首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to develop a resistance management strategy to control tropical pests based on the co-expression of different toxins, a fully modified Bacillus thuringiensis cry1B gene and the translational fusion cry1B-cry1Ab gene have been developed. Both constructs were cloned under the control of a maize ubiquitin-1 or a rice actin-1 promoter and linked to the bar gene driven by the CaMV 35S promoter. Immature embryos from the tropical lines CML72, CML216, and their hybrids, were used as the target for transformation by microprojectile bombardment. Twenty five percent of the transformed maize plants with cry1B expressed a protein that is active against southwestern corn borer and sugarcane borer. Ten percent of the transgenic maize expressed single fusion proteins from the translational fusion gene cry1B-1Ab and showed resistance to these two pests as well as to the fall armyworm. Transgenic maize plants that carried the cry1B gene in T1 to T3 progenies transmitted trangenes with expected Mendelian segregation and conferred resistance to the two target insects. Molecular analyses confirmed the cry genes integration, the copy number, the size of protein(s) expressed in maize plants, the transmission, and the inheritance of the introduced cry gene. These new transgenic products will provide another recourse for reducing the build-up of resistance in pest populations. Received: 25 September 2000 / Accepted: 15 December 2000  相似文献   

2.
PCR detection, quantitative real-time PCR (q-RTPCR), outdoor insect resistance, and disease resistance identification were carried out for the detection of genetic stability and disease resistance through generations (T2, T3, and T4) in transgenic maize germplasms (S3002 and 349) containing the bivalent genes (insect resistance gene Cry1Ab13-1 and disease resistance gene NPR1) and their corresponding wild type. Results indicated that the target genes Cry1Ab13-1 and NPR1 were successfully transferred into both germplasms through tested generations; q-PCR confirmed the expression of Cry1Ab13-1 and NPR1 genes in roots, stems, and leaves of tested maize plants. In addition, S3002 and 349 bivalent gene-transformed lines exhibited resistance to large leaf spots and corn borer in the field evaluation compared to the wild type. Our study confirmed that Cry1Ab13-1 and NPR1 bivalent genes enhanced the resistance against maize borer and large leaf spot disease and can stably inherit. These findings could be exploited for improving other cultivated maize varieties.  相似文献   

3.
Heterosis has helped to increase rice yield in F1 hybrids by 15–20% beyond the level of inbred semidwarf varieties. For stable yield performance rice hybrids must also possess genetic resistance to biotic stresses. One of these, stem borer, reduces the expected yield of hybrid rice. The truncated synthetic cryIA(b) gene from Bacillus thuringiensis is known to be effective in controlling stem borer. The development of transformation techniques has provided the technology for incorporating this bacterial gene into the rice genome, which has not been possible by conventional breeding methods. We have introduced a new approach of using a transgenic maintainer line for developing an insect-resistant hybrid rice. An elite IRRI maintainer line (IR68899B) has been transformed with the cryIA(b) gene driven by the 35S constitutive promoter using the biolistic method. The integration and expression of the cryIA(b) gene could be demonstrated through Southern and Western blot analyses that have been carried out so far up to the T2 generations. Insect bioassay data showed an enhanced resistance to yellow stem borer in the Bt + transgenic plants. This is the first report of the development of a transgenic maintainer line for use in hybrid rice improvement. Received: 17 December 1997 / Revision received: 23 June 1998 / Accepted: 25 September 1998  相似文献   

4.
In order to enhance the resistance to pests, transgenic maize (Zea mays L.) plants from elite inbred lines containing the gene encoding snowdrop lectin (Galanthus nivalis L. agglutinin; GNA) under control of a phloem-specific promoter were generated through theAgrobacterium tumefaciens- mediated method. The toxicity of GNA-expressing plants to aphids has also been studied. The independently derived plants were subjected to molecular analyses. Polymerase chain reaction (PCR) and Southern blot analyses confirmed that thegna gene was integrated into maize genome and inherited to the following generations. The typical Mendelian patterns of inheritance occurred in most cases. The level of GNA expression at 0.13%-0.28% of total soluble protein was observed in different transgenic plants. The progeny of nine GNA-expressing independent transformants that were derived separately from the elite inbred lines DH4866, DH9942, and 8902, were selected for examination of resistance to aphids. These plants synthesized GNA at levels above 0.22% total soluble protein, and enhanced resistance to aphids was demonstrated by exposing the plants to corn leaf aphid (Rhopalosiphum maidis Fitch) under greenhouse conditions. The nymph production was significantly reduced by 46.9% on GNA-expressing plants. Field evaluation of the transgenic plants supported the results from the inoculation trial. After a series of artificial self-crosses, some homozygous transgenic maize lines expressing GNA were obtained. In the present study, we have obtained new insect-resistant maize material for further breeding work.  相似文献   

