首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distal pocket of hemoglobin II (HbII) from Lucina pectinata is characterized by the presence of a GlnE7 and a TyrB10. To elucidate the functional properties of HbII, biophysical studies were conducted on HbII and a HbI PheB10Tyr site-directed mutant. The pH titration data at neutral conditions showed visible bands at 486, 541, 577 and 605 nm for both proteins. This suggests the possible existence of a conformational equilibrium between an open and closed configuration due to the interactions of the TyrB10, ligand, and heme iron. The kinetic behavior for the reaction of both ferric proteins with H2O2 indicates that the rate for the formation of the ferryl intermediates species varies with pH, suggesting that the reaction is strongly dependent on the conformational states. At basic pH values, the barrier for the reaction increases as the tyrosine adopts a closed conformation and the ferric hydroxyl replaces the met-aquo species. The existence of these conformers is further supported by resonance Raman (RR) data, which indicate that in a neutral environment, the ferric HbII species is present as a possible mixture of coordination and spin states, with values at 1558 and 1580 cm(-1) for the nu2 marker, and 1479, 1492, and 1503 cm(-1) for the nu3 mode. Moreover, the presence of the A3 and A(o) conformers at 1924 and 1964 cm(-1) in the HbII-CO infrared spectra confirms the existence of an open and closed conformation due to the orientation of the TyrB10 with respect to the heme active center.  相似文献   

2.
Ferryl compounds [Fe(IV)=O] in living organisms play an essential role in the radical catalytic cycle and degradation processes of hemeproteins. We studied the reactions between H2O2 and hemoglobin II (HbII) (GlnE7, TyrB10, PheCD1, PheE11), recombinant hemoglobin I (HbI) (GlnE7, PheB10, PheCD1, PheE11), and the HbI PheB10Tyr mutant of L. pectinata. We found that the tyrosine residue in the B10 position tailors, in two very distinct ways, the reactivity of the ferryl species, compounds I and II. First, increasing the reaction pH from 4.86 to 7.50, and then to 11.2, caused the the second-order rate constant for HbII to decrease from 141.60 to 77.78 M−1 s−1, and to 2.96 M−1 s−1, respectively. This pH dependence is associated with the disruption of the heme–tyrosine (603 nm) protein moiety, which controls the access of the H2O2 to the hemeprotein active center, thus regulating the formation of the ferryl species. Second, the presence of compound I was evident in the UV–vis spectra (648-nm band) in the reactions of HbI and recombinant HbI with H2O2, This band, however, is completely absent in the analogous reaction with HbII and the HbI PheB10Tyr mutant. Therefore, the existence of a hydrogen-bonding network between the heme pocket amino acids (i.e., TyrB10) and the ferryl compound I created a path much faster than 3.0×10−2 s−1 for the decay of compound I to compound II. Furthermore, the decay of the heme ferryl compound I to compound II was independent of the proximal HisF8 trans-ligand strength. Thus, the pH dependence of the heme–tyrosine moiety complex determined the overall reaction rate of the oxidative reaction limiting the interaction with H2O2 at neutral pH. The hydrogen-bonding strength between the TyrB10 and the heme ferryl species suggests the presence of a cycle where the ferryl consumption by the ferric heme increases significantly the pseudoperoxidase activity of these hemeproteins.  相似文献   

3.
Hemoglobin I (HbI) from Lucina pectinata is a monomeric protein composed of 143 amino acids with high sulfide affinity. Its unique heme pocket contains three residues not commonly found in vertebrate globins: Phe 29 (B10), Gln 64 (E7), and Phe 68 (E11), which are thought to be important for high affinity for hydrogen sulfide. Recombinant HbI (rHbI) and several site-directed mutants were cloned and expressed in Escherichia coli yielding high amounts of protein. The highest rHbI protein yield was obtained when the HbI cDNA was cloned into the pET28 (a+) expression vector, transformed into BLi5 cells, the induction performed with 1 mM IPTG at 30 degrees C and TB medium was supplemented with 30 microg/mL hemin chloride and 1% glucose. The highest yield obtained of HbI was 32 mg/L of culture using Fernbach flasks. UV/Visible spectral analysis showed that rHbI binds heme and ESI-MS shows that its molecular weight corresponds to the expected size. Kinetic studies with H2S confirmed that rHbI and HbI have identical binding properties, where the kON for the clam's Hb is 2.73x10(4)M-1s-1 and for rHbI is 2.43x10(4)M-1s-1.  相似文献   

