater response than a slowly injecting (60 seconds) hormone pump. In six male adult volunteers each GHRH i. v. bolus was followed by a GH secretory pulse. The GH response at night (area under the curve and peak plasma GH levels) was significantly greater than at daytime (P less than 0.05) and greater than the GH pulses measured during a spontaneous nocturnal profile (P less than 0.05). Out of six GH deficient young adult patients who had been receiving extractive GH until two years prior to the study, three responded much like the controls, the other three patients-those who lacked any spontaneous nocturnal GH peaks-had markedly lower GH levels after GHRH (P less than 0.05). However, there was a clear-cut GH release after GHRH injection in each patient.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
To examine the physiological significance of plasma ghrelin in generating pulsatile growth hormone (GH) secretion in rats, plasma GH and ghrelin levels were determined in freely moving male rats. Plasma GH was pulsatilely secreted as reported previously. Plasma ghrelin levels were measured by both N-RIA recognizing the active form of ghrelin and C-RIA determining total amount of ghrelin. Mean +/- SE plasma ghrelin levels determined by N-RIA and C-RIA were 21.6 +/- 8.5 and 315.5 +/- 67.5 pM, respectively, during peak periods when plasma GH levels were greater than 100 ng / ml. During trough periods when plasma GH levels were less than 10 ng / ml, they were 16.5 +/- 4.5 and 342.1 +/- 29.8 pM, respectively. There were no significant differences in plasma ghrelin levels between two periods. Next, effect of a GH secretagogue antagonist, [D-Lys-3]-GHRP-6, on plasma GH profiles was examined. There were no significant differences in both peak GH levels and area under the curves of GH (AUCs) between [D-Lys-3]-GHRP-6-treated and control rats. These findings suggest circulating ghrelin in peripheral blood does not play a role in generating pulsatile GH secretion in freely moving male rats.  相似文献   

19.
Concentration of plasma luteinizing hormone (LH) and oestradiol concentrations and responses to a standard challenge with a gonadotrophin-releasing hormone (GnRH) analogue were measured at certain stages of anoestrus during consecutive cycles in five beagle bitches. Blood samples were collected every 20 min for 6h followed immediately by injection of GnRH analogue (0.16 micrograms i.v.) and collection of further samples after 10, 20, 40 and 60 min. Five, 10, 17 and three such sampling sequences were obtained during the luteal phase, transition to anoestrus, anoestrus and pro-oestrus respectively (i.e. 154-71, 114-44, 85-11 and 7-1 days before the preovulatory LH peak, respectively). Pulsatile LH secretion occurred spontaneously at all stages of the luteal phase and anoestrus and there was no effect of cycle stage on mean LH concentration or variability. In contrast, oestradiol could not be detected in most samples from early and mid-anoestrus until approximately one month before the preovulatory LH peak, after which average oestradiol concentration and between sample variability appeared to increase. Mean (+/- SEM) oestradiol concentration for all samples collected from 100-75, 74-50, 49-25, 24-10 and 9-1 days before LH peak was 1.4 +/- 0.1, 1.3 +/- 0.1, 2.4 +/- 0.3, 11.0 +/- 1.4 and 36.0 +/- 3.2 pg ml-1, respectively. Plasma LH concentration increased in all bitches after GnRH analogue injection (2.7 +/- 0.7 ng ml-1 at t = 0, 12.5 +/- 1.0 ng ml-1 at t = 10 min, mean +/- SEM, n = 35) regardless of cycle stage.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Patients with cirrhosis of the liver often have insulin resistance and elevated circulating growth hormone levels. This study was undertaken (a) to evaluate glucose intolerance, insulin resistance and abnormal growth hormone secretion and (b) to determine if GH suppression improves insulin resistance. Glucose tolerance tests (GTT), intravenous insulin tolerance tests (IVITT), arginine stimulation tests (AST) and glucose clamp studies before and during GH suppression with somatostatin were performed in a group of patients with alcohol-induced liver cirrhosis. During GTT cirrhotic subjects had a 2-hour plasma glucose of 200 +/- 9.8 ng/dl (N = 14) compared to 128 +/- 8.0 ng/dl in normal controls (N = 15), P less than 0.001. Basal GH was elevated in cirrhotic patients and in response to arginine stimulation reached a peak of 17.0 +/- 5.4 ng/ml (N = 7), compared to a peak of 11.3 +/- 1.8 ng/ml in 5 normal controls (P = NS). During IVITT patients with cirrhosis had a glucose nadir of 60.0 +/- 4.0 mg/dl (N = 9), compared to 29.0 +/- 7.0 mg/dl in controls (N = 5), P less than 0.001. Peak GH levels during IVITT were not significantly different in cirrhotics and controls. Glucose utilization rates in 4 patients with cirrhosis of the liver before somatostatin mediated GH suppression was 3.1 +/- 0.5 mg/kg/min and 6.5 +/- 1.5 mg/kg/min during somatostatin infusion, P less than 0.025. We conclude that patients with alcohol induced cirrhosis have sustained GH elevations resulting in insulin resistance which improves after GH suppression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号