5.
The corn smut fungus, Ustilago maydis, is a global pathogen responsible for extensive agricultural losses. Control of corn smut using traditional breeding has met with limited success because natural resistance to U. maydis is organ specific and involves numerous maize genes. Here, we present a transgenic approach by constitutively expressing the Totivirus antifungal protein KP4, in maize. Transgenic maize plants expressed high levels of KP4 with no apparent negative impact on plant development and displayed robust resistance to U. maydis challenges to both the stem and ear tissues in the greenhouse. More broadly, these results demonstrate that a high level of organ independent fungal resistance can be afforded by transgenic expression of this family of antifungal proteins.  相似文献   

6.
Abstract: In order to enhance the resistance to pests, transgenic maize ( Zea mays L.) plants from elite inbred lines containing the gene encoding snowdrop lectin ( Galanthus nivalis L. agglutinin; GNA) under control of a phloem-specific promoter were generated through the Agrobacterium tumefaciens-mediated method. The toxicity of GNA-expressing plants to Asian corn borer ( Ostrinia furnacalis Guenée; ACB) was also studied. Thirty-six independently derived plants were subjected to molecular analyses. The level of GNA expression at 0.13%–0.28% of total soluble protein was observed in different transgenic plants. The progeny of three GNA-expressing independent transformants that were derived separately from the elite inbred lines DH4866, DH9942, and 8902, were selected for examination of resistance to ACB. These plants synthesized GNA at levels above 0.24% total soluble protein and enhanced resistance to ACB was demonstrated by exposing the plants to insects under greenhouse conditions. Semi-artificial diet bioassays also showed the toxic effect of GNA on ACB. Field evaluation of the transgenic plants supported the results from the artificial trial. In the present study, we have obtained new insect-resistant maize material for further breeding work and have found that GNA-expressing plants not only gained significant resistance to homopterans, but also showed toxicity to ACB, which is a type of Lepidoptera.
(Managing editor: Li-Hui ZHAO)  相似文献   

7.
玉米( Zea mays L.)转化成功与否与基因型密切相关.在转化过程中,除少数模式品种能够形成再生频率较高且易转化的Ⅱ型愈伤组织外,大多数栽培品种往往只能够形成再生频率较低且不易转化的Ⅰ型愈伤组织.因此探索Ⅰ型愈伤组织的诱导及其转化条件,提高转化效率,对直接改良玉米优良自交系具有重要意义.应用基因枪转化技术将苏云金杆菌( Bacillus thuringiensis ) cry1Ac3基因导入玉米优良自交系E28及340的Ⅰ型胚性愈伤组织中,经过膦丝菌素(PPT)或潮霉素(HygB)筛选,获得了再生植株.经PCR检测、Southern blot分析及Bt毒蛋白ELISA检测证实,外源基因已整合到玉米基因组中,并已获得表达.抗虫性分析结果表明,部分转基因玉米植株对玉米螟虫有较强的抗性.还比较了PPT和HygB两种筛选剂的筛选效果,表明PPT筛选的抗性愈伤组织的再生频率要高于HygB筛选的再生频率.  相似文献   