4.
Propionates, as peripheral groups of the heme active center in hemeproteins have been described to contribute in the modulation of heme reactivity and ligand selection. These electronic characteristics prompted the question of whether the presence of hydrogen bonding networks between propionates and distal amino acids present in the heme ligand moiety can modulate physiological relevant events, like ligand binding association and dissociation activities. Here, the role of these networks was evaluated by NMR spectroscopy using the hemoglobin I PheB10Tyr mutant from Lucina pectinata as model for TyrB10 and GlnE7 hemeproteins. (1)H-NMR results for the rHbICN PheB10Tyr derivative showed chemical shifts of TyrB10 OHη at 31.00ppm, GlnE7N(ε1)H/N(ε2)H at 10.66ppm/-3.27ppm, and PheE11 C(δ)H at 11.75ppm, indicating the presence of a crowded, collapsed, and constrained distal pocket. Strong dipolar contacts and inter-residues crosspeaks between GlnE7/6-propionate group, GlnE7/TyrB10 and TyrB10/CN suggest that this hydrogen bonding network loop between GlnE7, TyrB10, 6-propionate group, and the heme ligand contribute significantly to the modulation of the heme iron electron density as well as the ligand stabilization mechanism. Therefore, the network loop presented here support the fact that the electron withdrawing character of the hydrogen bonding is controlled by the interaction of the propionates and the nearby electronic environments contributing to the modulation of the heme electron density state. Thus, we hypothesize that in hemeproteins with similar electrostatic environment the flexibility of the heme-6-propionate promotes a hydrogen bonding network loop between the 6-propionate, the heme ligand and nearby amino acids, tailoring in this way the electron density in the heme-ligand moiety.  相似文献   

5.
The mini-hemoglobin from Cerebratulus lacteus (CerHb) belongs to a class of globins containing the polar Tyr-B10/Gln-E7 amino acid pair that normally causes low rates of O2 dissociation and ultra-high O2 affinity, which suggest O2 sensing or NO scavenging functions. CerHb, however, has high rates of O2 dissociation (kO2 = 200-600 s(-1)) and moderate O2 affinity (KO2) approximately 1 microm(-1)) as a result of a third polar amino acid in its active site, Thr-E11. When Thr-E11 is replaced by Val, kO2 decreases 1000-fold and KO2 increases 130-fold at pH 7.0, 20 degrees C. The mutation also shifts the stretching frequencies of both heme-bound and photodissociated CO, indicating marked changes of the electrostatic field at the active site. The crystal structure of Thr-E11 --> Val CerHbO2 at 1.70 A resolution is almost identical to that of the wild-type protein (root mean square deviation of 0.12 A). The dramatic functional and spectral effects of the Thr-E11 --> Val mutation are due exclusively to changes in the hydrogen bonding network in the active site. Replacing Thr-E11 with Val "frees" the Tyr-B10 hydroxyl group to rotate toward and donate a strong hydrogen bond to the heme-bound ligand, causing a selective increase in O2 affinity, a decrease of the rate coefficient for O2 dissociation, a 40 cm(-1) decrease in nuCO of heme-bound CO, and an increase in ligand migration toward more remote intermediate sites.  相似文献   

6.
L Guarrera  G Colotti  E Chiancone  A Boffi 《Biochemistry》1999,38(31):10079-10083
FTIR spectra of native Scapharca homodimeric hemoglobin (HbI) and of the Phe97-->Ile mutant have been measured in the region 2400-2700 cm(-1) where the absorption of the sulfhydryl groups can be observed. In native HbI, the two Cys92 residues give rise to a relatively intense band centered at 2559 cm(-1) that is shifted to 2568 cm(-1) and strongly quenched upon ligand binding. In the Phe97-->Leu mutant, such ligand-linked changes are not observed and the strong peak at around 2560 cm(-1) persists in the liganded derivatives. In native HbI, the observed changes have been attributed to the decrease in polarity of the interface due to the ligand-induced extrusion of the Phe97 phenyl ring from the heme pocket to the interface and the subsequent release of several water molecules that are clustered in the vicinity of Cys92. In contrast, in the Phe97-->Leu mutant, the Leu residue does not leave the heme pocket upon ligand binding and the interface is unaltered. The Cys92/S-H infrared band, therefore, represents a sensitive probe of the structural rearrangements that take place in the intersubunit interface upon ligand binding to HbI. The heterotetrameric Scapharca hemoglobin HbII contains, in addition to the Cys92 residues in the interfaces, two extra sulfhydryl groups per tetramer (Cys9 in the B chain) that are exposed to solvent in the A helix. The frequency of the Cys9/S-H stretching vibration occurs at 2582 cm(-1) in the unliganded and at 2586 cm(-1) in the liganded derivative, pointing to the involvement of the A helix in the ligand-linked polymerization characteristic of HbII.  相似文献   

7.
Blood pressure elevation has been attributed in large part to the consumption of nitric oxide (NO) by extracellular hemoglobin (Hb) therapeutics following infusion in humans. We studied NO and hydrogen peroxide (H2O2) oxidative reaction kinetics of monomeric Hbs isolated from the clam Lucina pectinata to probe the effects of their distinctive heme pocket chemistries on ligand controls and heme oxidative stability. HbI (Phe43(CD1), Gln64(E7), Phe29(B10), and Phe68(E11)) reacted with high avidity with NO (k'(ox,NO) = 91 microM-1 s-1), whereas HbII (Phe44(CD1), Gln65(E7), Tyr30(B10), and Phe69(E11)) reacted at a much slower rate (k'(ox,NO)= 2.8 microM-1 s-1). However, replacing B10 (Phe) by Tyr in recombinant HbI (HbI PheB10Tyr) produced only a 2-fold reduction in the NO-induced oxidation rate (k'(ox,NO)= 49.9 microM-1 s-1). Among the clam Hbs, HbII exhibited the fastest NO dissociation and the slowest NO association with ferrous iron. Autoxidation, H2O2-mediated ferryl iron (FeIV) formation, and the subsequent heme degradation kinetics were much slower in HbII and HbI PheB10Tyr when compared to those of HbI. The Tyr(B10) residue appears to afford a greater heme oxidative stability advantage toward H2O2, whereas the close proximity of this residue together with Gln(E7) to the heme iron contributes largely to the distal control of NO binding. Engineering of second-generation Hb-based oxygen therapeutics that are resistant to NO/H2O2-driven oxidation may ultimately require further optimization of the heme pocket architecture to limit heme exposure to solvent.  相似文献   

8.
Haemoglobin I from Lucina pectinata is a monomeric protein consisting of 142 amino acids. Its active site contains a peculiar arrangement of phenylalanine residues (PheB10, PheCD1 and PheE11) and a distal Gln at position E7. Active site mutations at positions B10, E7 and E11 were performed in deoxy haemoglobin I (HbI), followed by 10 ns molecular dynamic simulations. The results showed that the mutations induced changes in domains far from the active site producing more flexible structures than the native HbI. Distance analyses revealed that the heme pocket amino acids at positions E7 and B10 are extremely sensitive to any heme pocket residue mutation. The high flexibility observed by the E7 position suggests an important role in the ligand binding kinetics in ferrous HbI, while both positions play a major role in the ligand stabilisation processes. Furthermore, our results showed that E11Phe plays a pivotal role in protein stability.  相似文献   

9.
The function of neuroglobin, a member of the vertebrate globin family, is still unknown. In human neuroglobin (NGB), the formation of a disulfide bridge between the CysCD7 and CysD5 is known to affect the heme environment and its ligand-binding kinetics. Here, we show by means of EPR that the PheB10 residue plays a key role in transmitting the structural information from the disulfide bridge to the heme-pocket region. While formation of a disulfide bridge in ferric wild-type NGB leads to a considerable change of its EPR parameters, only minor changes are observed in the case of ferric PheB10Leu NGB. Furthermore, wild-type NGB is found to be much more stable in the presence of H2O2 than its PheB10Leu or its HisE7Leu mutants. While tyrosyl radicals are induced in HisE7Leu NGB by the addition of H2O2, this is not the case for wild-type and PheB10Leu NGB. The results will be discussed in terms of the protein's putative functions.  相似文献   