8.
The aim of this study was to investigate influence of transgenic and commercial corn hybrids on the behaviour and feeding activity of the pink corn borer (Sesamia cretica Led.). Food consumption was different according to feeding period and hybrids. The feeding ratio of S. cretica on maize hybrids was significantly different between transgenic and commercial hybrids. It appears from the results of this experiment that the antifeeeding activity of transgenic hybrids had greater effect than commercial hybrids one. Thus, it is apparent from these results that transgenic maize was unsuitable because larvae were dead, but the other commercial hybrids were preferable. It can be concluded from the data that the feeding on different maize hybrids had different effects on certain biological aspects of pink corn borer. The impact of untreated Bt. Corn; 0.5% water emulsion of Neem-Azal-T/S and 0.005% water emulsion of Chlorpyrifos insecticides on the behaviour and feeding activity of the pink corn borer S. cretica has been studied. The data showed that larvae stopped feeding from the time when it was fed on untreated Bt. corn or/and non Bt. Corn treated with NeemAzal-T/S 0.5%. The results indicated that Bt. corn, NeemAzal-T/S 0.5% and Chlorphan 48% (0.005%) possessed the toxic effect on pink corn borer S. cretica. According to results, it could be stated that the tested compounds can play an important role in controlling the pink corn borer.  相似文献   

9.
Approximately 22 000 hectares (5% of the total maize growing area) of transgenic maize expressing the Cry1Ab toxin from Bacillus thuringiensis (Bt maize) have been planted annually in Spain since 1998. Changes in the susceptibility to Cry1Ab of Spanish populations of the Mediterranean corn borer (MCB), Sesamia nonagrioides (Lefebvre) (Lepidoptera: Noctuidae), and the European corn borer (ECB), Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae), were assessed by annual monitoring on Bt maize fields. No increase in resistance was detected in the MCB populations from Ebro, Albacete, and Badajoz, nor in the ECB populations from Ebro and Badajoz during the period 1999–2002. The susceptibility of the MCB population from Madrid fluctuated from year to year, but a gradual trend towards higher levels of tolerance was not observed. Laboratory selection assays for eight generations yielded selected strains of MCB and ECB that were 21‐ and 10‐fold significantly more tolerant to Cry1Ab than the corresponding unselected strains, respectively. Nevertheless, none of the field‐collected or laboratory‐selected larvae were able to survive on Bt maize. Considering these data, no consistent shifts in susceptibility were found for Spanish populations of MCB nor ECB after 5 years of Bt maize cultivation, but systematic field monitoring needs to be continued.  相似文献   

10.
11.
Southern corn rust (SCR), which is a destructive disease caused by Puccinia polysora Underw. (P. polysora), commonly occurs in warm‐temperate and tropical regions. To identify candidate proteins related to SCR resistance and characterize the molecular mechanisms underlying the maize–P. polysora interaction, a comparative proteomic analysis of susceptible and resistant maize lines was performed. Statistical analyses revealed 1489 differentially abundant proteins in the resistant line, as well as 1035 differentially abundant proteins in the susceptible line. After the P. polysora infection, the abundance of one remorin protein (ZmREM1.3) increased in the resistant genotype, but decreased in the susceptible genotype. Plant‐specific remorins are important for responses to microbial infections as well as plant signalling processes. In this study, transgenic maize plants overexpressing ZmREM1.3 exhibited enhanced resistance to the biotrophic P. polysora. In contrast, homozygous ZmREM1.3 UniformMu mutant plants were significantly more susceptible to P. polysora than wild‐type plants. Additionally, the ZmREM1.3‐overexpressing plants accumulated more salicylic acid (SA) and jasmonic acid (JA). Moreover, the expression levels of defence‐related genes were higher in ZmREM1.3‐overexpressing maize plants than in non‐transgenic control plants in response to the P. polysora infection. Overall, our results provide evidence that ZmREM1.3 positively regulates maize defences against P. polysora likely via SA/JA‐mediated defence signalling pathways. This study represents the first large‐scale proteomic analysis of the molecular mechanisms underlying the maize–P. polysora interaction. This is also the first report confirming the remorin protein family affects plant resistance to SCR.  相似文献   

12.
To fully explore the resistance potential of transgenic rice produced by Agrobacterium-mediated transformation, an elite line KMD1 was assessed for its resistance to eight lepidopteran rice pest species. KMD1 contained a synthetic cry1Ab gene from Bacillus thuringiensis under the control of a maize ubiquitin promoter. It was derived from a commercial japonica Chinese rice variety Xiushui 11, and bred true for both agronomic traits and a cry1Ab gene when the bioassays were done in 1998 in the R5 generation. The eight lepidopteran pest species were: four Pyralidae species: Chilo suppressalis (striped stem borer, SSB), Scirpophaga incertulas (yellow stem borer, YSB), Cnaphalocrocis medinalis (leaf folder), Herpitogramma licarisalis; two Noctuidae: Sesamia inferens (pink stem borer, PSB) and Naranga anescens; one Stayridae: Mycalesis gotama; and one Hesperiidae, Parnara guttata. In laboratory bioassays, 100% mortality was observed in all insect species when their newly hatched or third-instar larvae were fed KMD1 leaf tissues, whereas only 9.65% of the neonates and none of the third-instar larvae died when fed the leaf tissues of non-transgenic control. Moreover, the leaf area of control tissues consumed in four days by stem borers was 20 to 40 times higher than that of KMD1 tissues, and the area of control tissues eaten by leaf-feeding species was 120 to 180 times greater than that of the transgenic tissues. Under natural infestation, no KMD1 plant was visibly damaged by the SSB, YSB and leaf folder in field evaluation. On the other hand, 80, 9.3 and 88.7% of control plants were injured by SSB, YSB, and leaf folder, respectively. These data disclosed that the transgenic line was highly resistant to a broad spectrum of lepidopteran insect species and could be useful in insect resistance breeding programs.  相似文献   

13.
14.
基因枪轰击成熟花粉粒转化玉米的研究   总被引:2,自引:2,他引:0  
利用基因枪轰击花粉粒再授粉的基因转化途径,将豇豆胰蛋白酶抑制剂基因(CpTI)成功导入玉米受体中。经卡那霉素筛选结果表明,非转化植株经1000ppm卡那霉素溶液处理后白化、死亡,余下大量健壮、可育的抗性植株,转化率约1.59%。通过对抗性植株进行PCR和PCR—Southern检测,初步确定CpTI基因已导入玉米基因组。饲虫实验结果表明转化植株具有较强的抗虫性。  相似文献   

15.
Zhang Y  Li H  Ouyang B  Lu Y  Ye Z 《Biotechnology letters》2006,28(16):1247-1253
Marker-free transgenic tomato plants harboring a synthetic Bacillus thuringiensis endotoxin gene, cryIAc, were obtained by using a chemically regulated, Cre/loxP-mediated site-specific DNA recombination system, in which the selectable marker neomycin phosphotransferase gene flanked by two directly oriented loxP sites was located between the cauliflower mosaic virus 35S promoter and a promoterless cryIAc. Upon induction by 2 μM β-estradiol, sequences encoding the selectable marker and cre sandwiched by two loxP sites were excised from the tomato genome, leading to activation of the downstream endotoxin gene cryIAc with high expression levels as shown by Northern blot and ELISA assay (250–790 ng g−1 fresh wt) in T1 generation. For transgenic line with single transgenic loci, 15% of T1 progenies were revealed marker-free. This autoexcision strategy provides an effective approach to eliminate a selectable marker gene from transgenic tomato, thus expediting the public acceptance of genetically modified crop.  相似文献   

16.
Evolution of resistance by insect pests is the greatest threat to the continued success of Bacillus thuringiensis (Bt) toxins used in insecticide formulations or expressed by transgenic crop plants such as Cry1F‐expressing maize [(Zea mays L.) (Poaceae)]. A strain of European corn borer, Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae), obtained from field collections throughout the central US Corn Belt in 1996 was selected in the laboratory for resistance to Cry1F by exposure to the toxin incorporated into artificial diet. The selected strain developed more than 3000‐fold resistance to Cry1F after 35 generations of selection and readily consumed Cry1F expressing maize tissue; yet, it was as susceptible to Cry1Ab and Cry9C as the unselected control strain. Only a low level of cross‐resistance (seven‐fold) to Cry1Ac was observed. These lacks of cross‐resistance between Cry1F and Cry1Ab suggest that maize hybrids expressing these two toxins are likely to be compatible for resistance management of O. nubilalis.  相似文献   