10.
The clam Lucina pectinata inhabits the sulfide-rich west coast of the island of Puerto Rico. It contains three different hemoglobins. Hemoglobin I (HbI), which is monomeric at all concentrations, carries H2S in its ferric state. Overexpression of recombinant HbI from Lucina pectinata in BL21STAR(DE3) Escherichia coli cells was performed in the presence of delta-aminolevulinic acid (delta-ALA). Purification of the protein was achieved using FPLC anion exchange and size exclusion chromatography. Functional characterization of the recombinant holo-protein was assessed by detection of the protein heme O2, CO, and H2S derivatives by UV-Vis spectroscopy, with Soret maxima at 416, 421, and 425 nm, respectively. The results indicated that the recombinant HbI binds H2S and forms a heme sulfide complex like the HbI wild-type hemoglobin. Kinetic measurements were performed to determine the H2S affinity of the recombinant HbI. The H2S dissociation and association rate constants were 0.055 x 10(-3)s(-1) and 0.068 x 10(5) M(-1)s(-1), respectively. The H2S affinity constant of the recombinant HbI (0.124 x 10(9) M(-1)) is eightfold lower than that of the native clam HbI reported earlier. This effect is attributed mostly to the first of two missense mutations [Met 61 (E4)-->Val 61 and Ile101 (FG4)-->Val 101] and additional amino acids present in our construct as demonstrated by measurements of the association rate with a new construct lacking most of the additional residues and the missense mutations. The elimination of these residues restores the similarity between the expressed and wild-type hemoglobins, as evidenced by H2S association kinetics. A pH dependence on the H2S association rate was also contributing to the overall affinity constant and was taken into account in the measurements of the functional properties of the new HbI construct.  相似文献   

11.
High pressure Fourier transform infrared (FT-IR) spectroscopy is performed for the first time to analyse the active site of inducible nitric oxide synthase (iNOSox) using the carbon monoxide (CO) heme iron ligand stretch mode (nuCO) as spectroscopic probe. A membrane-driven sapphire anvil high-pressure cell is used. Three major conformational substates exist in substrate-free iNOSox which are characterized by nuCO at approximately 1936, 1945 and 1952 cm(-1). High pressure favors the 1936 cm(-1) substate with a volume difference to the 1945 substate of approximately -21 cm3/mol. The pressure induced cytochrome P420 formation with a reaction volume of approximately -80 cm3/mol is observed. Arginine binding produces a very low nuCO at approximately 1905 cm(-1) caused by the H-bond from the substrate to CO. nuCO for the substates in the substrate-free and arginine-bound proteins shift linearly with pressure which is qualitatively similar to the observation on cytochrome P450cam. The slightly smaller positive slope of the shift in substrate-free iNOSox compared to substrate-free P450cam is interpreted as a slightly lesser compressible heme pocket. In contrast, the significant slower negative slope for arginine-bound iNOSox compared to camphor-bound P450cam results from the different kind of interactions to the CO ligand (electrostatic interaction in P450cam, H-bond in iNOSox).  相似文献   

12.
Sequence alignment of hemoglobins of the trematodes Paramphistomum epiclitum and Gastrothylax crumenifer with myoglobin suggests the presence of an unusual active site structure in which two tyrosine residues occupy the E7 and B10 helical positions. In the crystal structure of P. epiclitum hemoglobin, such an E7-B10 tyrosine pair at the putative helical positions has been observed, although the E7 Tyr is displaced toward CD region of the polypeptide. Resonance Raman data on both P. epiclitum and G. crumenifer hemoglobins show that interactions of heme-bound ligands with neighboring amino acid residues are unusual. Multiple conformers in the CO complex, termed the C, O, and N conformers, are observed. The conformers are separated by a large difference (approximately 60 cm(-1)) in the frequencies of their Fe-CO stretching modes. In the C conformer the Fe-CO stretching frequency is very high, 539 and 535 cm(-1), for the P. epiclitum and G. crumenifer hemoglobins, respectively. The Fe-CO stretching of the N conformer appears at an unusually low frequency, 479 and 476 cm(-1), respectively, for the two globins. A population of an O conformer is seen in both hemoglobins, at 496 and 492 cm(-1), respectively. The C conformer is stabilized by a strong polar interaction of the CO with the distal B10 tyrosine residue. The O conformer is similar to the ones typically seen in mutant myoglobins in which there are no strong interactions between the CO and residues in the distal pocket. The N conformer possesses an unusual configuration in which a negatively charged group, assigned as the oxygen atom of the B10 Tyr side chain, interacts with the CO. In this conformer, the B10 Tyr assumes an alternative conformation consistent with one of the conformers seen the crystal structure. Implications of the multiple configurations on the ligand kinetics are discussed.  相似文献   