17.
The introduction and expression of proteinase inhibitor encoding genes into sugarcane (Saccharum officinarum L.) genome is an interesting strategy for conferring partial resistance to the sugarcane borer Diatraea saccharalis (Lepidoptera: Crambidae), the major insect pest of sugarcane in Brazil. To investigate the role of soybean (Glycine max L.) Kunitz trypsin inhibitor (SKTI) and soybean Bowman–Birk inhibitor (SBBI) in the control of D. saccharalis, the cDNAs encoding these proteinase inhibitors were placed under the control of the maize ubiquitin promoter (Ubi-1), and introduced into sugarcane callus using particle bombardment. Putative transgenic plants were initially identified after regeneration from callus growing in the presence of 30 mg l–1 geneticin, while molecular characterization of transgenic plants revealed that both genes were incorporated into the sugarcane genome and expressed. We also carried out insect feeding trials using D. saccharalis neonate larvae and leaf tissue excised from propagated transgenic and untransformed plants, and found that the growth of larvae feeding on leaf tissue from transgenic plants containing BBI and Kunitz inhibitors was significantly retarded as compared to larvae fed on leaf tissue from untransformed plants. In greenhouse trials with transgenic sugarcane plants infested with D. saccharalis neonates, we found that these plants still presented the ‘dead heart’ symptom typically observed in susceptible plants in the field, suggesting that the retardation of the growth of D. saccharalis observed in the laboratory-based feeding trials was not sufficient to prevent this type of damage.  相似文献   

18.
In Latin America and sub-Saharan Africa, tropical maize (Zea mays L.) is a major crop for human consumption. To cope with the increasing population and changing environment, there is a need for improving tropical maize germplasm. As part of a biotechnological approach, efficient in vitro regeneration of two tropical maize inbred lines (CML216 and CML244) was established. A number of parameters were optimized, such as age of the immature embryos, plant media and growth regulator concentration. After 6 weeks of culture, somatic embryos that had already reached the coleoptilar stage produced shoots after light induction and developed into fertile plants after acclimation in the soil. The callus induction frequencies and somatic embryo-derived plantlet formation were higher when cultured with the Linsmaier and Skoog medium than those with the Chu’s N6 basal medium. Regeneration of tropical maize shoots depended on the 2,4-dichlorophenoxyacetic acid (2,4-D) concentration at the callus initiation stage from immature embryos. The recalcitrance of the tropical maize inbred line TL26 to in vitro regeneration was overcome in a single-cross hybrid with the CML216 and CML244 genotypes. Remarkably, tropical maize somatic embryos were formed at the abaxial side of the scutellum facing the medium, probably from the axis of the immature embryos, as shown by histological sections. Upon co-cultivation, agrobacteria transiently expressed their intronless β-glucuronidase-encoding gene at the embryogenic tissue, but not with an intron-containing gene, suggesting that virulence genes are induced in Agrobacterium, but that subsequent steps in the T-DNA transfer are inhibited.  相似文献   

19.
Summary To determine the degree of insect resistance in transgenic plants, different bioassays are used which typically use either whole plant or small pieces of leaves or stems of transgenic plants, following culture under greenhouse conditions. An in vitro insect-feeding bioassay is presented which permits the infestation of transgenic plantlets with newly hatched larvae from the striped stem borer. The bioassay consists of the germination of rice seeds in vitro using Murashige and Skoog medium in test tubes, and then infestation of each 3–4 cm long seedling with one neonate larva obtained from surfacesterilized eggs of Chilo suppressalis. The infested in vitro plantlets are kept in culture rooms at 25°C for several days and then the seedling damage and the growth of the larvae are analyzed. Senia (japonica variety) homozygous transgenic rice plants were used for these experiments. The plants were transformed with either the cry1B or the maize proteinase inhibitor (mpi) genes. Both genes confer resistance to Chilo suppressalis. With non-transformed plants the larvae grew and developed normally, feeding on the small rice plantlets. In contrast, with cry1B plants, the neonate larvae died during the first days of the infestation. These plantlets recovered completely and developed similarly to the non-infested control plants. With transgenic plants transformed with the mpi gene, the neonate larvae did not die but grew more slowly compared with the controls. Thus, this in vitro insect-feeding bioassay is a rapid and easy method to detect the resistance of cry and mpi transgenic plants to stem borers such as Chilo suppressalis.  相似文献   

20.
Using the pulse-discharging electroporation system HPES-3, we have transferred the neomycin phosphotransferase II (nptII) gene and -glucuronidase (gus) gene into mechanically-woulded immature zygotic embryo cells of an elite local maize cultivar Huanong Supersweet No. 42 and have produced transgenic maize plants. DNA hybridization and NPTII dot assay showed that the foreign genes were integrated into the genomes and expressed stably in the cells of the transgenic calluses and plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号