13.
The purpose of this study is to elucidate the solution conformation of cyclic peptide 1 (cIBR), cyclo (1, 12)-Pen1-Pro2-Arg3-Gly4-Gly5-Ser6-Val7-Leu8-V al9-Thr10-Gly11-Cys12-OH, using NMR, circular dichroism (CD) and molecular dynamics (MD) simulation experiments. cIBR peptide (1), which is derived from the sequence of intercellular adhesion molecule-1 (ICAM-1, CD54), inhibits homotypic T-cell adhesion in vitro. The peptide hinders T-cell adhesion by inhibiting the leukocyte function-associated antigen-1 (LFA-1, CD11a/CD18) interaction with ICAM-1. Furthermore, Molt-3 T cells bind and internalize this peptide via cell surface receptors such as LFA-1. Peptide internalization by the LFA-1 receptor is one possible mechanism of inhibition of T-cell adhesion. The recognition of the peptide by LFA-1 is due to its sequence and conformation; therefore, this study can provide a better understanding for the conformational requirement of peptide-receptor interactions. The solution structure of 1 was determined using NMR, CD and MD simulation in aqueous solution. NMR showed a major and a minor conformer due to the presence of cis/trans isomerization at the X-Pro peptide bond. Because the contribution of the minor conformer is very small, this work is focused only on the major conformer. In solution, the major conformer shows a trans-configuration at the Pen1-Pro2 peptide bond as determined by HMQC NMR. The major conformer shows possible beta-turns at Pro2-Arg3-Gly4-Gly5, Gly5-Ser6-Val7-Leu8, and Val9-Thr10-Gly11-Cys12. The first beta-turn is supported by the ROE connectivities between the NH of Gly4 and the NH of Gly5. The connectivities between the NH of Ser6 and the NH of Val7, followed by the interaction between the amide protons of Val7 and Leu8, support the presence of the second beta-turn. Furthermore, the presence of a beta-turn at Val9-Thr10-Gly11-Cys12 is supported by the NH-NH connectivities between Thr10 and Gly11 and between Gly11 and Cys12. The propensity to form a type I beta-turn structure is also supported by CD spectral analysis. The cIBR peptide (1) shows structural similarity at residues Pro2 to Val7 with the same sequence in the X-ray structure of D1-domain of ICAM-1. The conformation of Pro2 to Val7 in this peptide may be important for its binding selectivity to the LFA-1 receptor.  相似文献   

14.
Site-specific mutants of human myoglobin (Mb) have been prepared, in which Leu29 (B10) is replaced by Ala(L29A) or Ile(L29I), in order to examine the influence of this highly conserved residue in the hydrophobic clusters of the heme distal site on the heme environmental structure and ligand binding properties of Mb. Structural characterizations of these recombinant Mbs are studied by electronic absorption, infrared (IR), one- and two-dimensional proton nuclear magnetic resonance spectroscopies, and ligand-binding kinetics by laser photolysis measurements under ambient and high pressures (up to 2000 bar). Multiple split carbon monoxide (CO) stretch bands in the IR spectra of mutant Mbs exhibit a relative decrease of the 1945 cm-1 band (approximately 50%) which is associated with an upright binding geometry of CO, accompanied by an increase of the tilted CO conformer at 1932 cm-1. On the basis of these results, replacement of Leu29(B10) by Ala or Ile appears to allow bound CO to rotate from a conformation pointing toward the beta meso carbon of the heme group to the one pointing toward the alpha meso carbon atom, presumably filling the space left by removal of the delta 2 carbon atom of Leu29(B10). These substitutions cause the rate constants for CO and O2 association to decrease almost 3-5-fold. Present results show that CO and O2 bindings to the heme iron of Mb are controlled by Leu29(B10) by influencing the structure of close vicinity of the heme and the geometry of iron-bound ligand. Further, mutant Mbs (Leu72(E15)----Ala and Leu104 (G5)----Ala) which have altered residues in another hydrophobic clusters around proximal and distal site are also examined.  相似文献   

15.
The subunit interface of the homodimeric hemoglobin from Scapharca inaequivalvis, HbI, is stabilized by a network of interactions that involve several hydrogen-bonded structural water molecules, a hydrophobic patch, and a single, symmetrical salt bridge between residues Lys-30 and Asp-89. Upon mutation of Lys-30 to Asp, the interface is destabilized markedly. Sedimentation equilibrium and velocity experiments allowed the estimate of the dimerization constants for the unliganded (K(1,2D) = 8 x 10(4) M(-1)) and for the CO-bound (K(1,2L) = 1 x 10(3) m(-1)) and oxygenated (K(1,2L) = 70 m(-1)) derivatives. For the oxygenated derivative, the destabilization of the subunit interface with respect to native HbI corresponds to about 8 kcal/mol, an unexpectedly high figure. In the K30D mutant, at variance with the native protein, oxygen affinity and cooperativity are strongly dependent on protein concentration. At low protein concentrations (e.g. 1.2 x 10(-5) m heme), at which the monomeric species becomes significant also in the unliganded derivative, oxygen affinity increases and cooperativity decreases. At protein concentrations where both derivatives are dimeric (e.g. 3.3 x 10(-3) m heme), both cooperativity and oxygen affinity decrease. Taken together, the experimental data indicate that in the K30D mutant, the mechanism of cooperativity is drastically altered and is driven by a ligand-linked monomer-dimer equilibrium rather than being based on a direct heme-heme communication as in native HbI.  相似文献   

16.
Cytochrome P450 1B1 (CYP1B1) is a key P450 enzyme involved in the metabolism of exogenous and endogenous substrates in endocrine-mediated tumors such as prostate cancer. The potential significance of nonsynonymous SNP Leu432Val (rs1056836) as a risk factor in prostate cancer has been extensively studied. The objective of this meta-analysis was to quantitatively summarize the association between CYP1B1 Leu432Val polymorphism and prostate cancer. All eligible studies were searched and acquired from the PubMed and ISI databases. Statistical analysis was performed by using the software STATA 11.0. Ten case-controlled studies from nine eligible publications were identified, which includes 6,668 subjects with 3,221 cases and 3,447 controls. Overall, no significant association was found between the CYP1B1 Leu432Val polymorphism and prostate cancer susceptibility for Val/Val vs Leu/Leu (OR = 1.07; 95% CI: 0.79-1.44; P = 0.67), Leu/Val vs Leu/Leu (OR = 1.05; 95% CI: 0.94-1.17; P = 0.42), Leu/Val + Val/Val vs Leu/Leu (OR = 1.07; 95% CI: 0.91-1.26; P = 0.40) and Val/Val vs Leu/Val + Leu/Leu (OR = 1.11; 95% CI: 0.86-1.44; P = 0.43). However, a higher risk was found among Asians in all genetic models (Val/Val vs Leu/Leu :OR = 2.48, 95% CI: 1.14-5.39, P = 0.02; Leu/Val vs Leu/Leu: OR = 1.40, 95% CI: 1.03-1.89, P = 0.03; Leu/Val + Val/Val vs Leu/Leu: OR = 1.51, 95% CI = 1.14-2.01, P = 0.004; Val/Val vs Leu/Val + Leu/Leu: OR = 2.50, 95% CI = 1.35-4.56, P = 0.004). We were not able to detect any association in the subgroup analysis by source of controls and genotyping method in all genetic models. In conclusion, this meta-analysis provides evidence that CYP1B1 Leu432Val polymorphism is not associated with prostate cancer risk overall with the exception in Asians.  相似文献   

17.
We report an unusually high frequency (543 cm(-)(1)) for an Fe-CO stretching mode in the CO complex of Ascaris suum hemoglobin as compared to vertebrate hemoglobins in which the frequency of the Fe-CO mode is much lower. A second Fe-CO stretching mode in Ascaris hemoglobin is observed at 515 cm(-1). We propose that these two Fe-CO stretching modes arise from two protein conformers corresponding to interactions of the heme-bound CO with the B10-tyrosine or the E7-glutamine residues. This postulate is supported by spectra from the B10-Tyr --> Phe mutant in which the 543 cm(-1) line is absent. Thus, a strong polar interaction, such as hydrogen bonding, of the CO with the distal B10 tyrosine residue is the dominant factor that causes this anomalously high frequency. Strong hydrogen bonding between O(2) and distal residues in the oxy complex of Ascaris hemoglobin has been shown to result in a rigid structure, rendering an extremely low oxygen off rate [Gibson, Q. H., and Smith, M. H. (1965) Proc. R. Soc. London B 163, 206-214]. In contrast, the CO off rate in Ascaris hemoglobin is very similar to that in sperm whale myoglobin. The high CO off rate relative to that of O(2) in Ascaris hemoglobin is attributed to a rapid equilibrium between the two conformations of the protein in the CO adduct, with the off rate being determined by the conformer with the higher rate.  相似文献   

18.
The fine structural properties of the distal heme pocket have been probed by infrared spectroscopy of ferrous carbon monoxy human hemoglobin mutants carrying the mutations LeuB10-->Tyr and HisE7-->Gln on the alpha, beta, and both chains, respectively. The stretching frequency of iron-bound carbon monoxide occurs as a single broad band around 1943 cm(-1) in both the alpha and the beta mutated chains. Such a frequency value indicates that no direct hydrogen bonding exists between the bound CO molecule and the TyrB10 phenolic oxygen, at variance with other naturally occurring TyrB10, GlnE7 nonvertebrate hemoglobins. The rates of carbon monoxide release have been determined for the first time by a Fourier transform infrared spectroscopy stopped-flow technique that allowed us to single out the heterogeneity in the kinetics of CO release in the alpha and beta chains for the mutated proteins and for native HbA. The rates of CO release are 15- to 20-fold faster for the mutated alpha or beta chains with respect to the native ones consistent with the lack of distal stabilization on the iron-bound CO molecule. The present results demonstrate that residues in key topological positions (namely E7 and B10) for the distal steric control of the iron-bound ligand are not interchangeable among hemoglobins from different species.  相似文献   

19.
20.
Association and dissociation rate constants were measured for O2, CO, and alkyl isocyanide binding to a set of genetically engineered sperm whale myoglobins with site-specific mutations at residue 64 (the E7 helical position). Native His was replaced by Gly, Val, Leu, Met, Phe, Gln, Arg, and Asp using the synthetic gene and expression system developed by Springer and Sligar (Springer, B. A., and Sligar, S. G. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 8961-8965). The His64----Gly substitution produced a sterically unhindered myoglobin that exhibited ligand binding parameters similar to those of chelated protoheme suspended in soap micelles. The order of the association rate constants for isocyanide binding to the mutant myoglobins was Gly64 (approximately 10(7) M-1 s-1) much greater than Val64 approximately Leu64 (approximately 10(6) M-1 s-1) greater than Met64 greater than Phe64 approximately His64 approximately Gln64 (10(5)-10(3) M-1 s-1) and indicates that the barrier to isocyanide entry into the distal pocket is primarily steric in nature. The bimolecular rates of methyl, ethyl, n-propyl, and n-butyl isocyanide binding to the His64----Arg and His64----Asp mutants were abnormally high (1-5 x 10(6) M-1 s-1), suggesting that Arg64 and Asp64 adopt conformations with the charged side chains pointing out toward the solvent creating a less hindered pathway for ligand binding. In contrast to the isocyanide data, the association rate constants for O2 and CO binding exhibited little dependence on the size of the E7 side chain. The values for all the mutants except His64----Gln approached or were larger than those for chelated model heme (i.e. approximately 1 x 10(8) M-1 s-1 for O2 and approximately 1 x 10(7) M-1 s-1 for CO), whereas the corresponding rate parameters for myoglobin containing either Gln64 or His64 were 5- to 10-fold smaller. This result suggests that a major kinetic barrier for O2 and CO binding to native myoglobin may involve disruption of polar interactions between His64 and water molecules found in the distal pocket of deoxymyoglobin. Finally, the rate and equilibrium parameters for O2 and CO binding to the His64----Gln, His64----Val, and His64----Leu mutants were compared to those reported previously for Asian elephant myoglobin (Gln-E7), Aplysia limacina myoglobin (Val-E7), and monomeric Hb II from Glycera dibranchiata (Leu-E7).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号